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Motivation

• Hyperbolic reentry flow analysis

• Uncertainties in heat flux prediction:

• Up to 50% for convective flux

• More than 100% for radiative flux

q

• Interplanetary Missions

• TPS Design
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Hypersonic Reentry

(D. F. Potter. Modelling of radiating shock layers for atmospheric entry at Earth and 

Mars. PhD thesis, The University of Queensland, Australia, 2011..)
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1. Multi-Temperature

2. State-to-State (more detailed)

Approach



• Multi-Temperature: Boltzmann distribution

• State-to-State: non-Boltzmann distribution
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Macroscopic to Microscopic

(adapted from: J. D. Anderson. Hypersonic and High Temperature Gas Dynamics. AIAA, 2nd

edition, 1989.)

(adapted from: B. Lopez. Simulation des Écoulements de

Plasma Hypersonique Hors Équilibre Thermochimique.

PhD thesis, Université D’Orléans, 2010.)

Boltzmann



• Multi-Temperature Approach:

• Boltzmann distribution

• Kinetic Scheme: Air5-STELLAR-Boltzmann

• Thermal energy source term: 

• Transport Models: Gupta-Yos/CCS 

Conservation equations:
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Physical Models
Transport Terms Source Terms



Conservation equations:
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Physical Models Transport Terms Source Terms

• State-to-State Approach:

• non-Boltzmann distribution

• Kinetic Scheme: Air5-STELLAR

• Vibrational state-specific reaction

rates – FHO model

• Transport Models: Model 0, Model 1 
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Physical Models –Transport

• State-to-State: non-Boltzmann

• Model 1 

• Multi-Temperature: Boltzmann

• Model 0 • Gupta-Yos/CCS 

• D – mass diffusion, μ – viscosity, λ – thermal conductivity

• x – molar fraction, Δ – collision term, C – coefficient, S – state-specific factor

• i/j – chemical species, v/w – vibrational level 
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Numerical Setup –Verification 
& Validation

• Equilibrium, Temperature-dependent

transport coefficients

• N2, N

• 500 – 50,000 K

• Ambient pressure

• Models: Gupta-Yos/CCS, Model 0, Model 1



• Application case study:

• N2 Flow over a sphere r = 0.15 m – 2D axissymetric

• N2/N mixture

• 61 vibrational levels N2(v)

• 1 electronic level N

• Upstream conditions:

• V∞ = 7 km/s

• p∞ = 27 Pa

• T∞ = 300 K, 700 K
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Numerical Setup – Problem 
Definition

62 pseudo-species

Fully Catalytic Wall
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Numerical Setup -
Simulations
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Results –Transport Models
T∞ = 300 K

Temperature

• Impact of Model 1 is negligible – consistent with 

verification analysis (Model 0 vs. Model 1).

• Transport phenomena leads to a 15% lower 

peak temperature and larger shock layer 

thickness (Euler vs. Model 0).

• Larger shock standoff distance and higher peak 

temperature for more detailed models 

(respectively, State-to-State, 2T, 1T).

• Equilibrium is not completely achieved near the 

wall.
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Euler vs. Model 0

Model 0 vs. Model 1

Vibrational Distribution Functions N2(v) – 300 K

Results –Transport Models
T∞ = 300 K

• Lower/higher mass fractions in the shock/boundary layer 

regions for Euler (Euler vs. Model 0).

• With Model 0, Boltzmann equilibrium is nearly reached in the 

boundary layer, as opposed to Euler (Euler vs. Model 0).

• Impact of Model 1 is more enhanced in the shock layer, yet 

negligible (Model 0 vs. Model 1).

Quasi-Boltzmann
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Mass Fractions – Vibrational Levels N2(v) – 300 K 

Results –Transport Models
T∞ = 300 K

• Peak temperature - sudden increase in the population of 

upper vibrational levels.

• At x = -10.5 mm, dissociation takes over.

• Mass diffusion effects in Model 0 result in smoother curves.

• Recombination effects in the boundary layer, for Model 0.

Catalytic Wall

Non-catalytic Wall
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Results – Freestream 
Temperature

Temperature – T∞ = 300 K vs. T∞ = 700 K

• 10% larger shock standoff distance and 50% 

higher peak temperature for T∞ = 700 K.

• Model 1 leads to a more diffusive peak 

temperature.

• Equilibrium is not completely achieved near the 

wall.



(top)     (bottom) 16

Results –Temperature Fields 2D Temperature field

Euler vs. Model 0, T∞ = 300 K 2T vs. Model 0, T∞ = 300 K Model 0, T∞ = 300 K vs. T∞ = 700 K

(top)      (bottom) (top)               (bottom)

No boundary layer



• State-to-State Navier-Stokes simulations are a significantly stiff problem:

• Convergence was very slow – CFL around 0.01.

• Simulations crashed when trying implicit schemes.

• A grid convergence study is required, given the uncertainties in the boundary layer region.

• Model 0 has a significant impact on the prediction of radiative heat fluxes.

• Model 1 does not influence flow properties.
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Conclusions



• More rigorous mesh refinement in the boundary layer region.

• Inclusion of a detailed state-specific transport model in the governing fluid dynamic 

equations – Kustova’s model.

• Paper - AIAA Science and Technology Forum and Exposition 2019

• “Simplified Transport Modelling Strategies for Fully Coupled Navier-Stokes and State-Specific Simulations of Hypersonic Flows”, 
Ana Garbacz Gomes, Mário Lino Da Silva, Maria Castela, Bruno Lopez.
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Future Work
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