

State-to-State Transport in Hypersonic Flows

Master Thesis in Aerospace Engineering

Ana Catarina Garbacz Gomes

• Nr: 75687

- Instituto Superior Técnico
 - September 2018

Motivation

• Interplanetary Missions

- TPS Design
 Hyperbolic reentry flow analysis
- Uncertainties in heat flux prediction:
 - Up to 50% for convective flux
 - More than 100% for radiative flux

1. Multi-Temperature

2. State-to-State (more detailed)

Macroscopic to Microscopic

- Multi-Temperature: Boltzmann distribution
- State-to-State: non-Boltzmann distribution

 $\hat{e}_{\mathbf{v}}$ $\hat{e}_{\mathbf{X}}$ (b) Rotational Mode

(c) Vibrational Mode

(d) Electronic Excitation Mode

(adapted from: B. Lopez. Simulation des Écoulements de Plasma Hypersonique Hors Équilibre Thermochimique. PhD thesis, Université D'Orléans, 2010.)

(adapted from: J. D. Anderson. Hypersonic and High Temperature Gas Dynamics. AIAA, 2nd edition, 1989.)

Physical Models

- Multi-Temperature Approach:
 - Boltzmann distribution
- Kinetic Scheme: Air5-STELLAR-Boltzmann
- Thermal energy source term:

$$\dot{\Omega}_{V-T,s} = \rho_s \frac{\varepsilon_{vib,s}^{eq}(T_{tra}) - \varepsilon_{vib,s}(T_{vib})}{\tau_{VT,s}}$$

Conservation equations:

$$\frac{\partial(\rho c_i)}{\partial t} + \vec{\nabla} \cdot (\rho c_i \vec{u}) = \vec{\nabla} \cdot \vec{J_i} + \vec{\omega_i}$$

$$\frac{\partial(\rho\vec{u})}{\partial t} + \vec{\nabla} \cdot (\rho\vec{u} \otimes \vec{u}) = \vec{\nabla} \cdot [\tau] - \vec{\nabla}p$$

$$\frac{\partial(\rho E)}{\partial t} + \vec{\nabla} \cdot (\rho E \vec{u}) = \vec{\nabla} \cdot \left(\sum_{k} \vec{q}_{C_k} + \sum_{i} \vec{J}_i h_i + \vec{u} \cdot [\tau] - p \vec{u}\right)$$

$$\frac{\partial}{\partial t}(\rho\varepsilon_k) + \vec{\nabla} \cdot (\rho\vec{u}h_k) = \vec{\nabla} \cdot \left(\vec{q}_{C_k} + \sum_i \vec{J}_i h_{i,k} \right) + \dot{\Omega}_k$$

• Transport Models: Gupta-Yos/CCS

Physical Models

Transport Terms

Conservation equations:

- State-to-State Approach:
 - non-Boltzmann distribution

$$\frac{\partial(\rho c_v)}{\partial t} + \vec{\nabla}.(\rho c_v \vec{u}) = \vec{\nabla}.\vec{J_v} + \dot{\omega}_v$$

- Kinetic Scheme: Air5-STELLAR
 - Vibrational state-specific reaction rates – FHO model
- Transport Models: Model 0, Model 1

$$\frac{\partial(\rho\vec{u})}{\partial t} + \vec{\nabla}.(\rho\vec{u}\otimes\vec{u}) = \vec{\nabla}.\vec{\tau} - \vec{\nabla}p$$
$$\frac{\partial(\rho E)}{\partial t} + \vec{\nabla}.(\rho E\vec{u}) = \vec{\nabla}.\left(\sum_{k}\vec{q_{c_k}} + \sum_{v}\vec{J_v}h_v + \vec{u}.\vec{\tau} - p\vec{u}\right)$$

Physical Models – Transport

 Multi-Temperature: Boltzmann 	 State-to-State: non-Boltzmann 		
 Gupta-Yos/CCS 	Model 0	 Model 1 	
$(D_{ij}, \mu, \lambda) = f(x_i, \Delta_{ij} C_i)$	$(D_{ij_{vw}}, \mu, \lambda) = f(x_v, C_i, \Delta_{ij})$	$(D_{ij_{vw}}, \mu, \lambda) = f(x_v, C_i, \Delta_{ij} \times S_v)$	

- D mass diffusion, μ viscosity, λ thermal conductivity
- x molar fraction, Δ collision term, C coefficient, S state-specific factor
- i/j chemical species, v/w vibrational level

Numerical Setup – Verification & Validation

Software Package for Aerodynamics Radiation and Kinetics

- Equilibrium, Temperature-dependent transport coefficients
 - N₂, N
 - 500 50,000 K
 - Ambient pressure
 - Models: Gupta-Yos/CCS, Model 0, Model 1

Numerical Setup – Problem Definition

- Application case study:
 - N_2 Flow over a sphere r = 0.15 m 2D axissymetric
 - N₂/N mixture
 - 61 vibrational levels N₂(v)
 62 pseudo-species
 - 1 electronic level N
 - Linetroom conditions:
 - Upstream conditions:
 - $V_{\infty} = 7 \text{ km/s}$
 - p_∞ = 27 Pa
 - T_∞ = 300 K, 700 K

Numerical Setup -Simulations

Software Package for Aerodynamics Radiation and Kinetics

	Internal Modes Description Model	Transport Model	Kinetic Scheme	T_∞ [K]
Test-case 1	Boltzmann (One-temperature)	Gupta-Yos/CCS	Air5-STELLAR-Boltzmann	300
Test-case 2	Boltzmann (Two-temperature)	Gupta-Yos/CCS	Air5-STELLAR-Boltzmann	300
Test-case 3	Vibrational state-specific	- (Euler)	Air5-STELLAR	300
Test-case 4	Vibrational state-specific	Model 0	Air5-STELLAR	300
Test-case 5	Vibrational state-specific	Model 1	Air5-STELLAR	300
Test-case 6	Vibrational state-specific	Model 0	Air5-STELLAR	700
Test-case 7	Vibrational state-specific	Model 1	Air5-STELLAR	700

Results – Transport Models $T_{\infty} = 300 \text{ K}$

Temperature

×10⁴ Euler 1T 2 -2T Model 0 -Model 1 Temperature [K] 1 0.5 -0.012 -0.01 -0.008 -0.006 -0.004 -0.002 0 x [m]

- Impact of Model 1 is negligible consistent with verification analysis (Model 0 vs. Model 1).
- Transport phenomena leads to a 15% lower peak temperature and larger shock layer thickness (Euler vs. Model 0).
- Larger shock standoff distance and higher peak temperature for more detailed models (respectively, State-to-State, 2T, 1T).
- Equilibrium is not completely achieved near the wall.

Results – Transport Models $T_{\infty} = 300 \text{ K}$

Vibrational Distribution Functions N₂(v) – 300 K

- Lower/higher mass fractions in the shock/boundary layer regions for Euler (Euler vs. Model 0).
- With Model 0, Boltzmann equilibrium is nearly reached in the boundary layer, as opposed to Euler (Euler vs. Model 0).
- Impact of Model 1 is more enhanced in the shock layer, yet negligible (Model 0 vs. Model 1).

Results – Transport Models $T_{\infty} = 300 \text{ K}$

Mass Fractions – Vibrational Levels N₂(v) – 300 K

- Peak temperature sudden increase in the population of upper vibrational levels.
- At x = -10.5 mm, dissociation takes over.
- Mass diffusion effects in Model 0 result in smoother curves.
- Recombination effects in the boundary layer, for Model 0.

Results – Freestream Temperature

Temperature – T_{∞} = 300 K vs. T_{∞} = 700 K

4 × 10⁴ -Model 0 700 K -Model 1 700 K 3.5 -Model 0 300 K 3 ---T_{vib} Temperature [K] 2 1.5 1 0.5 0 -0.014 -0.012 -0.01 -0.008 -0.006 0 -0.004 -0.002 x [m]

10% larger shock standoff distance and 50% higher peak temperature for T_∞ = 700 K.

Model 1 leads to a more diffusive peak temperature.

Equilibrium is not completely achieved near the wall.

Results – **Temperature** Fields

2D Temperature field

16

- State-to-State Navier-Stokes simulations are a significantly stiff problem:
 - Convergence was very slow CFL around 0.01.
 - Simulations crashed when trying implicit schemes.
- A grid convergence study is required, given the uncertainties in the boundary layer region.
- Model 0 has a significant impact on the prediction of radiative heat fluxes.
- Model 1 does not influence flow properties.

• More rigorous mesh refinement in the boundary layer region.

 Inclusion of a detailed state-specific transport model in the governing fluid dynamic equations – Kustova's model.

- Paper AIAA Science and Technology Forum and Exposition 2019
 - "Simplified Transport Modelling Strategies for Fully Coupled Navier-Stokes and State-Specific Simulations of Hypersonic Flows", Ana Garbacz Gomes, Mário Lino Da Silva, Maria Castela, Bruno Lopez.

Thank You

Master Thesis in Aerospace Engineering

Ana Catarina Garbacz Gomes

Nr: 75687

Instituto Superior Técnico

September 2018