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Resumo

O presente trabalho propõe-se a analisar escoamentos hipersónicos em desequilı́brio, em torno de

veı́culos de entrada atmosférica. O desenho destes veı́culos e dos respectivos sistemas de proteção

térmica requere a modelação adequada dos fenómenos de transporte a alta temperatura. Nesta tese,

os processos de dissociação e de relaxação para a transferência de energia vibracional são tratados

utilizando uma abordagem cinética state-to-state. Um estudo numérico do escoamento de azoto a alta

velocidade em torno de uma esfera foi realizado com o objectivo de avaliar o impacto da implementação

de coeficientes de transporte numa abordagem state-to-state, no código SPARK. Duas aproximações

foram consideradas utilizando o modelo Gupta-Yos: uma transposição directa das propriedades de

transporte macroscópicas para cada estado interno, e a mesma transposição multiplicada por um factor

correctivo, considerando o aumento das secções de colisão para moléculas vibracionalmente excitadas.

Consideraram-se vários modelos aerotermodinâmicos: Euler state-to-state, e Navier-Stokes state-to-

state, uma-temperatura e duas-temperaturas. A inclusão de fenómenos de transporte na abordagem

state-to-state (Navier–Stokes vs. Euler) resultou em variações das propriedades do escoamento mais

suaves, o que se traduziu num pico de temperatura 15% inferior com uma posição do choque aprox-

imadamente igual. Comparando a simulação Navier-Stokes state-to-state com a simulação a duas-

temperaturas, a primeira abordagem resultou num choque mais afastado da parede e num pico de tem-

perature superior, em 10% e 5%, respectivamente. Contudo, o impacto do modelo State-Dependent

Collisional Cross-Section revelou-se desprezável, em conformidade com assumpções da literatura. Os

efeitos dos processos de dissociação e de excitação vibracional revelaram-se mais acentuados para

temperaturas a montante mais elevadas.

Palavras-chave: Reentrada, Hipersónico, Transporte, State-to-state
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Abstract

This work studies nonequilibrium hypersonic flows surrouding space reentry vehicles. The design of

such vehicles and its associated thermal protection systems relies on the accurate modelling of trans-

port phenomena. In this thesis, dissociation and vibrational energy transfer relaxation processes are

treated using a state-to-state kinetics approach. A numerical study is carried out to assess the impact

of using state-specific transport coefficients in CFD simulations of hypersonic external flowfields. To

this purpose, the Gupta-Yos/CCS macroscopic transport model, available in the SPARK code, has been

transposed to state-to-state species, considering in a first approximation that state-specific transport

properties are equivalent to the macroscopic ones. Additionally, a state-dependent collisional cross-

section model has been implemented, taking into account the increase of collision cross-sections for

vibrationally excited molecules. The code was successfully applied to the simulation of a 7 km/s nitrogen

flow past a sphere. Different physical models were considered: Euler and Navier-Stokes state-to-state,

Navier-Stokes one and two-temperature. Considering transport phenomena in a state-to-state approach

resulted in smoother variations of the flow properties, with a 15% lower peak temperature and a similar

shock position. Comparing the viscous state-to-state simulations with the two-temperature ones, the

state-to-state approach yielded respectively a 10% and 5% larger shock standoff distance and peak

temperature. A comparison of the standard state-to-state transport model with the one considering en-

chanced collision cross-sections yielded minimal differences in the obtained results, in agreement with

the assumptions from the litterature. The effects of dissociation and vibrational excitation processes

were confirmed to be emphasised for higher freestream temperatures.

Keywords: Reentry, Hypersonic, Transport, State-to-state
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Chapter 1

Introduction

Space is the greatest untapped source of scientific knowledge from where endless possibilities arise. In

the attempt to explore New Horizons, the development of novel and efficient Space technologies is of

paramount importance. Up to now, a large majority of planetary exploration missions has been limited

to one-way trips. Nevertheless, future sample return or manned missions will include a high-speed

(superorbital) Earth entry return. Reentry vehicles will have to be capable of withstanding the severe

aerothermodynamic environment caused by this specific class of atmospheric entry.

1.1 High-speed Atmospheric Entry

During entry into Earth’s atmosphere, the vehicle gradually loses altitude and reaches denser regions

of the atmosphere. Meanwhile, it must decelerate from speeds up to 13 km/s (the Stardust sample

return capsule was the fastest man-made object to reenter Earth’s atmosphere at 12.9 km/s [1]) to the

subsonic regime. Considering that these velocities are much higher than the speed of sound, the internal

energy of the flow is small when compared to its kinetic energy and the flow is said to be hypersonic [2].

This implies that strong shock waves will be formed: the changes in the flow properties occur abruptly

and the flow thermodynamic processes are irreversible, causing a large increase in entropy. One of

these processes is the conversion of a large amount of coherent translational energy (velocity) into

agitation energy, which results in a significant increase in the translational temperature (up to 104-105

K). This energy will mostly be transported to the wake region of the flow, but a significant part will reach

the spacecraft’s surface, becoming necessary to estimate the corresponding convective and radiative

fluxes. Moreover, under this high-temperature and low pressure conditions, the gas is in an extreme

nonequilibrium state, enabling a series of fast and complex physicochemical processes (illustrated in

Fig. 1.1), and ultimately reaches a new equilibrium condition (different from the upstream one) - see Fig.

1.2.

Typically, reentry capsules are designed as a blunt-body (as shown in Fig. 1.1) favouring shock de-

tachment, in order to minimize the surface convective heat flux, at the expense of increasing radiative

fluxes (Fig. 1.2). The detachment of the shock leaves room between the shock wave and the TPS (Ther-
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Figure 1.1: Illustration of the aerothermodynamic processes occurring in the shock layer and on the
surface of a Stardust-type re-entry capsule at peak heating conditions [3].

mal Protection System) surface – the so-called shock layer - where endothermic relaxation, dissociation

and ionization gradually cool down the gas, leading to smaller temperature gradients at the capsule’s

surface. These cooling phenomena prevent the complete depletion of the TPS and the destruction of

the metallic airframe of the capsule (as in the case of the Space Shuttle Columbia accident in 2003,

caused by localized TPS failure).

The endothermic relaxation processes occurring in the shock layer refer to the gradual excitation of

the internal energy modes of the flow chemical species – electronic, vibrational and rotational modes -

making it necessary to account for quantum chemical effects associated to interactions at microscopic

scales [4, 5]. Collisional energy exchanges between the internal atomic and molecular degrees of free-

dom have to be properly simulated. The probability of molecular collisions depends on the corresponding

cross-sections, which are defined as the area around a particle in which the center of another particle

must be in order for a collision to occur. Hence, these cross-sections for energy transfer between dif-

ferent internal modes have to be accurately modelled, as they depend on the exchange process (for

example, rotation-translation energy transfer is very efficient in a collision, whereas vibration-translation

energy transfer is less efficient). The relaxation times for the different internal energy modes of an

atomic/molecular species will accordingly be different [6]. Furthermore, as the shocked flow is highly

energetic, dissociation and ionization processes are established downstream of the shockwave, after a

small incubation time. Given that the time scales of internal modes relaxation and chemical reactions

is long compared to the characteristic flow time, the flow is said to be both in thermal and chemical

2
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Figure 1.2: Illustration of the stagnation line temperature evolution: heat fluxes, shock and boundary
layers regions.

nonequilibrium conditions [7, 8].

Thus, further developments in hypersonic flight technologies require a complete and detailed knowl-

edge of the post-shock nonequilibrium phenomena. Ground-testing is not a fully viable option, consider-

ing that the reproduction of typical flow parameters, such as Mach and Knudsen numbers (the Knudsen

number refers to the ratio of the molecular free path to the macroscopic length scale), is limited to certain

ranges, making it impossible to precisely mimic a high-enthalpy reentry environment. Flight testing is

mostly out of question, since it would be technically challenging and too expensive [9]. In response to

these limiting factors, computational fluid dynamics (CFD) has been developed to become an effective

approach and currently plays an important role in the design of planetary vehicles. CFD simulations use

the Navier-Stokes equations to provide an accurate prediction of the hypersonic flowfield surrounding

the vehicle at the most critical stages of the descent trajectory. Knowledge on flow properties such as

heat flux, pressure, and shear stress, provides information on the thermal loads, aerodynamic forces

and moments applied to the capsule, helping engineers optimize spacecraft shapes and flight control,

select appropriate structures and materials, improve overall efficiency and, subsequently, reduce costs

[9, 10].

The most advanced Navier-Stokes reentry simulations use macroscopic multi-temperature models

to account for the nonequilibrium phenomena described above. These models assume that the pop-

ulations of the internal energy modes of chemical species follow an equilibrium Boltzmann distribution

at a characteristic temperature Tint (which is not necessarily the same as the flow temperature T). Al-

though multi-temperature models are a powerful tool, for the extreme nonequilibrium conditions of a

superorbital entry in excess of 10 km/s, there is strong departure from the Boltzmann distribution of

the internal energy levels populations and these assumptions may not apply [11]. A more detailed and

reliable strategy is the state-to-state approach, which treats each internal level as a separate species

by solving the associated mass conservation equation, the so-called master equation. It quantifies the

degree of nonequilibrium everywhere in the flow by determining the population densities in the quan-

tum energy states of the internal energies [10]. However, the coupling of fluid dynamic equations with
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state-to-state kinetics translates into a computationally intensive system of partial differential equations

and poses considerable challenges. Up to now, it has been implemented exclusively in Euler simula-

tions [12], which do not provide any information on the effect of mass diffusion, viscosity and thermal

conductivity.

The objective of this work is to implement state-specific transport models in a CFD code suited for

space reentry simulations, thus, coupling Navier-Stokes fluid dynamic equations to the state-to-state

kinetic theory. A long-term application of this study is the prediction of the radiative wall heat flux, which

strongly depends on the results for the temperature of the shock layer provided by CFD simulations. For

the sake of simplicity, ionization is neglected and only vibrational energy levels are considered.

1.2 State-of-the-art

Reentry flows were firstly studied by means of combining semi-empirical models and engineering cor-

relations. Following this strategy, first estimates of the aerodynamic coefficients and heat fluxes on

the forward body stagnation streamline can be obtained, yet it fails to provide insight into the complex-

ity of the physicochemical phenomena occurring around the capsule. Furthermore, these techniques

require oversimplistic assumptions that lead to great uncertainties and, consequently, to the need for

very conservative safety factors when designing Thermal Protection Systems (TPS). In light of this,

semi-empirical physical models started to be implemented in computational solvers, giving rise to CFD

simulations. This approach has become a powerful tool towards reaching a deeper understanding of the

gas dynamics processes that were pointed out in the previous section and, consequently, efficiently de-

signing a reentry capsule. Given that CFD solutions are only as accurate as the underlying mathematical

and physical models, it is necessary to verify and validate them by comparing the results against exist-

ing experimental ground-tests and flight data [3]. Notwithstanding the fact that flight experiments allow

the exact replication of the encountered flow conditions, their focus is somewhat limited to macroscopic

quantities (heat fluxes, forces, moments, etc.) and the extent to which microscopic processes affect the

results is unknown [13]. In this section, a brief review of high-speed reentry ground experiments (Section

1.2.1) and computational studies (Section 1.2.2) is presented.

1.2.1 Ground Experiments

Hypervelocity reentry flows have been studied experimentally in shock tunnels for several decades now,

through optical diagnostics. Being the simplest blunt-body designed shape, a forward body spherical

geometry (spheres, hemisphere cylinders or blunted cones) has been widely used for parameter and

model tests. Hornung [14] conducted a systematic experimental investigation on a reacting nitrogen

flow over a spherical cylinder in a shock tunnel, in which he covered the maximum available range of

relevant parameters. Particular focus was given to the influence of reaction rates and of the effect caused

by free-stream nonequilibrium (which occurs when the stream is accelerated by nozzle expansion).

In the T5 high-enthalpy facility at Caltech, Hornung and Wen [15] extended the previous work to the
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case of complex gas mixtures with several species and reactions, and the additional parameter of the

dimensionless free-stream kinetic energy was taken into account. Further experimental investigations

on hypersonic flows around blunted bodies have been conducted and later reviewed by Deiwert and

Eitelberg [16], Holden [17], and Muylaert et al. [18]. It is important to note that the velocities achieved

in the previous experiments never exceeded 8 km/s, recalling that it is never possible to fully replicate

flight conditions to a satisfactory degree. Thus, ground-tests are used as indispensable tools to validate

CFD codes, that remain the most economical and complete approach to study reentry environments,

providing a detailed description of the corresponding physical phenomena.

1.2.2 Computational Modelling

The computational modelling of reentry hypersonic flows at low altitudes requires the numerical solution

of an appropriate set of governing equations for the continuum flight regime: either the Euler equa-

tions or, preferably, the compressible Navier-Stokes equations, which account for the effect of mass

diffusion, viscosity and thermal conductivity. In this section, a review of two different approaches for

the modelling of nonequibrium (multi-temperature models and the state-to-state approach) as well as of

high-temperature transport models is presented.

Multi-Temperature Approach

Accounting for thermochemical nonequilibrium is traditionally carried out through the use of multi-tempe-

rature models, with Park’s two temperature model being the most widely used in Navier-Stokes solvers

[9, 19–21]. This model assumes that the translational energy of the molecules is in equilibrium with the

rotational one at a temperature Ttra and that the vibrational energy of the molecules is in equilibrium with

the electron translational energy at a vibrational temperature Tvib. Scalabrin and Boyd [19] simulated an

axisymmetric flow over the FIRE-II spacecraft under reentry conditions with the objective of calculating

convective and radiative heating rates. Wilke/Blottner/Eucken [22] and Gupta-Yos [23] mixing rules are

used as different transport models to determine the convective heat flux. The obtained results were

in good agreement with total heat transfer flight measurements. Hao et al. [20] investigated the effect

of two different 11-species chemical reaction models by simulating the reentry flow around the RAM-C

II vehicle and the FIRE-II capsule configurations, using Wilke/Blottner/Eucken mixing rule to determine

transport coefficients. A comparison between the effect of both transport models (Wilke/Blottner/Eucken

and Gupta-Yos mixing rules) on four different flight conditions chosen from the trajectory of the Mars

Pathfinder reentry vehicle is carried out in ref. [21]. The results provided by the approximate model

(Wilke/Blottner/Eucken) were in good agreement with those determined by the collision integral model

(Gupta-Yos), except for the chemical diffusion heat fluxes, which were significantly larger in the first case,

particularly in the stagnation point region.
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State-to-State Approach

Considering a more general state-to-state approach, which does not require imposing a Boltzmann dis-

tribution for the internal levels of chemical species, it was shown that highly non-Boltzmann vibrational

distributions are indeed found in the stagnation region of a nitrogen flow past a blunt-body [24]. Likewise,

Josyula and Bailey [25] ascertain the need to take into account dissociation processes at the quantum

level when modeling vibration-dissociation coupling. It becomes apparent that representing the nonequi-

librium vibrational and chemical kinetics in terms of master equations that account for cross-sections in

the chemical reactions and vibrational transition probabilities is indispensable when strong deviations

from Boltzmann distributions are present. However, this so-called state-to-state approach suffers from

drawbacks such as high computational cost and lack of data on rate coefficients and internal energy

transitions, among others [26].

It was only in recent years that the state-to-state kinetic theory started to be employed in computing

codes for gas flows. Initially, inviscid flows behind shock waves [27–29], in nozzles [30, 31] and along

the stagnation line [32] were studied. With the development of advanced numerical methods and new

data sets for the collisional cross-sections, the coupling of state-to-state kinetics to fluid dynamics was

extended to two-dimensional Euler simulations. Josyula et al. [6, 8] simulated a steady-state, hyper-

sonic blunt-body nitrogen flow at 7 km/s around a hemisphere cylinder, with the objective of predicting

nonequilibrium behavior in reentry flows. Lopez et al. [33] solved the master equations, coupled to the

momentum and the energy conservation equations, for the two-dimensional axisymmetric inviscid case

to simulate high-temperature typical reentry conditions. The vibrational state-specific model was then

compared with the multitemperature approach. It was observed that the vibrational state-specific model

prevents the non-physical vibrational temperature overshoot phenomenon, a well-known drawback of

multi-temperature models, and that the state-resolved description of the vibrational levels does not in-

fluence the predicted shock standoff distance. Bonelli et al. [10] succeeded in reducing computational

costs by exploring the power of GPUs. A high-enthalpy reentry flow around a sphere was simulated and

results provided by using detailed state-to-state air kinetics and multi-temperature models were com-

pared. It was shown that state-to-state outcomes are in better agreement with experimental findings

than those provided by multi-temperature models.

Despite the relevance of the state-to-state approach in studying inviscid flows, taking diffusion pro-

cesses into account is of paramount importance when predicting the properties of gas flows and provid-

ing accurate estimations of the convective heat fluxes. Very few Navier-Stokes reentry simulations have

accounted for the state-specific quantum distributions, all of them performed by Josyula. In ref. [34],

vibrational energy distributions are modeled by the master equation and a chemical-vibrational source

term is included in the mass conservation equation. A “hybrid” model is developed, in which this source

term is updated according to the results of the state-specific master equation, after each Navier-Stokes

iteration. Ref. [35] evaluates the influence of state-to-state kinetics on the prediction of transport prop-

erties and wall heat fluxes, using three different methods for calculating transport coefficients: simplified

methods of Blottner curve fits, Variable Hard-Sphere model and the more detailed state kinetic mod-

els. The consideration of diffusive fluxes if achieved by means of post-processing. Results provided by
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a Mach 23 air flow reentry simulation showed that the Variable Hard-Sphere model leads to reduced

shock thickness and slightly thicker boundary layer. This work is further developed in refs. [36, 37].

High-Temperature Transport Models

The Boltzmann equation provides the most detailed description of gas flows by means of describing

the behavior of the gas at the microscopic scale. It is used do derive the macroscopic fluid dynamic

conservation laws for mass, momentum and energy using the Chapman-Enskog method, which relies

on the asymptotic expansion of the Boltzmann equation in the Knudsen number. The zero order approx-

imation of this method yields the Euler equations. First order corrections to this approximation yield the

Navier-Stokes equations, providing accurate formulas for the mixture transport properties (mass diffu-

sion, viscosity and thermal conductivity) which relate them to microscopic interaction, expressing their

dependence on the gas mixture composition as well as on the populations of the internal energy levels

[38]. If a multi-species gas mixture is considered, which is the case of this work, a mixture viscosity

µ and a mixture thermal conductivity λ transport coefficients are defined for the momentum conser-

vation equation and for the energy conservation equation, respectively. Furthermore, since one mass

conservation equation is defined for each species s, a mass diffusion transport coefficient Ds must be

determined for each species.

• Macroscopic Transport Models

In the multi-temperature approach, transport models are derived on the basis of equilibrium Boltzmann

distributions of the molecules over the energy states. Hence, these models provide expressions for the

transport coefficients of chemical species [39]. In this work, the Wilke/Blottner/Eucken and the Gupta-

Yos/CCS (Collision Cross-Section) models are used. The Wilke/ Blottner/Eucken model is a mixing rule

which assumes that all interactions between any particles present the same cross-section. The Gupta-

Yos/CCS model, on the other hand, is a more detailed mixing rule, which accounts for the different

cross-sections corresponding to each collision.

In refs. [40–45], the effect of these and other transport models on the predicted flowfield properties

of planetary entry vehicles is investigated within the framework of multi-temperature models. Palmer [41]

compares three different mixing rules for computing the viscosity of neutral and ionized species: Wilke,

Gupta-Yos and Armaly-Sutton [46]. The author concludes that Wilke’s mixing rule is the least accurate

method, whereas the Gupta-Yos mixing rule not only provides acceptable results for weakly or nonion-

ized flows but is computationally faster as well. The Armaly-Sutton mixing rule, in turn, is applicable

to higher temperatures and strongly ionized flows, yet more computationally expensive than Gupta-Yos

model. Gosse and Candler [44] compared the CLM (constant Lewis number) Fickian diffusion method

[47] against two multicomponent models, the SCEBD (Self-Consistent Effective Binary Diffusion [48, 49])

and the SM (Stefan-Maxwell Iterative method [50]) methods. The SCEBD and SM methods showed

good agreement between each other, predicting lower heating values than the CLN method, especially

when the flow became completely dissociated. Using four different trajectory points of the Stardust

sample return capsule as a test case, Alkandry et al. [45] evaluated the effect of the following different
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methods: Wilke’s mixing rule with species viscosities calculated using Blottner’s curve fits and species

thermal conductivities determined with Eucken’s relation; Gupta-Yos mixing rule with collision cross-

section (CCS) data. It was observed that the heat transfer predicted using the Wilke/Blottner/Eucken

model is in good agreement with the Gupta-Yos/CCS solution only for relatively slow Earth entry speeds.

For higher altitudes, the Wilke/Blottner/Eucken model overpredicted the surface heat flux by up to 60%

comparing to the Gupta/CCS model .

• State-Specific Transport Models

The state-to-state approach accounts for deviations of level populations from the equilibrium Boltzmann

distribution. Hence, in the coupling of the latter to fluid dynamic equations, the macroscopic conservation

equations for mass, momentum and total energy are considered together with the equations for level

populations of different chemical species [39]. Formulas for the state-specific transport coefficients were

obtained by Nagnibeda and Kustova [51], on the basis of the state-to-state kinetic theory approach.

Within this framework, one-dimensional studies were conducted. Bruno et al. [52] have shown that

state-to-state vibrational kinetics significantly impacts the transport coefficients under strong nonequilib-

rium conditions. In fact, transport coefficients determined by realistic vibrational distributions can be up

to an order of magnitude greater than those obtained by considering Boltzmann distributions at a specific

vibrational temperature. Kustova et al. [39, 53, 54] investigated the influence of vibrational and chemical

kinetics on heat transfer and diffusion in hypersonic flows. It is observed that the fluid dynamic variables

and heat fluxes obtained considering state-specific or equilibrium Boltzmann distributions are substan-

tially different. Furthermore, Armenise [55–57] has done considerable work in describing the boundary

layer surrounding a body under reentry conditions, on the basis of the kinetic theory of gases. From a

more theoretical perspective, state-to-state studies on vibrational distributions led to some noteworthy

results. Kustova and Kremer [58] demonstrated that the size of vibrationally excited molecules strongly

depends on the vibrational level. Yet the estimated coupled effect of molecular size and non-Boltzmann

distributions on the transport properties of the flow is negligible [52, 59].

These past studies helped setting a framework for full vibrationally-specific 2D simulations of hyper-

sonic flows, mostly focusing on providing a better modeling/understanding of nonequilibrium chemical

kinetic processes. Upon these foundations, a significant task that remains is the inclusion of a full state-

specific transport model in the governing fluid dynamic equations. This work aims at providing the first

groundwork for this task.
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1.3 Objectives

The primary aim of this thesis is to assess the influence of state-specific transport coefficients in the

prediction of reentry flow properties and corresponding convective heating. The specific aims of this

thesis are therefore to:

• Adapt the theoretical formulation of Wilke/Blottner/Eucken and Gupta-Yos/CCS transport models

to state-specific species.

• Formulate the State-Dependent Collisional Cross-Section transport model, which accounts for the

enhanced cross-sections of vibrationally excited molecules.

• Implement the previously mentioned transport models in the code SPARK.

• Simulate a full state-to-state Navier-Stokes nitrogen reentry flow using two different transport mod-

els: Gupta-Yos/CCS model adapted to state-specific species and State-Dependent Collisional

Cross-Section model (Wilke/Blottner/Eucken model adapted to state-specific species is used only

for convergence purposes).

• Compare the obtained results to the following cases: Euler state-to-state; Navier-Stokes one-

temperature with Gupta-Yos/CCS transport model; Navier-Stokes two-temperature with Gupta-

Yos/CCS transport model.

In order to accomplish these objectives, the hypersonic CFD code SPARK - Simulation Platform for

Aerodynamics, Radiation and Kinetics - maintained by IPFN (Instituto de Plasmas e Fusão Nuclear) will

be used.

1.4 Thesis Outline

This work is divided into five main chapters, the content of which is specified as follows:

• Chapter 1- the present chapter comprises an introduction to High-speed reentry physics, State-of-

the-art, Objectives of the master thesis and corresponding Outline.

• Chapter 2 presents the set of governing equations, as well as the physical models used to formu-

late the problem.

• Chapter 3 explains the numerical implementation. It gives an overview of the code’s structure and

numerical methods, describes the definition of consistent databases and presents the numerical

setup of the simulations to be performed.

• Chapter 4 shows and discusses numerical results.

• Finally, Chapter 5 presents the conclusions and future work.
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Chapter 2

Governing Equations and Physical

Models

In this chapter, the governing equations for hypersonic reentry flows are presented and discussed. As

introduced in Section 1.1 of Chapter 1, studying the aerothermodynamic environment surrounding a

reentry vehicle implies accounting for different complex physical processes by means of appropriate

modelling. These may be split in five specific disciplines:

• Fluid governing equations (Section 2.1)

• Thermodynamic models (Section 2.2)

• Chemical kinetics models (Section 2.3)

• Energy exchange models (Section 2.4)

• Transport models (Section 2.5)

In this work, the implementation of the models listed above follows a state-specific formulation, which

allows a more accurate description of flows under such extreme nonequilibrium conditions. There are

key conceptual differences between a macroscopic hydrodynamic model (which is the case of multi-

temperature models), where the degrees of freedom (translational and internal) of the chemical species

are treated globally, and a state-to-state model, where each internal energy level is treated as pseudo-

species1. In the former case of macroscopic nonequilibrium models, additional conservation equations

for the internal modes have to be added. These do not exist when state-to-state models are concerned.

Instead, energy exchanges between the translational and internal modes are implicitly accounted for

in the production and destruction of pseudo-species in the different degrees of internal excitation, i. e.

different energy states, resorting to so-called state-to-state kinetic models.

Whenever applicable, each section of this chapter will discuss in detail the differences between both

macroscopic and state-to-state descriptions
1note that even with state-to-state modelling, the translational degree of freedom is treated globally with a characteristic temper-

ature Ttra, otherwise the Navier-Stokes equations don’t apply and Direct Simulation Monte Carlo models have to be considered.
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2.1 Fluid Governing Equations

Conditions of a continuum flow regime are considered throughout this work. Accordingly, the most

suited set of governing equations are the Navier-Stokes conservation equations for hypersonic flows,

presented below. In the case of a multicomponent flow, there are as many mass conservation equations

as species (whether macroscopic chemical species or state-to-state pseudo-species). The mass con-

servation equation 2.1a for each species s account for the production and destruction source terms ω̇s

– based on the local state of the flow and the characteristic time scale defined for each reaction – and

for the mass diffusion terms. The momentum equation 2.1b enforces Newton’s Second Law. The total

energy equation 2.1c enforces the conservation of energy.

∂(ρcs)

∂t
+ ~∇.(ρcs~u) = ~∇. ~Js + ω̇s (2.1a)

∂(ρ~u)

∂t
+ ~∇.(ρ~u⊗ ~u) = ~∇.[τ ]− ~∇p (2.1b)

∂(ρE)

∂t
+ ~∇.(ρE~u) = ~∇.

(∑
k

~qck +
∑
s

~Jshs + ~u.[τ ]− p~u
)

(2.1c)

In Eqs. 2.1a-2.1c, ρ is the density, ~u the mean velocity in vectorial form, cs the chemical species s mass

fraction, ~Js the chemical species s mass diffusion flux, ω̇s the chemical species s source term, [τ ] the

viscous stress tensor, p the pressure, E the total energy, ~qck the conduction heat flux of the kth thermal

energy mode and hs the enthalpy of the chemical species s.

As aforementioned, in the case of a thermal nonequibrium macroscopic description, an additional

conservation equation for the internal modes energy has to be accounted for (Eq. 2.1d). This enforces

the conservation of energy for each thermal energy mode:

∂(ρεk)

∂t
+ ~∇.(ρ~uhk) = ~∇.

(
~qck +

∑
s

~Jshs,k + ~qrad

)
+ Ω̇k (2.1d)

where ~qrad is the radiative heat flux, εk is the global thermal energy of the kth thermal energy mode and

Ω̇k the thermal energy source term.

In this work, radiation is not considered, thus ~qrad = 0. The remaining terms are defined according

to the theoretical models presented in subsequent sections.

2.2 Thermodynamic Models

A chemically reacting flow must be described by a multi-component gas model, which is characterized as

a mixture of individual chemical species into a single phase. This means that the macroscopic properties

of the flow (density, temperature, viscosity, etc.) are defined as function of the local composition of the

gas, which, in turn, can be described by classical chemical thermodynamics. In fact, thermodynamics

and chemistry serve as a basis for the study of high-temperature gas dynamics and the understanding of

equilibrium and nonequilibrium conditions of the flow. In this regard, general definitions and basic ther-
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modynamic relations used to calculate the chemical composition of an equilibrium chemically reacting

mixture can be found in Appendix A.1. In this work, a multi-component N2/N mixture is used to model

the Earth’s atmosphere in a simplified manner, in order to avoid excessive computational cost.

2.2.1 Quantization of the Internal Degrees of Freedom

Besides the chemical composition that defines a given state of a reacting mixture, the classical thermo-

dynamic theory provides relations between the various thermodynamic properties of the gas, keeping in

mind that a thermodynamic state is completely defined by two thermodynamic state variables. However,

in order to explicitly calculate the values of the thermodynamic properties (internal energy, enthalpy,

entropy, etc.) it is necessary to fall back on the microscopic description of the gas, in which statistical

thermodynamics plays a major role. In subsequent sections, it will become clear how this approach is

crucial in the analysis of nonequibrium high-temperature flows.

At the microscopic level, it is assumed that the gas consists of a large number of individual molecules,

each one having different modes of energy or internal degrees of freedom. As illustrated in Fig. 2.1,

these degrees of freedom can be categorized into four thermal energy modes. Since a N2/N mixture is

used throughout this work, we only refer to diatomic molecules or atoms.

êx

êy

êz

(a) Translational Mode

êx

êy

êz

(b) RotationMode

êx

êy

êz

(c) VibrationMode

b
b

b

b

(d) Electronic ExcitationMode

Figure 2.1: Energy modes. [60].

As a molecule moves through space, its center of mass acts as a source of translational kinetic

energy. The motion of the molecule can be resolved into three components (x, y, z), each one contribut-

ing to the total kinetic energy. Thus, it is said to have three translational thermal degrees of freedom.

Similarly, a molecule rotates about the three orthogonal axes in space. The energy associated to this ro-

tational velocity and to the molecule’s moment of inertia contributes to the total rotational kinetic energy

in the three different ways, associated to each one of the axes. Given that the moment of inertia about
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the internuclear axis (z axis in the figure) is negligible, it is said to have only two rotational thermal de-

grees of freedom. Furthermore, the atoms of a diatomic molecule vibrate with respect to an equilibrium

position within the molecule. This vibrational motion adds one or more degrees of freedom depending

on whether the molecule is diatomic or polyatomic. Finally, the orbital motion of electrons about atoms

or molecules adds yet another energy storage mode. Given that electronic motion is generally complex,

the concept of thermal degrees of freedom does not strictly apply in this case.

Accordingly, the total energy of a chemical species εs is defined by the sum of these contributions:

εs = εtra,s + εrot,s + εvib,s + εexc,s (2.2)

For an atom, only translational and electronic energies are considered:

εs = εtra,s + εexc,s (2.3)

Since the microscopic motion of atoms and molecules is governed by quantum mechanic equations,

the internal energy levels, instead of taking values in a continuous range, can only take certain discrete

values. For this reason, these energies are said to be quantized, as represented in the ladder-type

diagram shown in Fig. 2.2.

Modes of Energy

Translation Rotation Vibration Electronic

Ԑ0 trans

Ԑi trans

Ԑ0 rot

Ԑ2 rot

Ԑi rot

Ԑ3 rot

Ԑ0 vib

Ԑ1 vib

Ԑ2 vib

Ԑi vib

Ԑ0 el

Ԑ1 el

Ԑ2 el

Ԑi el

Figure 2.2: Diagram for the energy levels of the different thermal modes [61]

A single-species (denoted by s) system is therefore composed of a grand total of Ns molecules,

which is the sum of the species fractions Nj,s that occupy a given energy level εj,s. We have:

Ns =
∑
j

Nj,s (2.4)

Nj,s is defined as the population of the energy level εj,s and the set of numbers formed by the several
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values of Nj,s for each energy level is defined as the population distribution. Another name for the

population distribution, meaning a given set of Nj,s, is a macrostate. Over time, molecular collisions

occur inside a system and, at any given instant, the population distribution can change, as the molecules

depart from one energy level to another.

Molecular orientation is also quantized. Consequently, for a given energy level εj , different orienta-

tions are possible and different states will exist within that energy level. The number of states in the same

energy level is called the degeneracy , denoted by gj . The way molecules are distributed in different

states within each energy level, at a given instant in time, is called the microstate.

ω

ω
ω

State 1 State 2 State 3

Same energy level 

Figure 2.3: Illustration of different energy states according to molecular orientation, within the same
energy level [61].

When a Boltzmann distribution for the internal levels is achieved with a characteristic temperature T

for a given chemical species s, the population of these levels may simply be expressed according to the

partition function Qs:

Nj,s
Ns

=
gj,s exp

(
− εj,s

kBT

)
Qs

(2.5)

A partition function translates a sum over the allowed energy states of the system, with each state

weighted by a statistical factor. It is only function of the system volume V and temperature T :

Qs =
∑
j

gj,s exp
(
− εj,s
kBT

)
= f(T, V ) (2.6)

where kB denotes the Boltzmann constant.

The mathematical formulation used to determine the thermodynamic properties (internal energy and

enthalpy) of a multi-component mixture is presented in Appendix A.2 in more detail.

2.2.2 Thermodynamic Nonequilibrium

Thermodynamic nonequilibrium may occur in a gas at different levels. As a matter of fact, full thermody-

namic equilibrium is achieved in very few places in the universe, and most notably in the inside of stars,
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where the chemical composition and the internal levels populations of the gas are homogeneous, at a

characteristic temperature T , and photons in the gas follow a Plank blackbody distribution at the same

characteristic temperature. In room air, all the equilibrium conditions are fulfilled, except for radiative

equilibrium, which is not achieved.

As a rule of thumb, as the temperature of a gas increases and the density/pressure decrease, the

more prone it will be to departure from equilibrium, firstly chemically, then thermally, and ultimately

Boltzmann nonequilibrium is reached. Higher temperatures lead to a more energetic gas, favouring

the population of higher energy states or the creation of higher energy species and ions. Lower densi-

ties/pressures, on the other hand, translate into less molecular collisions that effectively redistribute the

energy throughout the gas and, consequently, higher energy states tend to remain populated.

It is therefore obvious that thermodynamic nonequilibrium plays a central role in atmospheric entry

flows due to its high postshock temperatures and low to moderate postshock pressures (up to a few

bars). Here we will briefly outline departure from equilibrium at different levels, except for departure from

radiative equilibrium, which is out of the scope of this work.

Chemical and Ionization nonequilibrium

When the chemical composition of a gas is invariant in space and time, the gas is said to be in chemical

equilibrium. Thermodynamically speaking this occurs when the Gibbs free energy of the gas is mini-

mized, and this may be found accounting for the partition functions of the flow species. The minimization

of the Gibbs free energy translates into:

∑
s

Gsdns = 0 (2.7)

where Gs and ns are, respectively, the Gibbs free energy of chemical species s per mole of s and the

number of moles of s.

While chemical equilibrium is not achieved in full in a gas, it may still be in ionization equilibrium. On

the contrary, a gas in chemical equilibrium is necessarily in ionization equilibrium. The populations of

the electrons Ne, ions Ni and neutrals Nh are governed by the Saha equation:

Ne

(
Ni
Nh

)
=

2Qi
Qh

(
2πmekBTe

h2

)3/2

exp

(
−Ei −∆Ei

kBTe

)
(2.8)

This equation remaining valid even in the case of thermal nonequilibrium between the electrons and

heavy species (Te 6= Th)2. Details on ionization processes will not be covered further, since it is out of

the scope of this work.

In a nonequilibrium situation, the chemical composition of a gas may only be described with a chem-

ical kinetic model (this will be discussed in detail in Section 2.3) and transport properties for each indi-

vidual species need to be considered (Section 2.5).
2even though this is disputed by some authors
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Thermal nonequilibrium

Thermal nonequilibrium occurs when the internal populations for each atomic and molecular degrees of

freedom follow a Boltzmann distribution with different characteristic temperatures each mode:

Ttra 6= Trot 6= Tvib 6= Texc 6= Tel (2.9)

In this case, the conservation equations for each internal mode have to be considered (Eq. 2.1d),

as well as corresponding energy exchange terms. These will be discussed (for the specific case of this

work) in Section 2.4.

As a consequence of the different energy spacings for each mode (see Fig. 2.2) we have the following

hierarchy for the respective equilibration times:

τtr < τrot � τvib � τexc ∼ τel (2.10)

This is not always the case for higher temperatures, where increasing energy spacings for rotation, and

decreasing spacings for vibration may lead to an inversion of the equilibration times [62, 63].

In thermal nonequilibrium, thermal conductivity of individual modes (for each species) needs to be

considered, at the relevant characteristic temperatures.

Boltzmann nonequilibrium

If one or more internal modes fail to achieve a Boltzmann distribution, then so-called ”State-to-State”

models have to be considered. In this specific case, each level is considered as a pseudo-species,

and one mass conservation equation need to be considered for each one. Consequently, detailed

state-specific kinetic models must be developed (discussed in Section 2.3.1), and individual transport

properties have to be devised for each internal state (see Section 2.5).

2.3 Chemical Kinetic Models

In the equation for mass conservation of each species s (Eq. 2.1a), the kinetic source term ω̇s concerns

the mass production/destruction rate of each species s and is determined by a chemical-kinetic model.

It depends on the reversible chemical reactions occuring in the flow and the respective chemical rates.

A generic elementary reaction R (a reaction that takes place in a single step) is defined as follows:

NS∑
s=1

ν′sxs
Kf



Kb

NS∑
s=1

ν′′s xs (2.11)

where xs is the molar fraction of species s, ν′s is the stoichiometric coefficient for reactant s, ν′′s is the

stoichiometric coefficient for product s, Kf is the forward rate constant and Kb is the backward rate

constant.
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Kf and Kb are not independent, instead they are related through the so-called detailed balance

principle through the equilibrium constant Keq:

Kf

Kb
= Keq (2.12)

where Keq is related to the equilibrium chemical concentrations and may be determined from the reac-

tant and product species partition functions, both in the conditions of thermal equilibrium and nonequi-

librium [64].

The forward rate constants are usually measured experimentally for a given temperature range and

fitted to an Arrhenius equation:

Kf = AT−β exp

(
− θr
T

)
(2.13)

whereA, β and θr are respectively a constant, the pre-exponential factor and the temperature of reaction.

The kinetic source term ω̇s is then defined as:

ω̇s = Ms

∑
R

(ν′′sr − ν′sr)

[
KfR

∏
s

x
ν′
sr
s −KbR

∏
s

x
ν′′
sr
s

]
(2.14)

where Ms is the molar mass of species s and the index r stands for a given reaction.

2.3.1 State-to-State Kinetics

As previously discussed, state-specific models treat each internal level as a pseudo-species, allowing

the determination of more accurate non-Boltzmann distributions for entry flows. Nevertheless, as this

is not yet a fully established discipline, there is not a rigorous and detailed model capable of treating

all the internal states of the air species (such as described in Fig. 2.2). The reasons for this are: 1)

The number of internal states in a high-temperature gas such as Air is too extensive for the current-day

computational capabilities; 2) The quantum models for treating collisional excitation of molecular internal

states still lack refinement, and more importantly, generalized experimental validation [65].

Currently, most studies using state-specific models are focused on molecular vibrational excitation

and dissociation. The main reason is that this is a relatively tractable problem (with diatomic molecules

typically having around 40 to 60 vibrational levels), but also because molecular vibrational excitation

and dissociation are key physical processes that occur behind a shockwave, favouring further chemical

reactions that ultimately lead to the formation of an atmospheric entry plasma. Among other more

detailed (yet computationally intensive) models, the Forced Harmonic Oscillator (FHO) theory has been

utilized quite successfully, yielding physically consistent vibrational state-specific rates Kf and Kb that

accurately reproduce thermal dissociation rates in the Boltzmann equilibrium limit.

This semiclassical model considers the excitation of an harmonic oscillator by another body as it

approaches and moves away from the oscillator, allowing the determination of the probabilities of transi-

tion from one vibrational level to another. This theory is strictly valid in a 1D configuration, but it can be

generalized to a 3D geometry.

18



Figure 2.4: Forced Harmonic Oscillator Model

The FHO theory allows to determine multiquantum, vibrationally state-specific rates, as function of

transition probabilities, for kinetic mechanims of the following types:

• Vibration-Translation (V-T)

AB(v)+M→ AB(v + ∆v)+M (2.15)

• Vibration-Vibration-Translation (V-V-T)

AB(v)+AB(w)→ AB(v + ∆v) + AB(w + ∆w) (2.16)

• Vibration-Dissociation (V-D)

AB(v)+M→ A + B + M (2.17)

where v and w denote different vibrational levels. The complex mathematical formulation of the FHO

theory, including equations that provide transition probabilities for each process type, can be found in

Ref. [66].

2.4 Energy Exchange Models

As explained before, in thermal nonequilibrium with Boltzmann distributions, Eq. 2.1d must be consid-

ered. In this equation, Ω̇k is defined as the thermal energy source term. In the two-temperature model

(which assumes that Ttra = Trot and Tvib = Texc), this term concerns the translational to vibrational en-

ergy transfer processes. The translational to vibrational energy transfer rate per unit volume of molecular

species s is given by the Landau-Teller equation:

Ω̇V−T,s = ρs
εeqvib,s(Ttra)− εvib,s(Tvib)

τV T,s
(2.18)

where ρs is the mass density of species s, εeqvib,s is the vibrational energy per unit mass of species s at

equilibrium, εvib,s is the vibrational energy per unit mass of species s and τV T,s is the vibrational relax-

ation time of species s.
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The analytic expression for the vibrational energy per unit mass of each chemical species εvib,s is

obtained using a Treanor distribution (equivalent to a Boltzmann distribution for the low-lying vibrational

levels) over the vibrational levels, yielding:

εvib,s = Rs
θvib,s

exp

(
θvib,s
T

)
− 1

(2.19)

where Rs is the specific gas constant and θvib,s is the characteristic vibrational temperature of chemical

species s.

The vibrational relaxation time of each species τV T,s depends on the vibrational relaxation times of

the interactions with collision partners r and the corresponding molar fractions xr, as follows:

τV T,s =

(
NS∑
r=1

xr

)
·

(
NS∑
r=1

xr
τs,r

)−1
(2.20)

The vibrational relaxation times associated with each interaction (s, r) can be defined according to

the Millikan&White model [67], with Park’s correction:

τMW
s,r = exp

(
AMW
s,r

(
T−

1
3 −BMW

s,r )− 18.42

)(
p

101325

)−1
+

(
Nsσs

(
8RuT

πMs

) 1
2
)−1

[s] (2.21)

where T and p are the gas temperature and pressure, respectively, N is the number density, σ is the

effective vibrational cross-section, Ru the universal gas constant and M the molar mass. This model

has been traditionally utilized for air species.

Alternatively one may resort to the Losev model [68], valid for temperatures ranging between 300 to

40000K:

τLs,r = exp
(
ALs,r +BLs,rT

− 1
3 + CLs,rT

− 2
3 +DL

s,rT
1
3

)( p

101325

)−1
[s] (2.22)

which has been developed for treating vibrational relaxation on Venus and Mars (CO2/N2) entry flows.

2.5 Transport

In high-temperature flows, an accurate estimation of the flow properties, specifically convective fluxes, is

extremely reliant on the accurate determination of multicomponent viscosity, mass and energy diffusion

processes. Mass diffusion occurs because of random molecular motion and concentration gradients and

is defined as the mass transport through molecular exchange. Self-diffusion concerns with transport of

molecules due to the interaction with identical molecules. Viscosity is also associated to molecular

interactions and establishes the relation between applied stress and strain rate. Thermal conductivity is

related to the transport of random molecular translational and internal energy, which can be translated
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into the mean thermal energy of the flow [69].

In the conservation equations previously stated (Eqs. 2.1a - 2.1c), the diffusion processes are repre-

sented by the following quantities: ~Js, [τ ] and ~qck . These quantities define the dissipative fluxes and are

usually a function of their respective transport coefficient and gradient. Table 3.1 lists all the dissipative

fluxes and their respective transport coefficient and gradient.

Table 2.1: Dissipative fluxes and corresponding transport coefficients and gradients. Presented in S.I.
units

Dissipative Flux Transport Coefficient Gradient
Mass Diffusion ~Js kg.m−2.s−1 Ds m2.s−1 ~∇(cs) m−1

Viscosity [τ ] N.m−2 µ kg.m−1.s−1 ~∇(~u) s−1

Thermal Conductivity ~qck J.m−2.s−1 λk J.m−1.s−1.K−1 ~∇(Tk) K.m−1

The mass diffusion flux ~Jj is as described by Fick’s Law of diffusion:

~Js = ρDs
~∇(cs) (2.23)

where Ds represents the sth species mass diffusion coefficient.

The viscous stress tensor [τ ] assumes a Newtonian fluid and the Stokes hypothesis for the normal

stresses:

[τ ] = µ
(
~∇~u+ (~∇~u)T

)
− 3

2
µ
(
~∇.~u

)
[I] (2.24)

where µ is the viscosity coefficient.

The conduction heat flux for each thermal energy mode, ~qck , is assumed to be given by Fourier’s

Law of heat conduction:

~qck = λk ~∇(Tk) (2.25)

As discussed in the state-of-the art (Section 1.2), a detailed state-specific model has been recently

proposed by Nagnibeda and Kustova [51]. A full implementation of this model is desirable on the long

run. For now this work considers a simple transposition of the macroscopic transport properties to the

state-to-state approach by adapting the Wilke/Blottner/Eucken (Section 2.5.1) and the Gupta–Yos/CCS

models (Section 2.5.2) to state-to-state species such that:

Dsrvw = Dsr (2.26a)

µsv = µs (2.26b)

λk,sv = λk,s (2.26c)

where s and r denote chemical species and v and w denote the corresponding sub-species (i. e.
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vibrational levels).

Furthermore, a more detailed model is developed (State-Dependent Collisional Cross-Section Model

in Section 2.5.2), in which the enhanced cross-sections of vibrationally excited molecules are accounted

for.

2.5.1 Wilke/Blottner/Eucken Model

Wilke’s Model [22] for gas mixture viscosities was developed through the application of the kinetic the-

ory to the first order Chapman-Enskog relation. It is a mixing rule which assumes that all interactions

between any particles present the same (hard sphere) cross-section [41]. It provides the transport co-

efficients for the chemical species. However, in order to couple this model to a state-resolved kinetic

scheme, it was considered that the transport coefficient contribution of each sub-species v/w is equal to

the transport coefficient contribution of the corresponding chemical species s/r (see Eqs. 2.26a-2.26c).

The gas mixture viscosity µ and the thermal conductivity λk for each global thermal energy mode are

obtained using the following mixing rules:

µ =
∑
v

xvµs
φs

λk =
∑
v

xvλk,s
φs

(2.27)

where xv is the molar fraction of each sub-species v and µs represents the species individual viscosities.

φs is a scale factor defined as:

φs =
∑
r

[
1 +

√
µs
µr

(
Mr

Ms

) 1
4
]2/√

8

(
1 +

Mr

Ms

)
(2.28)

where M∗ represents each species’ (s or r) molar mass. The species viscosities µs are obtained through

curve fits determined by Blottner et al. [70]:

µs(Ttra,s) = 0.1× exp
(

(As lnTtra,s +Bs) lnTtra,s + Cs

)
(2.29)

where As, Bs and Cs are curve fitted coefficients for each species.

The thermal conductivity associated to each one of the thermal energy modes - λtra,s, λvib,s, λrot,s

and λel,s - can be obtained using Eucken’s relation [71].

λtra,s =
5

2
µsCVtra,s

λk 6=tra,s = µsCVk,s
(2.30)

where CVtra,s
is the specific heat at a constant volume of species s in the translational energy mode.

The species mass diffusion coefficient is given by a single binary coefficient D assuming a constant

Lewis number, Le = 1.2:

Ds = D =
Leλ

ρCP
(2.31)
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where CP represents the gas mixture total specific heat at a constant pressure and λ represents the total

thermal conductivity of the gas mixture. The Lewis number Le defines the ratio of the energy transport

due to mass diffusion relative to that due to thermal conduction.

2.5.2 Gupta–Yos/Collision Cross-Section - Model 0

The Gupta–Yos model [23] is an approximate mixing rule that provides the transport coefficients for

the chemical species. This model is a simplified form of the classical Chapman-Enskog solution for

the Boltzmann equation system. It is assumed to be more accurate than the Wilke’s Model, since it

accounts for the true nature of the viscosity collision integrals by considering the corresponding collision

cross-sections. However, it requires reasonably accurate collision integral data for each species pair in

the gas mixture, thus it is not possible to implement this model if there is not sufficient data available.

In order to couple this model to a state-resolved kinetic scheme, it was considered that the transport

coefficients of each sub-species v/w were equal to the transport coefficients of the corresponding chem-

ical species s/r (see Eqs. 2.26a-2.26c). This model will be named Model 0 for the purposes of this work.

The collision integrals ∆sr
(1) and ∆sr

(2) between species s and r are defined as function of the

controlling temperature Tc:

∆(1)
sr =

8

3

[
2MsMr

πRuTc(Ms +Mr)

]1/2
πΩsr

(1,1)
(Tc)× 1020 (2.32)

∆(2)
sr =

16

5

[
2MsMr

πRuTc(Ms +Mr)

]1/2
πΩsr

(2,2)
(Tc)× 1020 (2.33)

where πΩsr
(1,1)

and πΩsr
(2,2)

represent weighted averages of the cross-sections, which are evaluated

as curve fits to the tabular data generated in [72]. The controlling temperature Tc in Eqs. 2.32 and 2.33

depends on the type of particles colliding. It refers to the heavy-species translational temperature Ttra,h,

except if the collision involves an electron, in which case the electron temperature Tel = Ttra,el should

be used.

For the calculation of the gas mixture viscosity, the following equation is used:

µ =
∑
v

msxv∑
w
xw∆

(2)
sr

(2.34)

where ms is the sth species mass. The translational mode of heavy species λtra and electrons λe are

defined as:

λtra =
15

4
kB
∑
v 6=e

xv∑
w
αs,rxw∆

(2)
sr (Ttra)

λe =
15

4
kB

xe∑
w
αe,rxw∆

(2)
er (Tvib)

(2.35)

where kB is the Boltzmann constant and αs,r is given by:
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αs,r = 1 +
[1−Ms/Mr][0.45− 2.54(Ms/Mr)]

[1 + (Ms/Mr)]2
(2.36)

The global thermal conductivities associated with the rest of the heavy species energy modes, λrot,

λvib, λexc are defined as:

λrot =
∑
v=m

xvmsCVrot,s∑
w
xw∆

(1)
sr

λvib =
∑
v=m

xvmsCVvib,s∑
w
xw∆

(1)
sr

λexc =
∑
v

xvmsCVexc,s∑
w
xw∆

(1)
sr

(2.37)

where m denotes a molecular species. In thermal equilibrium, the total thermal conductivity λ is

given by:

λ = λtra + λe + λrot + λvib + λexc (2.38)

In thermal nonequilibrium, the thermal conductivity associated with each thermal energy mode is

calculated by considering the individual contributions of each species to that same mode, according to

the multi-temperature model under consideration.

The mass diffusion coefficient Dsr defines the diffusion velocity of each species relative to the differ-

ent species and reads:

Dsr =
kBTc

p∆
(1)
sr

(2.39)

The effective diffusion coefficient Ds is determined by considering the multi-component mixture as a

binary mixture consisting of species s and a composite species that represents the contribution of the

remaining species. It is given by:

Ds =
1− xs∑
r 6=s

xr

Dsr

(2.40)

For a single species mixture, its properties are determined as follows:

µs =
5

16

√
πmskBTc

πΩsr
(2,2)

1020 (2.41)

λtra,s =
75

64
kB

√
πkBTc/ms

πΩsr
(2,2)

1020 (2.42)

λrot,s=m =
8

3
kBCVrot,s

√
πkBTcms

πΩsr
(1,1)

1020 (2.43)

λvib,s=m =
8

3
kBCVvib,s

√
πkBTcms

πΩsr
(1,1)

1020 (2.44)

λexc,s 6=e =
8

3
kBCVexc,s

√
πkBTcms

πΩsr
(1,1)

1020 (2.45)

where µs represents the viscosity for one species s, λtra,s the translational thermal conductivity and
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λrot,s, λvib,s and λexc,s represent the internal energy modes thermal conductivity. Consequently, the

total thermal conductivity for a single species mixture is:

λs = λtra,s + λrot,s + λvib,s + λexc,s (2.46)

State-Dependent Collisional Cross-Section Correction - Model 1

As discussed above, transport models rely among another things on adequate microscopic collisional

cross-sections. To account for the fact that vibrationally excited molecules have larger internuclear dis-

tances (and hence larger cross-sections), a semi-empirical correction is implemented in this work, which

will be dubbed model 1. In this model, the collision cross-sections for the chemical species calculated

with the Gupta–Yos/CCS model are corrected by a state-specific factor that depends on the vibrational

level of a molecule.

σeqσv

rv req

Figure 2.5: Cross-section diameter increase of vibrationally excited molecules.

This model ccounts for the enhancement of the average collision cross-sections Ω
(1,1)

sr and Ω
(2,2)

sr in the

Gupta–Yos model according to:

Ω
(1,1)

sr = Ω
(1,1)

sr ×
Ω
AB(v)
CD(w)

Ω
AB(0)
CD(0)

(2.47)

Ω
(2,2)

sr = Ω
(2,2)

sr ×
Ω
AB(v)
CD(w)

Ω
AB(0)
CD(0)

(2.48)

where Ω
AB(v)
CD(w) is the hard-sphere collisional cross-section between the (v) vibrational level of diatom AB

and the (w) vibrational level of diatom CD, Ω
AB(0)
CD(0) is the hard-sphere collisional cross-section between
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the ground level of diatom AB and the ground level of diatom CD.

For diatom-diatom collisions, we have:

Ω
AB(v)
CD(w) = π

(σABv + σCDw
2

)2
(2.49)

For atom-diatom collisions, we have:

Ω
AB(v)
CD(w) = π

(σABv + σC

2

)2
(2.50)

In Eq. 2.50, σ is the interaction distance, which equals the sum of the internuclear distance and the

electron cloud distance:

σAB(v) = rABv + (σABeq − rABv=0) (2.51)

where rABv=0 is the internuclear distance of the ground level, σABeq is the low-velocity interaction distance

[73] and rABv is the internuclear distance for higher v-levels.
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Chapter 3

Numerical Methodology and Setup

The largest part of the work load for this project comprises the implementation of the transport mod-

els presented in the previous chapter in an existing computer program. SPARK code is the numerical

solver used in the present thesis. It is an in-house code previously developed by Lopez et al. [12] tai-

lored for hypersonic flow simulations. The SPARK code is capable of simulating compressible Euler and

Navier-Stokes reactive flow simulations by means of detailed kinetic models. As previously discussed

in Chapter 2, full Navier-Stokes reactive flow numerical simulations require modelling gas mixture aver-

age diffusive effects and transport coefficients for each species in the mixture. The problem becomes

more challenging when state-specific models are considered for the gas description. In this case, each

vibrational, rotational and/or electronic state is treated as a pseudo-species in the system of governing

equations and therefore, a continuity equation and the respective transport coefficients must be defined

for these states. So far, SPARK only allowed solving state-specific gas description models if Euler gov-

erning equations where considered. A particular contribution of this thesis was the extension and testing

of the capabilities of SPARK solver to allow full Navier-Stokes simulations considering a state-specific

gas internal energy description, by devising transport models for the species internal states.

Section 3.1 contains a general overview of SPARK’s structure, the programming strategy adopted in

this work and a summary of the numerical methods used by the solver. In Section 3.2, databases are

defined to allow a consistent comparison between results provided by multi-temperature and state-to-

state simulations. Finally, Section 3.3 presents the setup of the simulations performed.

3.1 SPARK Solver

SPARK - Software Package for Aerodynamics, Radiation and Kinetics - is the name of the CFD code

used throughout this work. It is maintained in IPFN (Instituto de Plasmas e Fusão Nuclear) at Instituto

Superior Técnico. The code was developed with the objective of simulating nonequilibrium hypersonic

flows with high adaptability to the user needs. Steady or unsteady inviscid and viscous flow simulations

are available, as the code includes both the Euler and the Navier-Stokes formulations. Furthermore,

SPARK provides stand-alone solvers dedicated to standing shock, perfect gas, frozen gas or reactive
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gas flow simulations, as well as mesh refinement tools for shock and/or boundary layer capturing.

3.1.1 Structure

Given the multiphysics nature of hypersonic flows, SPARK takes advantage of the object-oriented pro-

gramming techniques of the Fortran 03/08 language - data abstraction, encapsulation, inheritance,

polymorphism and operator overloading - to focus its design and implementation on modularity and

maintainability, providing a clear separation between physical models and numerical methods. The

object-oriented programming philosophy allows to strictly separate different components of the solver

into independent modules which share a common data structure, facilitating both inter-module commu-

nication and easy integration of new functionalities. Furthermore, each physical quantity and physical

model is represented by an object. This leads to a direct translation of the physical representation of

each quantity into the programming language, without any intermediate representation. A diagram that

represents the main structure of the code is shown in Fig. 3.1.

Initialize 
Input

Construct 
Gas

Construct 
Mesh

Solve 
Flow

Finalize 
SPARK

Figure 3.1: Main structure of the SPARK code [12]

As illustrated in Fig. 3.1, in order to run a simulation in code SPARK, an input file is required. A detailed

list of SPARK inputs is presented in Appendix C, in Section C.1. Furthermore, a detailed description of

the relevant objects and procedures - regarding transport models and state-to-state models - is given

below.

Transport Models

The Gas object contains all the physics of the flow, which means that it encapsulates the objects asso-

ciated with the different physical models. Accordingly, the procedures used to compute transport prop-

erties are contained in the Transport object, which is encapsulated in the Gas object. In the Transport

object, the procedures used to compute transport coefficients are available to the user of the program.

The user of the Transport object, in the context of a full hypersonic flow simulation, is SPARK’s Gas

object, since it is responsible for the computation of all the gas properties. Alternatively, the user can

also be any other application code built to generate specific results for verification analysis.

The public procedures contained in the Transport object are:

• Construct - Allocates in memory and defines the necessary variables according to the user input,

setting up the Transport object for later use.
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• Set Model - Sets the transport model to be used according to the user input: Wilke/Blottner/Eucken

(macroscopic) or Gupta–Yos/CCS (macroscopic) - transport models available before any imple-

mentation is carried out.

• Compute Transport - Computes all the transport properties for all the species simultaneously, µ,

λk and Ds.

• Compute Viscosity - Computes the mixture viscosity coefficient µ.

• Compute ThermalCond - Computes the thermal conductivity coefficient for each thermal energy

mode λk.

• Compute MassDiffusion - Computes the diffusion coefficient of each species Ds.

The procedures used to compute individual transport properties are available for the mere purpose

of convenience, since only the general procedure Compute Transport is optimized for performance,

provided that it is used in full-scale simulations.

Independently of the transport model being used, the Compute Transport procedure has the follow-

ing inputs and outputs:

• Inputs: mixture, ρ, cs, Tk, Pk, Cpk

• Outputs: µ, λk and Dsr

where ρ is the density, cs and Ds are, respectively, the mass fraction and the mass diffusion coefficient

of species s, Tk, Pk, Cpk and λk are, respectively, the temperature, pressure, specific heat at constant

pressure and thermal conductivity of the energy mode k, µ is the mixture viscosity and mixture is

the object where all the empirical and pre-processed thermodynamic data related to the species is

contained. The subscripts k and s denote the dimensions of vectors and matrices and depend on the

multi-temperature model being used and the number of species in the mixture.

The arrangement of the Transport object allows it to be independent of the specific model being

used, i. e., it only defines an interface for a generic transport model. The actual implementation of a

specific transport model is done in independent submodules. Each submodule is then associated with

a different Transport Strategy object, in which the implementation of the each transport model is done

using normal procedural programing techniques.

State-to-State Models

The objects associated with the chemical species and the internal energy levels of the chemical species

are encapsulated in the Mixture object, also contained in the Gas object. The structure of these objects

is defined in such a way that allows the modelling of the chemical species either using the equilib-

rium Boltzmann statistics (used in the multi-temperature approach) or, alternatively, the state-specific

approach. Specifically, a list of objects corresponding to a generic set of chemical species is defined.
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Each Chemical Species object encapsulates a nested structure of internal levels, which comprises the

electronic, vibrational and rotational sets of levels. A representation of this structure is shown in Fig. 3.2.
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LEVEL(1)
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LEVEL(i )
...

LEVEL(N )

VIBRATIONAL

LEVEL(1)
...

LEVEL(i )
...

LEVEL(N )

ROTATIONAL

LEVEL(1)
...

LEVEL(i )
...

LEVEL(N )

Figure 3.2: Illustration of the internal structure of chemical species [12]

Furthermore, a list of objects that represents a generic set of total species is similarly defined. In the

case of Boltzmann distributions over the internal energy levels, this list is the same as the list of chemical

species. Alternatively, in the modelling of nonequilibrium with the state-to-state approach, the list of total

species matches the set of the corresponding internal levels, which are treated as pseudo-species. A

mapping between the two lists is illustrated in Fig. 3.3 for the different possible cases.
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Figure 3.3: Illustration of the mapping scheme for the internal modes of a chemical species [12]

Up to this point, the code allowed running Navier-Stokes only in the case of equilibrium Boltzmann

distributions over the internal levels of the chemical species. All the variables and procedures associated

to the calculation of transport coefficients and dissipative fluxes were operating with the list of chemical

species. Section 3.1.2 describes the strategy used for the implementation of state-specific transport

coefficients, to allow the coupling of dissipation phenomena to the state-to-state approach.

3.1.2 Programming Strategy

The implementation of transport coefficients for non-Boltzmann distributions was conducted in two

stages. Firstly, macroscopic transport models suited for the multi-temperature approach were adapted

to state-to-state species according to Sections 2.5.1 and 2.5.2. Secondly, the state-specific transport

model described in Section 2.5.2 was implemented.
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Wilke/Blottner/Eucken and Gupta–Yos/CCS Models Adapted to State-to-State

To begin with, the code was adapted to account for the internal levels of chemical species (sub-species)

in all of the objects and modules related to the calculation of dissipative fluxes and corresponding trans-

port coefficients. This means that the associated procedures were adapted to operate with the list of

total species. Furthermore, the contribution of each sub-species to the mixture’s transport coefficients

was set to the value of the equilibrium transport contribution of the corresponding chemical species,

weighted by the molar fraction of the sub-species (as described in Sections 2.5.1 and 2.5.2). Hence,

the transport coefficients of the sub-species are calculated as function of the collision cross-sections

of the corresponding chemical species. Given the mapping between the chemical and total species

lists (Fig. 3.3), after the implementation described above, procedures associated with the calculation

of dissipative fluxes are able to operate with both Boltzmann and non-Boltzmann level distributions. If

the case of Boltzmann distributions is considered, transport coefficients are determined according to

the macroscopic Wilke/Blottner/Eucken or the Gupta–Yos/CCS model, suited for a multi-temperature

description. On the other hand, if the case of non-Boltzmann distributions is considered, state-specific

transport coefficients are determined according to Sections 2.5.1 (Wilke/Blottner/Eucken Model adapted

to state-to-state) and 2.5.2 (Gupta–Yos/Collision Cross-Section Model adapted to state-to-state).

State-Dependent Collisional Cross-Section Model Update

At a later stage, the State-Dependent Collisional Cross-Section correction (detailed in Section 2.5.2)

was implemented on the Gupta–Yos transport model. A new submodule was created to be associated

with the corresponding Transport Strategy object, in which the necessary procedures were defined.

Specifically, in the procedure Compute Transport, the procedure for computing collision cross-sections

provided by the Gupta–Yos/CCS transport strategy adapted to state-to-state is called. The values of

the collision cross-sections are then corrected according to Section 2.5.2. The state-specific correction

factors are determined in the Total Species object, under the condition of non-Boltzmann distributions

(number of total species > number of chemical species). Once the enhanced cross-sections of excited

molecules are determined, the calculation of state-specific transport coefficients follows the Gupta–

Yos/CCS strategy adapted to state-to-state.

After this programming strategy was implemented in SPARK, the code was capable to run full state-

to-state Navier-Stokes simulations.

3.1.3 Numerical Methods

The Flow object contains all the numerical methods used for the numerical implementation of the physi-

cal models detailed in the previous chapter. The numerical resolution of the system of Eqs. 2.1a-2.1d is

obtained by means of the Finite Volume Method (FVM). This method consists in discretizing the compu-

tational domain into small control volumes (cells), ensuring the conservation of conservative quantities
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in each individual volume. Variables are defined in the centre of each cell and the communication be-

tween cells is made by their respective faces. With regard to temporal discretization, both second-order

explicit and implicit time integration schemes are available in SPARK. Diffusive fluxes are discretized

using standard second-order central finite-differences. More attention must be paid to the discretization

of convective fluxes in hyperbolic flows simulations, due to the existence of strong discontinuities in prim-

itive variables. Therefore, the computation of each cell’s convective fluxes is achieved by the solution

of a Riemann’s problem, at the cells interfaces. The SPARK code discretizes convective terms on the

basis of Roe’s approximate Riemann solver, using the second-order Harten-Yee scheme [60]. Variables

are evaluated at the cell’s faces with Roe averages between the left and right states. Furthermore, in

order to avoid numerical oscillations the minmod flux limiter is applied to characteristic variables.

3.2 State-to-State and Multi-Temperature Database Definition

Performing a valid comparison between state-to-state and multi-temperature simulations for a N2/N flow

implies comparing simulations that resort to the same consistent chemical, thermodynamic and transport

databases, with only the physical models differing. Therefore, when imposing a Boltzmann distribution

over the vibrational levels of N2, the state-specific databases should be reduced to the macroscopic

ones used in multi-temperature simulations.

3.2.1 Kinetics

With regard to kinetics, the Air5-STELLAR scheme is used throughout this work. It provides the most

up to date state-resolved dissociation datasets for N2–N2 [74] and N2–N [75] collisions, on the basis

of the FHO model (Section 2.3.1). Lino da Silva et al. reduced these sets to two-temperature and

one-temperature rates by summing the state-specific dissociation rates k(v, T ) weighted by the relative

populations of each vibrational level, after imposing a Boltzmann distribution at a given temperature T

or Tvib. For two-temperature rates:

k(T, Tvib) =
∑
v

k(v, T )
Nv∑
v Nv

(3.1)

In equilibrium, for one-temperature rates:

k0(T ) = (T, Tvib = T ) (3.2)

This method yields what we call the Air5-STELLAR-Boltzmann kinetic scheme, employed in multi-

temperature simulations carried out in this work.

3.2.2 Energy Exchange

In terms of databases for energy exchange, the Losev model for Boltzmann distributions (Section 2.4)

was utilized in this work for the two-temperature simulation. However, in order to perform a coherent
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comparison with results obtained from state-to-state simulations, coefficients ALs,r, BLs,r, CLs,r and DL
s,r

were fitted for N2-N2 and N2-N collisions from the FHO model summarized in section 2.3.1. The obtained

polynomial fit is illustrated in Fig. 3.4:
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Figure 3.4: Vibrational relaxation times for N2-N2 and N2-N collisions: Losev model and polynomial fit
from the FHO model.

The polynomial fit expression yielded the following values:

• N2-N2 collisions: A = −26.5867, B = 166.2004, C = 609.4595, D = 0.089696.

• N2-N collisions: A = −9.5503, B = −342.2877, C = 4661.7908, D = −0.063586.

3.2.3 Transport

As for transport properties, a database was defined for the cross-section size of vibrationally excited

molecules, to be used in the State-Dependent Collisional Cross-Section model (Section 2.5.2). Regard-

ing the N2/N mixture studied in this work, values for the internuclear distances rABv and rABv=0 for N2 were

determined using the RKR method [76]. The obtained results are illustrated by the potencial energy

curve in Fig. 3.5.
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Figure 3.5: Potencial curve for the N2 molecule

The resulting data is presented in Table B.1 of Appendix B. Furthermore, values for the equilibrium

interaction distances σABeq for N2 and σCeq for N were taken from [73]: σABeq = 3.798 Å and σCeq = 3.298 Å.

It should be noted that, for N(1), σC = σCeq, since it is not a molecular species.

3.3 Test-Cases Setup

A set of numerical experiments has been set up in order to better understand the impact of the formulated

transport models. These experiments are divided into two groups. The first set of simulations is designed

to perform verification of these models and compare them against the models already implemented in

SPARK, by means of conducting 0D equilibrium computations. Ultimately, results provided from this

first set of simulations will help understand and discuss results obtained in multidimensional simulations.

The second set of numerical experiments is designed to mimic a practical case of a sphere entering the

Earth’s atmosphere. This second set of simulations will allow to compare the impact of using different

transport models in multidimensional reentry simulations.

3.3.1 Equilibrium 0D Computations - Transport Model Assessment

In order to ascertain if the implemented transport models are in accordance with the conceptual models

and in order to assess the extent to which the resulting code can be properly used for analysis, code

verification and comparison tests were conducted.

An application code was developed to compute transport coefficients as function of the temperature,

using only the Gas object. The equilibrium concentrations of the species were computed for a N2/N

mixture at atmospheric pressure and a range of temperatures between 500 K and 50×103 K. Transport

coefficients were obtained for these input data, in order to pinpoint their dependence on the modelling

of internal energy modes and thermodynamic characteristics.

A set of test-cases has been performed. The setup of the different test-cases is shown in Table 3.1:
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Table 3.1: Test-cases considered in equilibrium 0D computations

Internal Modes Description Model Transport Model

Test-case 1 Boltzmann Wilke/Blottner/Eucken

Test-case 2 Boltzmann Gupta–Yos/CCS

Test-case 3 Vibrational state-specific Model 0

Test-case 4 Vibrational state-specific Model 1

Test-case 1

In Test-case 1, the populations of the internal levels of energy are described by a Boltzmann distribution.

This means that transport coefficients are defined for each chemical species, using the macroscopic

Wilke/Blottner/Eucken transport model.

Test-case 2

In Test-case 2, similarly to Test-case 1, the populations of the internal levels of energy are described by

a Boltzmann distribution. However, for this case, the transport coefficients for each chemical species

are obtained using the macroscopic Gupta–Yos/CCS model.

Test-case 3

In Test-case 3, the N2 internal energy modes are described by a vibrational state-specific model. This

implies that, for the mixture considered in this work, transport coefficients are calculated for each vibra-

tional level of N2. To that end, the Gupta–Yos/CCS model adapted to state-to-state species (referred to

as Model 0 - Section 2.5.2) is used.

Test-case 4

Similarly to Test-case 3, in Test-case 4, the N2 internal energy modes are also described by a state-

specific vibrational model. However, in this case, transport coefficients for the vibrational levels of N2 are

calculated with the State-Dependent Collisional Cross-Section model (referred to as Model 1 - 2.5.2),

which takes into account the increased diameter of vibrationally excited molecules.

The results generated by these tests are presented and discussed in Section 4.1. The objectives

are: (a) to understand the impact of using non-Boltzmann distributions in the computation of transport

coefficients (Test-cases 1 and 2 vs. Test-case 3); (b) to evaluate the influence of accounting for the

increased cross-sections of vibrationally excited molecules (Test-case 3 vs. Test-case 4).

3.3.2 Multidimensional Computations - Impact of State-to-State Transport Mod-

els in 2D simulations

To assess the impact of state-specific transport models in the two-dimensional study of reentry flows,

seven different simulations were performed for a simple case study. The previously described formulation

36



has been applied to a two-dimensional nitrogen flow past a sphere with radius r = 0.1524 m, at v=7km/s,

pressure 27 Pa and variable temperature. The mixture considered in this work consists of 61 vibrational

levels for the N2 molecule and 1 electronic level for atomic nitrogen N.

Computational Challenges in 2D simulations

As previously discussed in Chapter 1, the coupling of state-to-state kinetics to fluid dynamic equations

poses a considerable challenge in terms of computational costs. In the context of a full hypersonic flow

simulation, a large number of mass conservation equations (one per internal energy level of each chem-

ical species - sub-species) must be numerically solved. Furthermore, the determination of transport

properties (also for every sub-species) requires the computation of collision cross-sections for every pair

of sub-species, in each iteration.

To overcome this problem and accelerate convergence, all two-dimensional state-to-state viscous

simulations used the Wilke/Blottner/Eucken model adapted to state-to-state species (Section 2.5.1) at

the initial stage. The simplicity of the Eucken’s relation and the assumption of a constant Lewis number

are obviously computationally less expensive than the more detailed mixing rules of the Gupta–Yos/CCS

model adapted to state-to-state species (Section 2.5.2), which account for collision cross-sections. In

fact, previous work conducted by Loureiro [77] showed that, for Boltzmann distributions, the compu-

tation of transport coefficients with the Gupta–Yos/CCS model uses up to twice the CPU time of the

Wilke/Blottner/Eucken model.

Test-Cases

The setup of the seven simulations is shown in Table 3.2:

Table 3.2: Test-cases considered in 2D simulations

Internal Modes Description Model Transport Model Kinetic Scheme T∞ [K]

Test-case 1 Boltzmann (One-temperature) Gupta–Yos/CCS Air5-STELLAR-Boltzmann 300

Test-case 2 Boltzmann (Two-temperature) Gupta–Yos/CCS Air5-STELLAR-Boltzmann 300

Test-case 3 Vibrational state-specific - (Euler) Air5-STELLAR 300

Test-case 4 Vibrational state-specific Model 0 Air5-STELLAR 300

Test-case 5 Vibrational state-specific Model 1 Air5-STELLAR 300

Test-case 6 Vibrational state-specific Model 0 Air5-STELLAR 700

Test-case 7 Vibrational state-specific Model 1 Air5-STELLAR 700

Test-case 1

In Test-case 1, a one-temperature simulation with T∞ = 300 K is carried out. This is the most sim-

ple approximation of a multi-temperature model, in which thermal equilibrium is assumed, that is, one

temperature only:

Ttra,s = Tvib,s = Trot,s = Tel,s = T (3.3)
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Since the four thermal modes are considered to be in equilibrium, there is no energy exchange

between them and Eq. 2.1d vanishes.

The populations of the internal levels are described by Boltzmann distributions. Transport coefficients

of chemical species are calculated considering the macroscopic Gupta–Yos/CCS model. Moreover, the

Air5-STELLAR-Boltzmann kinetic scheme is used, in which chemical reactions and dissociation rates

are detailed for chemical species.

Test-case 2

For Test-case 2, a two-temperature simulation with T∞ = 300 K is performed. The two-temperature

model, proposed by Park [78], refers to a more detailed approximation, which accounts for the coupling

of chemical and vibrational nonequilibrium. This is achieved by means of considering translational and

vibrational energy modes for the molecules and the corresponding energy transfer processes between

the two, as well as vibration-dissociation processes for the formation of atoms. In this regard, two

temperatures (Ttra, Tvib) are defined: Ttra characterizes the translational energy of the atoms and

molecules and Tvib characterizes that vibrational energy of the molecules. This model further assumes

that the molecular rotational mode is in equilibrium with the translational one and that the translational

mode of the electrons and the electronic excitation mode of atoms and molecules are in equilibrium with

the molecular vibrational mode:

Trot = Ttra and Tvib = Te = Texc (3.4)

Similarly to Test-case 1, in Test-case 2 the populations of the internal levels are also described

by Boltzmann distributions. Transport coefficients of chemical species are calculated considering the

macroscopic Gupta–Yos/CCS model. Moreover, the Air5-STELLAR-Boltzmann kinetic scheme is used,

in which chemical reactions and dissociation rates are detailed for chemical species.

Test-case 3

Test-case 3 refers to an inviscid Euler state-to-state simulation with T∞ = 300 K. It considers non-

Boltzmann distributions for which each vibrational state of the N2 molecule as well as the first electronic

level of atomic nitrogen N(1) are treated as pseudo-species. The Air5-STELLAR kinetic scheme is used,

in which reactions and dissociation rates are detailed for the vibrational levels N2(v).

Test-case 4

Test-case 4 refers to a Navier-Stokes state-to-state simulation with T∞ = 300 K. Distributions for the

populations of N2(v) vibrational levels as well as the kinetic scheme are defined as in Test-case 3. The

transport coefficients of sub-species are obtained with the transport model Gupta–Yos/CCS adapted to

state-to-state species (referred to as Model 0 - Section 2.5.2).
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Test-case 5

Test-case 5 also refers to a Navier-Stokes state-to-state simulation with T∞ = 300 K. Distributions for

the populations of N2(v) vibrational levels as well as the kinetic scheme are defined as in Test-cases 3

and 4. Regarding transport properties, the enhanced cross-sections of vibrationally excited N2 are taken

into account by means of employing the State-Dependent Collisional Cross-Section model (referred to

as Model 1 - Section 2.5.2).

Test-cases 6 and 7

Finally, Test-cases 6 and 7 are equivalent to Test-cases 4 and 5, respectively. However, the upstream

temperature changes to T∞ = 700 K. This is relevant for the simulation of experiments where the

freestream might be hotter than the ambient temperature (such as in the case of blow-off hypersonic

nozzles).

The results provided by these simulations are presented and discussed in Section 4.2. The objectives

are: (a) to compare results of a full state-to-state Navier-Stokes simulation with those provided from

Navier-Stokes multi-temperature simulations (Test-case 4 vs Test-case 1 and 2) (b) to assess the impact

of accounting for transport phenomena in state-to-state simulations (Test-case 3 vs. Test-case 4); (c)

to evaluate the influence of taking into account the increased cross-sections of N2 vibrational levels in

state-to-state viscous flow simulations (Test-case 4 vs. Test-case 5); (d) to assess the impact of the

freestream temperature in Navier-Stokes state-to-state simulations(Test-case 6 vs. Test-case 7).

Mesh and Boundary Conditions

Given the axisymmetry condition of the problem and since it is assumed that the convective heat fluxes

are negligible in the low-density afterbody region (a reasonable assumption shared by the works pre-

sented in the state-of-the-art), only half of the front body was considered in the computational domain.

For all simulations, the same boundary conditions were applied. Furthermore, a structured mesh

consisting of 60 elements in the direction normal to the capsule’s surface and 60 elements in the direction

parallel to the capsule’s surface was used. Regions where higher gradients are present - shock-layer

and boundary-layer - were coarsely refined. Figure 3.6 illustrates the type of mesh used together with

the boundary conditions:
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Figure 3.6: Illustration of the mesh and boundary conditions considered for the CFD domain.

The upstream conditions for Test-cases 1-5, given in Table 3.3, were taken from Josyula et al. [79],

for a freestream velocity of 7km/s.

Table 3.3: Upstream conditions for Test-cases 1-5 from [79]

T∞ [K] P∞ [Pa] V∞ [km/s] Mass Fractions [-]

300 27 7 N2:1

The upstream conditions for Test-cases 6-7, given in Table 3.4, for a freestream velocity of 7 km/s:

Table 3.4: Upstream conditions for Test-cases 6-7

T∞ [K] P∞ [Pa] V∞ [km/s] Mass Fractions [-]

700 27 7 N2:1
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Chapter 4

Results

This chapter presents the results obtained from numerical experiments using the physical models and

corresponding implementation described, respectively, in Chapters 2 and 3. In Section 4.1, a qualitative

comparison between the different transport models is conducted. The same transport models were then

applied to a 2D case study, for which results are shown and discussed in Section 4.2.

4.1 Transport Model Assessment

As described in Section 3.3.1, gas transport properties are computed considering Wilke and Gupta

models, Model 0 and Model 1 as a function of the gas temperature, in the range of 500 to 50,000 K.

These results were obtained assuming the equilibrium composition of a N2/N mixture at each value of

the gas temperature (500 up to 50,000 K) and ambient pressure. The equilibrium composition of the

mixture is shown in Fig. 4.1, for the sake of the results discussion that follows.
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Figure 4.1: Equilibrium composition of N2/N mixture, 1 atm.

Figure 4.1 shows that, in equilibrium conditions, there is no dissociation of N2 for T < 4,000 K,

whereas, for T > 9,000 K, N2 becomes completely dissociated. From T = 4,000 K up to T = 9,000 K,
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N2 molar fraction decreases while N molar fraction naturally increases. At T = 6,000 K, both N2 and N

molar fractions are 0.5. This value of the gas temperature will be important in the analysis of transport

coefficients that follows. For this analysis, Fig. 4.2 shows the evolution of the mixture a) viscosity, b)

thermal conductivity and c) the N2 mass diffusion coefficient.
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Figure 4.2: Comparison of transport models: gas transport properties.
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4.1.1 Viscosity

Figure 4.2a shows that, for T < 30,000 K, the value of the mixture viscosity coefficient computed with

the four transport models remains approximately the same. However, for T > 30,000 K, the results

computed using Wilke’s mixing rule begin to deviate significantly from to the other methods. This can

be attributed to the fact that Wilke’s mixing rule is the only method which does not consider different

collision cross-sections in the interactions between particles of different species. Instead, it assumes that

all interactions have the same hard-sphere cross-section - which is smaller than the effective average

collision cross-sections - yielding a higher viscosity coefficient.

Moreover, Fig. 4.2a shows that, in equilibrium, accounting for state-to-state species in the Gupta’s

mixing rule for viscosity (Model 0) yields the same results as the corresponding macroscopic mixing rule

(Gupta). This is expected given the linearity of the expression for the viscosity coefficient (Eq. 2.34)

and given that, under equilibrium conditions, the populations of vibrational energy levels in the state-to-

state approach tend to a Boltzmann distribution, which is considered in the Gupta model by definition.

Furthermore, it is concluded that the increased cross-section size of N2(v) vibrational levels (Model 1)

may in practice be ignored in the computation of the mixture viscosity coefficient, since it has no impact

comparing to Model 0.

4.1.2 Thermal Conductivity

Figure 4.2b shows the global mixture thermal conductivity coefficient calculated with the same four

different models. Generally, the obtained results show a similiar behaviour to those obtained for viscosity.

For 8,000 < T < 30,000 K, the four methods all compute approximately the same value for thermal

conductivity. For T > 30,000 K, results determined by Wilke’s mixing rule begin to yield higher a thermal

conductivity coefficient comparing to the other methods. Again, this is due to Wilke’s assumption that all

interactions between any particles present the same (hard sphere) cross-section.

For T < 8,000 K, the Eucken relation (Wilke), Gupta’s mixing rule and Model 0 yield slightly different

results. This difference is more prominent for temperatures around 6,000 K, which coincides with the

temperature for which N2 and N concentrations equilibrate (see Fig. 4.1).

In order to better understand these differences, the contribution of each thermal energy mode to

the N2 thermal conductivity is plotted in Fig. 4.3. Figure 4.3a compares the Eucken relation (Wilke) to

Gupta model, whereas Fig. 4.3b compares Model 0 against Model 1. For these two last models, the

contribution of each thermal energy mode to the N2 thermal conductivity was obtained as the sum of

each vibrational level N2(v) contribution.

Analysing both Figs. 4.3a and 4.3b, the contribution of each thermal energy mode reaches a peak

approximately at around T = 6,000 K, for which N2 and N equilibrate. Moreover, as expected, results tend

to zero at T = 11,000 K, since above this temperature the N2 chemical species is completely dissociated.
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(a) Wilke/Blottner/Eucken vs. Gupta-Yos/CCS macro-
scopic models.
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Figure 4.3: Contributions to the N2 thermal conductivity of the internal degrees of freedom λk, equilibrium
N2/N at 101 kPa.

Comparing to the Eucken relation (Wilke), Fig. 4.3a shows that the Gupta-Yos/CCS model yields

lower results of the translational contribution for T > 5,000 K and higher results for the rotational and

vibrational contributions, for the whole temperature range. These differences are likely due to the over-

simplistic assumptions of Wilke’s model. Figure 4.3b shows that, similarly to viscosity, thermal conduc-

tivity is not affected by the increased size of vibrational levels. Furthermore, for Model 0 and Model 1,

the vibrational contribution does not exist, contrary to what happens in Fig. 4.3a. This is consistent

with the differences between the consideration of Boltzmann distributions (models Wilke and Gupta)

and, alternatively, a state-specific description of the gas (Gupta Model 0 and Model 1). Note that the

vibrational thermal conductivity contribution depends on CV,vib = δεvib

δTvib
(see Eq. A.21 in Appendix A.3).

With a Boltzmann distribution over the vibrational levels, the total vibrational energy is function of the

temperature, yielding CV,vib 6= 0 and λvib 6= 0. On the other hand, in a state-to-state approach, the

total vibrational energy is defined as the sum of the energies of each vibrational level which, in turn,

depends on the probability of transition between different levels and the type of process ocurring (V-T,

V-V-T or V-D – see Section 2.3.1). Since, in this case, the vibrational energy is no longer function of the

temperature, we have CV,vib = 0 and λvib = 0. Furthermore, the electronic contribution does not exist in

the four models. Since only 1 electronic level is considered, the concept of distribution does not apply

and, again, the electronic energy is not function of the temperature: CV,exc = 0 and λexc = 0

Focusing again in Fig. 4.2b, up to approximately T = 8,000 K, Gupta’s mixing rule yields a slightly

higher conductivity than Wilke’s mixing rule and both of these results are slightly higher than those pro-

vided by Model 0. The decrease in thermal conductivity of Model 0 relative to Gupta’s mixing rule is due

to the fact that, for N2, the vibrational contribution for the thermal conductivity vanishes, as explained

before. This difference is no longer observable for T > 8,000 K since, in that case, the thermal conduc-

tivity coefficient is only due to the concentration of N, for which the contribution to the global coefficient

remains the same in the state-to-state and macroscopic description (only the translational contribution

is present in both).

For the whole temperature range, one may conclude that, similarly to the case of viscosity, taking
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into account the increased size of N2(v) vibrational levels (Model 1) does not impact the mixture thermal

conductivity coefficient, since the curves for Model 0 and Model 1 are nearly coincident.

4.1.3 Mass Diffusion

Figure 4.2c shows the mass diffusion coefficient for N2 for T < 11,000 K, considering that for T >

11,000 K N2 is completely dissociated. For all cases, although the N2 molar fraction starts decreasing

for T > 6,000 K, DN2
continues to increase, since it does not depend on xN2

(see Eqs. 2.31 and 2.40).

For Model 0 and Model 1, DN2 was obtained taking into account the mass diffusion coefficient of each

vibrational level N2(v).

The Wilke model strongly deviates from the others for T > 6,000 K. This is consistent with the fact

that this model does not consider diffusion between particles of different species. As a consequence,

diffusion effects are only concentrated in the self-diffusion coefficients, resulting in higher values for DN2 .

Gupta model, Model 0 and Model 1 show a general agreement in behaviour, with a relative maximum

occuring at T = 6,000 K, for which N2 and N concentrations equilibrate. Results provided by the Gupta

model yield a significantly higher mass diffusion coefficient than those provided by Model 0 and Model

1. This difference is a consequence of using Gupta’s mixing rule - formulated for Boltzmann distributions

- to compute the mass diffusion coefficients of vibrational levels. As opposed to the case of viscosity, the

expression that provides mass diffusion coefficients is not linear (see Eq. 2.40). Hence, even though

equilibrium concentrations are considered, the mass diffusion coefficient of N2 considering state-specific

species does not converge to that of the correspoding chemical species. Moreover, as opposed to the

case of viscosity and thermal conductivity, accounting for increased cross-sections of N2 vibrational

levels impacts mass diffusion (Model 1), yielding slightly lower results comparing to Model 0.

4.2 2D Application Case: N2 Flow Over a Sphere

4.2.1 Impact of Transport Model

Figure 4.4 shows the translational temperature T and the equivalent vibrational temperature Tvib for the

five test-cases: 1T, 2T, Euler, Model 0 and Model 1. The shock position, indicated by the peak region, is

located at, approximately: x = -10.5 mm for Euler, Model 0 and Model 1; x = -9.5 mm for 2T; x = -9mm

for 1T. The maximum shock temperatures are, respectively: 21,000 K, 18,000 K, 18,000 K, 17,000 K

and 14,000 K.

These differences between shock standoff distances and peak temperature values are expected

since, in the state-to-state approach (Euler, Model 0, Model 1), vibrational excitation processes are

slower, and the depletion of energy from the translational mode is accordingly slower. The shock layer

gas is hotter and therefore less dense. Then the shockwave moves upstream to accomodate this extra

volume. For the two-temperature case (2T), VT energy transfer is faster, cooling the shock layer and

causing it to move closer to the wall. This is further emphasized in the one-temperature case (1T), for
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Figure 4.4: Comparison of transport models for T∞ = 300 K: Stagnation line temperature.

which the VT transfer is essentially instantaneous (since there is Ttr–Tvib equilibrium) and the shock

layer is even cooler.

With regard to the Navier-Stokes state-to-state simulations, there are no differences between Model

0 and Model 1. This is predictable given the results presented in Section 4.1, which have shown that

accounting for increased cross-sections of vibrational levels does not impact viscosity and thermal con-

ductivity. Even though for mass diffusion a slight influence was observed, its impact turned out to be

completely negligible in a full-scale simulation under the given conditions.

Comparing the sharp shock-layer temperature gradients of the Euler simulation to those resulting

from Model 0/Model 1, we see that mass diffusion effects (considerably enchanced by the species

gradients from the reactive chemistry behind the bow-shock wave - see Fig. 4.6) significantly even out

temperature gradients: the peak temperature value for Model 0/Model 1 is 15% lower than the one

predicted in Euler and the shock layer is significantly thicker in the former case. Note that this smaller

translational temperature peak has a significant impact on the radiative properties of the flow, which are,

on a first approach, T4 dependent (Planck’s black-body law). Radiation source terms in the case of the

Navier-Stokes results will be significantly lower than those of the Euler results.

Furthermore, focusing on the results provided by the four viscous simulations (1T, 2T, Model 0,

Model 1), the translational and vibrational temperatures tend to equilibrate in the boundary layer, to the

same values of the 1T simulation. This is expected since state-to-state and 1T/2T Boltzmann Navier-

Stokes models are expected to converge to the same results for the macroscopic conditions that favour

a Boltzmann equilibrium – large Damkhohler numbers (which define the ratio of the flow time scale to

the chemical time scale). However, this is not completely achieved, especially in the case of Model 0

and Model 1 simulations: the equivalent vibrational temperature Tvib starts to deviate from the remaining

curves approximately at x = -0.5 mm, and at x = 0 mm Tvib is 30% higher than T. This may be explained

by insufficient mesh refinement near the wall, or the solution not having advanced enough in time1.

Quantitatively speaking, comparing to Model 0/Model 1, the temperature at x = 0 mm is about 50%

lower for 1T and 40% lower for 2T, which results in a higher wall convective heat flux for the Navier-
1as implicit simulations would typically crash when attempts at raising the CFL beyond typical values around 0.01 were made
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Stokes state-to-state simulations.

In the case of the Euler simulation, refinement in the boundary layer is not essential since the wall

is, by definition, adiabatic - which translates in the absence of temperature gradients typically found in a

boundary layer. Accordingly, the two temperatures T and Tvib start to perfectly converge at x = -4 mm.

Figure 4.5 presents the vibrational distribution functions of N2(v) vibrational levels. The correspond-

ing mass fractions are normalized by the N2 total mass fraction. Results provided by Model 1 are com-

pared against those provided by Model 0 (Figs. 4.5a, 4.5b, 4.5c) which, in turn, are compared against

the Euler simulation (Fig. 4.5d). No results are presented for multi-temperature simulations since, by

definition, the populations of vibrational energy levels follow Boltzmann distributions (straight lines in a

logarithmic graph).
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Figure 4.5: Comparison of transport models for T∞ = 300 K: vibrational distribution functions of N2(v)
for different positions along the stagnation line.

Generally, these four figures show that, as the distance to the wall decreases and the flow dissociates

- the molar fractions of N gradually increase up to 99%, at the expense of the N2(v) molar fractions -,

the curves fall down in the scale.

Figure 4.5a shows that differences between Model 0 and Model 1 are vanishingly small. Considering

that near-dissociative levels have significantly higher internuclear distances (see Table B.1), it is pos-
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tulated that dissociation-recombination reactions are dominant over any mass diffusion processes that

might be enchanced by these increased collisional cross-sections. In the shockwave region (x = -11mm),

where the large concentration gradients enchance mass diffusion, the differences between Model 0 and

Model 1 are more apparent, for lower and higher energy levels (see Figs. 4.5b and 4.5c). Right after

the peak region (x = -9 mm), slight differences between the two models can still be observed for higher

energy levels, since the cross-sections of these levels will be more enhanced than those of the low-lying

ones (see Table B.1). However, differences between Model 0 and Model 1 are small enough to conclude

that increased collisional cross-sections for vibrational levels may in practice be ignored.

In the boundary layer region (x = -1 mm) the flow time scales increase significantly due to a de-

crease in velocity and, consequently, a Boltzmann equilibrium is nearly reached, as dissociation and

recombination processes tend to equilibrate.

Moreover, in Fig. 4.5d, distributions provided by Model 0 are compared with those provided by the

Euler simulation (since Model 1 yields approximately the same distributions as Model 0, the correspond-

ing results are not explicitly compared to the Euler simulation). For x = -11 mm, x = -9 mm and x = -5 mm,

mass fractions of the Euler simulation are lower than those of Model 0, which can be attributed to more

abrupt dissociation due to absence of transport phenomema and, consequently, a higher temperature

peak. As for x = -1 mm, due to the absence of a boundary layer and consequent higher temperatures

in the Euler case, recombination reactions do not occur, nor does equilibration (that would be translated

into a straight line - Boltzmann distribution). However, these higher temperatures favour vibrational exci-

tation, which is demonstrated by the higher concentrations of vibrational levels, compared to Model 0.

Figure 4.6 presents the mole fractions of chemical species N2 and N. Apart from the boundary layer

region, the obtained curves show a similar behaviour. In the upstream region only N2 molar fractions

are found. As soon as the temperature rises - which happens for different positions in the stagnation

line depending on the simulation to be considered - dissociation reactions begin to occur, causing the

molar fractions of atomic nitrogen to gradually increase and, naturally, the ones of molecular nitrogen

to decrease. With respect to Model 0 and Model 1, once again the impact of the latter turns out to be

completely negligible (coincident curves).
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Figure 4.6: Comparison of transport models for T∞ = 300 K: Stagnation line mole fractions of chemical
species N2 and N.

Analysing the region where dissociation starts to occur, there are some noteworthy differences be-

tween the different models. In the case of viscous simulations, reactions initiate at x = -11.5 mm for Model

0 and Model 1, at x = -10.5 mm for 2T and, lastly, at x = -10 mm for 1T. This is consistent with the differ-

ent shock positions associated with each simulation (see Fig. 4.4), which is expected since dissociation

reactions are activated by the corresponding high-temperatures. Comparing the Euler state-to-state

simulation to the Navier-Stokes state-to-state simulations (Model 0 and Model 1), the only difference is

the enhanced smoothness in the latter case, explained by the presence of mass diffusion processes.

Focusing on the boundary layer region, recombination effects are clearly noticeable in the case of

both multi-temperature simulations (denoted by the increase/decrease in the molar fractions of N2/N).

This phenomenon is more enhanced in the case of the 2T simulation, for which the N2 molar fraction

is 30% higher than for 1T, contrary to what was expected. Analysing Fig. 4.1, it is concluded that, in

equilibrium conditions, N2 concentrations are smaller for higher temperatures. In the full-scale simula-

tion, at x = 0 mm, temperatures provided by the 2T simulation are higher than those of the 1T case (see

Fig. 4.4) and, accordingly, recombination should be more pronounced in this latter case. A probable

justification for this contradiction is the fact that equilibrium is not completely achieved near the surface

of the vehicle, likely due to poor refinement in this region, as explained before.

In the case of state-to-state simulations, there are no recombination reactions near the wall for the

inviscid results since, in this case, there is no decrease in temperature given the adiabatic boundary

condition. For Model 0/Model 1, there are very slight recombination effects near the surface of the vehi-

cle. This is not obvious when observing the graph, once again because the new state of equilibrium is

not properly captured by the mesh. However, this was verified through analysis of the output data. At x

= 0 mm, there is about 10% more N2 for Model 0 than for Euler. This difference is due to mass diffusion

effects, since recombination is negligible in Model 0.
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Figure 4.7: Comparison between Euler (left) and Navier-Stokes (right) state-to-state simulations for T∞
= 300K: mass fractions of N2(v) vibrational levels along the stagnation line.

Figure 4.7 presents the mass fraction of each vibrational level along the stagnation line, for both the

Euler and Model 0 simulations. For each case, right before the temperature peak region, there is a

significant increase in the population of all the upper vibrational levels of N2, at the expense of the v =

0 level, caused by the high increase in temperature encountered in the shock wave. Shortly after the

temperature peak, around x = -10.5 mm, dissociation of N2 takes over and all the energy levels start

being depleted more or less evenly. This means that multiquantum transitions between different levels

are as dominant as monoquantum transitions.

Comparing both figures, the mass diffusion effects present in Model 0 are evident. This is clear

along the entire stagnation line, where the curves resulting from Model 0 are much smoother than those

resulting from Euler. Furthermore, around x = -1 mm, we see a drastic increase of the population of

higher N2(v) levels, in Model 0. This occurs because the flow reaches the boundary layer with about a

55% degree of dissociation, and the sudden temperature decrease in the boundary layer will lead to a

strongly recombining flow, favouring recombination in the upper levels. On the other hand, for the Euler

simulation no gradients are observed in x = 0 mm, which, once again, is explained by the absence of a

boundary layer.

Figures 4.8 show the temperature field: Euler (top left) vs. Model 0 (bottom left) and 2T (top right)

vs. Model 0 (bottom right).

Comparing Euler to Model 0 (Fig. 4.8; left side), it is verified that the shock standoff distance does

not change, however the shock layer thickness increases significantly in the latter case. Moreover, one

can confirm that a boundary layer exists along the whole surface of the sphere (dark line along the

surface), which does not happen in the Euler simulation. The presence of the boundary layer is also

perceptible in the results provided by the two-temperature simulation. Comparing these results to those

provided by Model 0 (Fig. 4.8; right side), there are two main differences. The shock layer is significantly

thicker for Model 0, not only in the stagnation line but also along the sphere’s surface. Furthermore, the

shock standoff distance is larger for the state-to-state simulation (which had already been observed in

Fig. 4.4).
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Figure 4.8: Temperature field for T∞ = 300 K: Euler (top left) vs. Model 0 (bottom left), and 2T (top right)
vs. Model 0 (bottom right).

4.2.2 Impact of Freestream Temperature

An addtional set of simulations has been carried out considering a freestream temperature of 700 K.

Figure 4.9 shows the stagnation line temperature of Model 0 and Model 1 for T∞ = 700 K and of Model

0 for T∞ = 300 K.
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Figure 4.9: Impact of the freestream temperature: Stagnation line temperature for Model 0 and Model 1
at T∞ = 700 K and for Model 0 at T∞ = 300 K.

Comparing results provided by the different freestream temperatures, generally a similar behaviour is

observed. The shock standoff distance is about 10% larger for T∞ = 700 K. Also for this case, the peak

temperature value is about 50% higher than for T∞ = 300 K. These two main differences are explained

by the fact that higher freestream velocities (a consequence of a higher freestream temperature, since

V∞ = M∞ ×
√
γRT∞) leads to a more energetic flow.
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Additionally, for T∞ = 700 K the curve for the translational temperature is moderatly smoother in

the peak region, where temperature gradients are larger. This is indicative of a more adequate mesh

refinement in the shock-layer than for the case of T∞ = 300 K.

Furthermore, for T∞ = 700 K, the impact of accounting for increased cross-sections of vibrational

levels (Model 1) is negligible, similarly to what was concluded for For T∞ = 300 K. However, zooming in

the peak temperature for T∞ = 700 K, it is slightly higher for Model 0 than for Model 1, while for T∞ =

300 K both curves were coincident along the whole stagnation line (see Fig. 4.4). This may be attributed

to two factors: (a) better mesh refinement for T∞ = 700 K; (b) since, for T∞ = 700 K, temperatures

reach much higher values, the corresponding gradients will be larger and diffusion phenomena will be

enhanced. Accounting for larger effective cross-sections (Model 1) results in a slightly more diffusive

flow, as compared to Model 0. This is an unexpected outcome, since Model 1 yielded lower mass dif-

fusion coefficients than Model 0 in the analysis conducted in Section 4.1.3 (see Fig. 4.2a). However,

this analysis did not take into account the influence of pressure, which may explain this apparent con-

tradiction. Future work should include a parametric study on the evolution of transport coefficients with

pressure, using Model 1.

Nevertheless, for T∞ = 700 K, refinement in the boundary layer region is still insufficient. Similarly

to the case of T∞ = 300 K, equilibrium is not achieved near the sphere’s surface, since results of Tvib

deviate from those of T for about 25% in the case of T∞ = 700 K, at x = 0 mm. Moreover, for T∞ =

700 K, the translational temperature is 30% higher than for T∞ = 300 K at the wall, resulting in a higher

convective heat flux, which is consistent with the fact that the flow is more energetic in the former case.

Figure 4.10 shows the vibrational distribution functions of N2(v) for different positions along the stag-

nation line. Mass fractions of vibrational levels N2(v) are normalized by the N2 mass fraction. Figure

4.10a compares Model 0 to Model 1 at T∞ = 700 K (left), while Fig. 4.10b compares T∞ = 700 K to T∞

= 300 K for Model 0 (right).

Analysing Fig. 4.10a, similarly to the case of T∞ = 300 K (see Fig. 4.5a), it is concluded that: (a)

the increased cross-sections of vibrational levels considered in Model 1 have no impact in the vibrational

distribution functions of N2(v), comparing to Model 0 (b) a Boltzmann distribution is nearly reached close

to the wall.

Focusing on the comparison between different freestream temperatures (Fig. 4.10b), as the distance

from the wall decreases, concentrations of vibrational levels are increasingly higher for more energetic

levels, in the case of T∞ = 700 K. This is expected, since higher temperatures favour molecular vibra-

tional excitation.

The impact of freestream temperature on stagnation line mole fractions of chemical species is studied

in Fig. 4.11. Model 0 is compared to Model 1 for T∞ = 700 K and T∞ = 700 K is compared to T∞ = 300

K for Model 0.

For T∞ = 700 K, there are no differences between Model 0 and Model 1, which is expected given

the results presented in the previous two figures. Analysing the impact of the freestream temperature

for Model 0, there are considerable differences between the two cases. For T∞ = 700 K, dissociation
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Figure 4.10: Vibrational distribution functions of N2(v) for different positions along the stagnation line.

reactions start occurring sooner - around x = -13 mm for T∞ = 700 K and x = -12 mm for T∞ = 300 K

-, which is consistent with the corresponding shock standoff distances. Moreover, dissociation effects

are significantly more enhanced for T∞ = 700 K - approximately 99% of atomic nitrogen at the wall for

T∞ = 700 K against 55% for T∞ = 300 K. This is expected since higher temperatures tend to favour

dissociation.

Nonetheless, in the boundary layer region, recombination effects are almost nonexistent. As ob-

served in Fig. 4.9, equilibrium conditions are not reached near the wall, probably for not being captured

by the mesh.
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Figure 4.11: Impact of freestream temperature: stagnation line mole fractions of chemical species N2

and N - Model 0 vs. Model 1 for T∞ = 700 K and T∞ = 700 K vs. T∞ = 300 K for Model 0.

Finally, Fig. 4.12, shows the temperature field for Model 0, comparing results obtained with T∞ =

700 K (top) against those obtained with T∞ = 300 K (bottom). The higher temperature values resulting

from having T∞ = 700 K are evident in the entire flowfield. Moreover, results obtained for this simulation

show a slightly larger shock standoff distance, which had already been observed in the stagnation line

temperature plot (Fig. 4.9). The most visible difference between the two temperatures fields is the

shock layer thickness, which is considerably larger for the case of T∞ = 700 K, along the whole surface
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of the sphere. This is caused by the corresponding higher peak temperature and consequent larger

temperature gradients, from which stronger mass diffusion effects result.
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Figure 4.12: Impact of freestream temperature: temperature field - T∞ = 700 K (top) vs. T∞ = 300 K
(bottom) for Model 0.
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Chapter 5

Conclusions

5.1 Achievements

This thesis has provided a better understanding of the flowfield experienced by a space vehicle during

reentry into Earth. High-speed reentry is characterized by strong nonequilibrium conditions, under which

state-to-state vibrational kinetics was found to significantly impact the transport properties of the gas.

In light of this, a successfull full state-to-state Navier-Stokes simulation was performed for a nitrogen

flow over a sphere. In order to account for transport phenomena and non-Boltzmann distributions over

the vibrational levels, two simplified state-specific transport models were employed. Model 0 was for-

mulated as a direct adaptation of the macroscopic Gupta-Yos/CCS model to state-to-state species. The

more detailed Model 1 followed the same formulation, also accounting for the increased cross-sections

of vibrationally excited molcules in the collision terms. For comparison purposes, multi-temperature

Navier-Stokes and Euler state-to-state simulations were also performed.

As expected, a comparison between multi-temperature and state-to-state approaches resulted in

a significantly more energetic flow for the latter case, translated into larger shock standoff distances

and higher peak temperatures (respectively, 10% and 5% larger than for the two-temperature case).

However, results provided by the state-to-state Navier-Stokes simulations did not converge to values

identical to those provided by multi-temperature simulations at the wall, where equilibrium conditions

are expected to be encountered. It was concluded that, in order to capture the steep gradients occuring

in the boundary layer, more rigorous mesh refinement is necessary in this region.

Simulations using state-specific transport coefficients resulted in smoother variations of the flow prop-

erties comparing to the Euler case: a significantly thicker shock-layer and a 15% lower peak temperature.

A comparison between Model 0 and Model 1 allowed confirming that the coupled effect of vibrational

molecular size and non-Boltzmann distributions on the transport properties is negligible and does not

impact the flowfield.

The impact of the freestream temperature (translated into freestream velocity) was evaluated for

300 and 700 K (7 and 10.7 km/s for the same Mach number, respectively). For the higher freestream

temperature, the effects of microscopic thermochemical processes such as dissociation and vibrational
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excitation are emphasised. Moreover, there is a slight influence of the cross-section effective size in the

peak temperature, but is still considered to be negligible.

These findings may have a non-negligible impact on the design of TPS systems for very high speed

entries (above 10km/s), since they particularly provide a more faithful description of the flow properties

in the shock-layer, which is critical to the determination of radiative heat fluxes. Different shock-standoff

values may also impact convective heat fluxes, in case the shock layer tends to mix with the boundary

layer, in the absence of a quasi-steady state intermediary zone.

5.2 Future Work

The results obtained in this thesis lay the groundwork for further research. The next step would be the

inclusion of a detailed state-specific transport model in the governing fluid dynamic equations, such as

the one proposed by Kustova. A more accurate prediction of the properties of a hypersonic flow under

strong nonequlibrium conditions, rather than using simplified models, would require the determination of

the transport coefficents on the basis of the state-to-state kinetic theory.

In the specific case of this study, a higher level of accuracy should be achieved in the boundary layer

region, by means of improving the mesh refinement in this region. This would allow clarifying a few

discrepancies that were found in the boundary layer region when comparing the different macrsocopic

and state-to-state models, and specifically determining if these are physical in nature or merely the result

of an insufficiently converged solution (in terms of mesh and computation time).
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Appendix A

Physical Models

A.1 Thermodynamic Relations

A.1.1 Composition variables

There are several different ways of describing the composition of a chemically reacting gas mixture,

meaning how much of species s is present in the mixture. One of these quantities is the number of

particles of each chemical species s contained in a volume of the gas, which can be defined by the

number density Ns (particles/m3) or by the the molar density Ns (mol/m3) of species s, with the two

being related through the Avogadro constant NA. Based on the definitions of Ns and Ns, the following

relations hold for the molar density N and the global number density n:

N =
∑
s

Ns and n =
∑
s

Ns with Ns =
Ns
NA

(A.1)

The mass density of each species ρs (kg/m3) can be obtained as follows, if the species particle mass mi

(kg) or molar mass Mi (kg/mol) are known:

ρs = Nsmi or ρs = NsMi with mi =
Mi

NA
(A.2)

The mixture density ρ is given by:

ρ =
∑
s

ρs (A.3)

using the previous quantities, one can define the species dimensionless composition variables mass

fraction cs and molar fraction xs:

cs =
ρs
ρ

and xs =
Ns
N

=
Ns
n

with
∑
s

cs =
∑
s

xs = 1 (A.4)

As mentioned before, the composition of the gas may be defined using different quantities. As such,
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it is possible to establish the following relations between the several composition variables:

xs =
Mcs
Mi

Ns =
xsρ

M
cs =

nsMs

ρ
(A.5)

where M is the global mixture molar mass, which is obtained by:

M =
∑
s

xsMi =

(∑
s

cs
Mi

)−1
=

1

n

∑
s

NsMi (A.6)

A.1.2 Equation of State

In this work we are dealing with a multi-component reacting mixture in which the intermolecular forces

are considered to be negligible, which means that each individual species s is assumed to behave as

an ideal gas. Hence, the total pressure of the mixture P is defined by Dalton’s Law as the summation of

the partial pressures associated to each species ps:

P =
∑
s

ps (A.7)

Also, the perfect-gas equation of state holds individually for each species s, allowing the calculation of

the partial pressures using one of the various forms of the equation:

ps = ρsRiTtra,s or ps = NskBTtra,s or ps = NsRuTtra,s (A.8)

where Ri is the specific gas constant for the species s, kB is the Boltzmann constant and Ru is the

universal gas constant, which can be related by:

ri =
Ru
ms

=
kB
ms

and kB =
Ru
NA

(A.9)

A.2 Thermodynamic Properties

A.2.1 Internal energy

The specific internal energy of the system ε represents the total energy stored in the internal degrees of

freedom of all the chemical species that compose the mixture, per unit of mass, and it is given by:

ε =
E

M
=
∑
s

εscs (A.10)

where E is the total internal energy of the system, M the total mass, ε the specific internal energy of

species s and cs the mass fraction of the species s.

The specific internal energy associated to each chemical species εs is defined by:

εs = ∆hos + εtra,s + εrot,s + εvib,s + εexc,s (A.11)
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where ∆hos is the standard formation enthalpy, and the terms εtra,s, εrot,s, εvib,s, εexc,s correspond to

the energies of the different thermal energy modes εk,s associated with each species.

A.2.2 Enthalpy

Tthe specific enthalpy h of the gas is defined as:

h = ε+
P

ρ
(A.12)

In the case of a multi-component mixture, similarly to Eqs. A.10 and A.11, the definition of enthalpy can

be generalized as follows:

h =
∑
s

cshs (A.13)

hs = εs +
Ps
ρs

or hs = εs + rsTtra,s (A.14)

Considering the different internal energy modes:

hs = ∆hos + htra,s + hrot,s + hvib,s + hexc,s (A.15)

A.3 Multi-Temperature Definitions

This section presents a more detailed definition of the thermodynamic properties of the gas according to

a multi-temperature approximation. If thermal nonequilibrium is considered, the global internal energy

εk associated to each global temperature Tk of the mixture is given by:

εk =
∑
s

csεk,s (A.16)

In this approach, the amount of energy εk,s stored in each energy mode k for a given chemical

species s is defined statistically as function of the corresponding temperature Tk,s using a Boltzmann

distribution. For the vibrational energy mode, a Treanor distribution is preferred, since it allows conver-

gence to an analytic expression.
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εtra,s = RsTtra,s
3

2
(A.17a)

εrot,s = RsTrot,s (A.17b)

εvib,s = Rs
θvib,s

exp

(
θvib,s
Tvib,s

)
− 1

(A.17c)

εexc,s = Rs

∞∑
s

θexc,i,s gi,s exp

(
−θexc,i,s
Texc,s

)
∞∑
s

gi,s exp

(
−θexc,i,s
Texc,s

) (A.17d)

where θvib,s is the species characteristic vibrational temperature, θexc,i,s is the characteristic electronic

temperature and and gi,s is the degeneracy of the s-th energy level of the species. The ∞ symbol

represents the highest achievable energy level before ionization, although, in practice, a finite number

of electronic levels may be considered, according to the order of magnitude of the energy exchanges

present in the flow. The equations for the rotational εrot,s and vibrational εvib,s modes apply only to the

particular case of diatomic molecules.

The global enthalpy hk associated to each temperature Tk is given by:

hk =
∑
s

cshk,s (A.18)

and the enthalpy for each thermal energy mode will be defined as:



htra,s = εtra,s +RsT

hrot,s = εrot,s

hvib,s = εvib,s

hexc,s = εexc,s

(A.19)

The component RsT is only considered in the translational enthalpy since the translational motion is

the microscopic mechanism responsible for pressure force.

The gas specific heat at constant volume Cv and the specific heat at constant pressure Cp are

defined as the rate of change of the internal energy and enthalpy, respectively, as a function of the

temperature:

Cv ≡ ∂ε

∂T
and Cp ≡ ∂h

∂T
(A.20)

In the multi-temperature approach, the previous definitions become:

Cvk = ∂εk
∂Tk

Cpk = ∂hk

∂Tk

and


Cv =

∑
k

Cvk

Cp =
∑
k

Cpk

(A.21)
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Introducing Eqs. A.16 and A.18 into equation A.21 we obtain:


Cvk =

∑
s

(
cs
∂εk,s

∂Tk,s
+ εk,s

∂cs
∂Tk,s

)
Cpk =

∑
s

(
cs
∂hk,s

∂Tk,s
+ hk,s

∂cs
∂Tk,s

) (A.22)

In this equation, we can identify a frozen component, i.e., the specific heats considering a constant

chemical composition of the gas, and a reactive component, associated with the heat exchange due

to the chemical reactions. The global frozen specific heats at constant volume Cvfk and at constant

pressure Cpfk, of associated to each temperature Tk are defined as:


Cvfk =

∑
s
csCv

f
k,s

Cpfk =
∑
s
csCp

f
k,s

with

Cv
f
k,s =

∂εk,s

∂Tk,s

Cpfk,s =
∂hk,s

∂Tk,s

(A.23)

Throughout this work only the frozen component of the specific heat coefficients are used, without any

approximation. For simplicity the symbols Cv and Cp are used to refer to the frozen components. Using

the frozen definitions, and Eqs. A.15 and A.17 the specific heats associated to the internal energy

modes of each chemical species are given by:



Cvtra,s = 3
2Rs and Cptra,s = 5

2Rs

Cvrot,s = Cprot,s = Rs

Cvvib,s = Cpvib,s =
∂εvib,s

∂Tvib,s

Cvexc,s = Cpexc,s =
∂εexc,s

∂Texc,s

(A.24)

The specific heats relate to the global R and species Rs gas constants and the specific heat ratio γ by:

Rs = Cptra,s − Cvtra,s and γ =
Cp

Cv
(A.25)
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Appendix B

Internuclear Distances of N2

Vibrational Levels

Table B.1: Internuclear distances rABv for the N2 vibrationally excited molecule (presented in Å), using
the method described in [76]

v r(v) v r(v) v r(v)

0 1.10010 21 1.22342 41 1.41880
1 1.10516 22 1.23035 42 1.43453
2 1.11033 23 1.23739 43 1.45158
3 1.11561 24 1.24465 44 1.47006
4 1.12089 25 1.25202 45 1.49020
5 1.12617 26 1.25961 46 1.51253
6 1.13167 27 1.26743 47 1.53750
7 1.13717 28 1.27557 48 1.56588
8 1.14278 29 1.28404 49 1.59856
9 1.14839 30 1.29273 50 1.63739

10 1.15411 31 1.30175 51 1.68447
11 1.15995 32 1.31121 52 1.74322
12 1.16589 33 1.32100 53 1.81660
13 1.17194 34 1.33123 54 1.90361
14 1.17799 35 1.34190 55 1.99789
15 1.18415 36 1.35301 56 2.09580
16 1.19042 37 1.36478 57 2.19910
17 1.19680 38 1.37711 58 2.31307
18 1.20329 39 1.39020 59 2.44739
19 1.20989 40 1.40395 60 2.62231
20 1.21660

rABeq 1.0977 σABeq 3.798
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Appendix C

SPARK

C.1 SPARK Inputs

As illustrated in Fig. 3.1, in order to run a simulation in code SPARK, an input file is required. The

following parameters must be defined:

• Simulation Type - Sets the type of simulation to be performed: 2D axissymetric.

• Flow Type - Sets the flow type and the corresponding set of equations to be solved: Euler, Navier-

Stokes.

• Gas Model - Sets the model which describes the behaviour of the gas: nonequilibrium gas.

• Solver - Sets the numerical method used to solve the previously established set of equations.

–Time Discretization - Explicit or Implicit

– CFL - Courant number (depends on the type of simulation being considered and ensures stability)

• Gas State - Sets the upstream conditions.

– Pressure = 27 Pa

– Temperature = 300 K

– Mach = 19.82

– Mass Fractions: N2:1

• Kinetic Scheme - Sets the kinetic scheme to be considered: Air5-STELLAR, Air5-STELLAR-

Boltzmann.

• Multi Temperature - Sets the parameters required in case the multi-temperature model is being

considered (Park’s two-temperature model is used in the present work).

– Vibrational nonequ model - Individual

- Vibrational nonequ species - N2

• Transport model - Sets the transport model being considered: Wilke (Section 2.5.1), Gupta (Sec-

tion 2.5.2) or STS (Section 2.5.2).
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