Gas-Surface Interaction Models in Hypersonic Flows Master degree in Aerospace Engineering

Carlos Teixeira

Instituto Superior Técnico

7th December 2015

C. Teixeira (IST)

Gas-Surface Interaction Models in Hypersonic Flows

7th December 2015 1 / 21

- 2 Theory and models
- Implementation in SPARK

- Space vehicles enter planetary atmospheres at orbital speed $V_{\infty} \approx 7.9 \, {\rm km \over s}$
- Shock wave upstream of vehicle
- Kinetic energy ($\approx \frac{1}{2}mV^2$) \Rightarrow converted to internal energy.

Credit: Anderson

- SPARK code
- Bla
- BlaBla
- BlaBlaBla

Credit: Anderson

E 900

(a) (b) (c) (b)

3 Implementation in SPARK

- Non catalytic
- Fully catalytic
- Partially catalytic
- Super catalytic
- Equilibrium wall
- Finite-rate catalycity

Where do these models fit in the overall SPARK code?

- As boundary conditions
- Wall mass and energy balances

Wall Species Mass Balance

- Fick's Law of diffusion: $(j_i)_{w, \text{ into the wall}} = \left(\rho D_i \frac{\partial c_i}{\partial n}\right)_w$
- Production terms $\dot{\omega}_{i,w}$ are given by the catalytic model
- Final result

$$-\left(\rho D_i \frac{\partial c_i}{\partial n}\right)_{\mathbf{w}} = (\dot{\omega}_{i,\mathbf{w}})$$

Modelling the Source Terms

• Macroscopic representation

$$\gamma_i \equiv \frac{|M_i|}{|M_i^{\downarrow}|}$$

Kinetic Theory

$$M_i^{\downarrow} = c_{i,\mathbf{w}} \rho_{\mathbf{w}} \sqrt{\frac{R_i T_{\mathbf{w}}}{2\pi}}$$

For Earth re-entry

$$\begin{array}{l} \mathbf{N} + \mathbf{N} \longrightarrow \mathbf{N}_2 \\ \mathbf{O} + \mathbf{O} \longrightarrow \mathbf{O}_2 \end{array}$$

$$\dot{\omega}_{N,\mathbf{w}} = -\gamma_N c_{N,\mathbf{w}} \rho_{\mathbf{w}} \sqrt{\frac{R_N T_{\mathbf{w}}}{2\pi}}$$
$$\dot{\omega}_{N_2,\mathbf{w}} + \dot{\omega}_{N,\mathbf{w}} = 0$$

= 200

Wall Energy Balance

Surface at Radiative Equilibrium

$$\underbrace{\left(k\frac{\partial T}{\partial n}\right)_{\mathrm{w}}}_{\dot{q}_{\mathrm{conv}}} + \underbrace{\left(\sum_{i=1}^{N_s} h_i \rho D_i \frac{\partial c_i}{\partial n}\right)_{\mathrm{w}}}_{\dot{q}_{\mathrm{diff}}} = \underbrace{\epsilon \sigma T_{\mathrm{w}}^4}_{\dot{q}_{\mathrm{rad-out}}}$$

Theory and models

Redesign SPARK's Boundary Condition Structure

Ghost Cell Concept

C. Teixeira (IST)

= 200

- The forward rate of reaction $N_2 + e^- \rightleftharpoons 2N + e^-$ was computed.
- The use of the Harmonic Oscillator model for the vibrational partition function was assessed in comparison with the analytical calculation.
- The spontaneous emission modeling has been improved.
- The vibrational redistribution method applied has an influence in the excited electronic states population of molecules.

- Temperature results
- Electronic excited levels results
- Radiation results: 5.15 km/s
- Radiation results: 9 km/s

Temperature results

-

Temperature results

In regards to the kinetic model, Gökçen's or Lino da Silva's:

- Simulations agree for a shock speed of 5.15 km/s.
- There is a time discrepancy for the temperature decrease at 9 km/s between models.

In regards to the kinetics used, Boltzmann, ESS or VSS:

- VSS simulations exhibit the fastest decreasing temperature.
- Boltzmann are slowest to decrease their temperature.
- ESS simulations are a middle ground between VSS and Boltzmann.

Electronic excited levels results

Time evolution of electronic excited levels shows:

- For 5.15 km/s there is agreement while there is a time shift for 9 km/s for Gökçen's and Lino da Silva's model.
- At 9 km/s the population of N₂(C) and CN(B) are on the same order of magnitude¹, at 5.15 km/s CN(B) dominates.

These trends are the same for ESS simulations.

¹Not seen experimentally.

Radiation results: 5.15 km/s

This simulated radiation intensity is the sum of radiation from CN Violet and N₂ second positive systems on a spectral window of [310 - 450]nm. At 5.15 km/s, in regards to kinetics,

- Boltzmann overpredicts radiation intensity.
- The ESS and VSS curves are very similar.

Both Gökçen's and Lino da Silva's models are in reasonable agreement with the experiment²as with other previous results for this shock speed.

²Experimental data from A. Brandis PhD thesis (2009).

Radiation results: 9 km/s

For a shock speed of 9 km/s,

- No agreement can be found with the experimental results.
- ESS and VSS separate in magnitude using Gökçen's model.
- For Lino da Silva's model, ESS and VSS separate in time.

Lino da Silva's VSS curve seems to predict the peak time-wise but clearly does not agree with the experimental data. Regarding the comparison with the experimental results:

- At low shock speeds the results are in reasonable agreement with the experimental data.
- The results for a high shock wave speed are still not satisfactory.

Improved high temperature state-to-state data is required.

Regarding the comparison with the experimental results:

- At low shock speeds the results are in reasonable agreement with the experimental data.
- The results for a high shock wave speed are still not satisfactory.

Improved high temperature state-to-state data is required.

To improve the results for higher shock speeds:

- Add dissociation of electronically excited molecules.
- Improve the vibrational redistribution model employed.
- Change the 0D system to a 1D system.

These changes might improve the agreement with the experimental results.

= ~ Q (~

Number	Reaction
1	$N_2 + M_2 \rightleftharpoons N + N + M_2$
2	$N_2 + M_3 \rightleftharpoons N + N + M_3$
3	$CH_4 + M_1 \rightleftharpoons CH_3 + H + M_1$
4	$CH_3 + M_1 \xrightarrow{\longrightarrow} CH_2 + H + M_1$
5	$CH_3 + M_1 \rightleftharpoons CH + H_2 + M_1$
6	$\operatorname{CH}_2 + \operatorname{M}_1 \xrightarrow{\longrightarrow} \operatorname{CH} + \operatorname{H} + \operatorname{M}_1$
7	$CH_2 + M_1 \rightleftharpoons C + H_2 + M_1$
8	$CH + M_1 \rightleftharpoons C + H + M_1$
9	$C_2 + M_1 \xrightarrow{\longrightarrow} C + C + M_1$
10	$H_2 + M_1 \rightleftharpoons H + H + M_1$
11	$CN + M_1 \rightleftharpoons C + N + M_1$
12	$NH + M_1 \rightleftharpoons N + H + M_1$
13	$HCN + M_1 \rightleftharpoons CN + H + M_1$
14	$CH_3 + N \rightleftharpoons HCN + H + H$
15	$CH_3 + H \rightleftharpoons CH_2 + H_2$
16	$CH_2 + N_2 \xrightarrow{\longrightarrow} HCN + NH$
17	$CH_2 + N \rightleftharpoons HCN + H$
18	$\operatorname{CH}_2 + \operatorname{H} \operatorname{CH} + \operatorname{H}_2$
19	$CH + N_2 \xrightarrow{\longrightarrow} HCN + N$
20	$\mathrm{CH} + \mathrm{C} \xrightarrow{\longrightarrow} \mathrm{C}_2 + \mathrm{H}$
21	$C_2 + N_2 \rightleftharpoons CN + CN$
22	$CN + H_2 \xrightarrow{\longrightarrow} HCN + H$

Number	Reaction
23	$CN + C C_2 + N$
24	$N + H_2 \rightleftharpoons N\tilde{H} + H$
25	$C + N_2 \xrightarrow{\sim} CH + N$
26	$C + H_2 \xrightarrow{\longrightarrow} CH + H$
27	$H + N_2 \xrightarrow{\longrightarrow} NH + N$
28	$H + H \xrightarrow{\longrightarrow} H_2^+ + E^-$
29	$C + H \xrightarrow{\longrightarrow} CH^+ + E^-$
30	$C + N \rightleftharpoons CN^+ + E^-$
31	$N + H \rightleftharpoons NH^+ + E^-$
32	$N + N \rightleftharpoons N_2^+ + E^-$
33	$N + E^- \rightleftharpoons N^+ + E^- + E^-$
34	$C + E^- \xrightarrow{\longrightarrow} C^+ + E^- + E^-$
35	$H + E^- \rightleftharpoons H^+ + E^- + E^-$
36	$Ar + E^- \rightleftharpoons Ar^+ + E^- + E^-$
37	$H_2 + E^- H_2^+ + E^- + E^-$
38	$CH + E^{-} \rightleftharpoons CH^{+} + E^{-} + E^{-}$
39	$NH + E^- \rightleftharpoons NH^+ + E^- + E^-$
40	$N_2 + E^- \rightleftharpoons N_2^+ + E^- + E^-$
41	$N_2^+ + E^- \xrightarrow{\longrightarrow} N^+ + N + E^-$
42	$C^+ + N_2 \rightleftharpoons N_2^+ + C$
43	$C^+ + N_2 \rightleftharpoons CN^+ + N$
44	$C^+ + N_2 \xrightarrow{\longrightarrow} N^+ + CN$
45	$N_2 + E^- N + N + E^-$

Number	Reaction
5	$CN(X) + M \rightleftharpoons CN(A) + M$
6	$CN(X) + M \rightleftharpoons CN(B) + M$
7	$N_2(X) + M \xrightarrow{\longrightarrow} N_2(A) + M$
8	$N_2(A) + M \xrightarrow{\longrightarrow} N_2(B) + M$
9	$N_2(C) + M \rightleftharpoons N_2(B) + M$
10	$CN(X) + E^- CN(A) + E^-$
11	$CN(X) + E^{-} \xrightarrow{\longrightarrow} CN(B) + E^{-}$
12	$N_2(X) + E^- \rightleftharpoons N_2(A) + E^-$
13	$N_2(X) + E^- N_2(B) + E^-$
14	$N_2(X) + E^- N_2(C) + E^-$
15	$N_2(A) + E^- \rightleftharpoons N_2(B) + E^-$
16	$N_2(A) + N_2(A) N_2(X) + N_2(B)$
17	$N_2(A) + N_2(A) \rightleftharpoons N_2(X) + N_2(C)$
18	$N_2(A) + CN(X) \rightleftharpoons N_2(X) + CN(B)$
19	$CN(X) + N_2(X, 4) \longrightarrow CN(A) + N_2(X, 0)$
20	$CN(X) + N_2(X, 11) \rightleftharpoons CN(B) + N_2(X, 0)$