

Performance design of hypervelocity shock tube facilities

Diana Luís

Instituto Superior Técnico

September 25, 2018

Outline

[Introduction](#page-2-0)

- [Hypervelocity facilities](#page-4-0)
- [Shock tube theory](#page-7-0)
- [Performance design](#page-15-0)
- [Trigger system](#page-27-0)

Outline

1 [Introduction](#page-2-0)

- 2 [Hypervelocity facilities](#page-4-0)
- [Shock tube theory](#page-7-0)
- [Performance design](#page-15-0)
- 5 [Trigger system](#page-27-0)
- **[Achievements](#page-30-0)**

Context

- 50 years of planetary landings
- Mission to asteroids, comets and planetary sample return imply high speed Earth reentries (up to 13 km/s)
- US National Research Council "Vision and Voyages for Planetary Science in the Decade 2013-2022" identified probes to Uranus and Saturn as high priorities
- Europe priority is Mars exploration and also renewed interest in Gas Giants

Figure 1: Artists rendition of the Galileo Probe's entry into Jupiter [\[1\]](#page-32-1)

2 [Hypervelocity facilities](#page-4-0)

[Shock tube theory](#page-7-0)

[Performance design](#page-15-0)

5 [Trigger system](#page-27-0)

World outlook

Figure 2: World outlook of hypersonic facilities.

Diana Luís (IST) [Performance design](#page-0-0) September 25, 2018 6/28

ESTHER shock tube

• Support planetary exploration missions, by studying high-speed radiative and chemical processes kinetics relevant to planetary entries

Figure 3: Schematic view of ESTHER shock tube.

[Introduction](#page-2-0)

- 2 [Hypervelocity facilities](#page-4-0)
- 3 [Shock tube theory](#page-7-0)
	- [Performance design](#page-15-0)
	- 5 [Trigger system](#page-27-0)
	- **[Achievements](#page-30-0)**

Ideal shock tube theory

• The simplest shock tube consists of two sections separated by a single diaphragm

Ideal shock tube theory

• The simplest shock tube consists of two sections separated by a single diaphragm

The gas expands towards the working section, causing a normal shock wave

Figure 4: Flow diaphragm of a constant area ratio shock tube [not at scale].

- \bullet The shock wave propagates to the left with velocity u_s , increasing the pressure behind it (region 2) and induces a mass motion with velocity u_2
- Simultaneously, the expansion waves move into the high pressure section

$$
\frac{p_4}{p_1} = \frac{p_2}{p_1} \left\{ 1 - \frac{(\gamma_4 - 1) \left(\frac{a_1}{a_4}\right) \left(\frac{p_2}{p_1} - 1\right)}{\sqrt{2\gamma_1 \left[2\gamma_1 + (\gamma_1 + 1) \left(\frac{p_2}{p_1} - 1\right)\right]}} \right\}^{-\frac{2\gamma_4}{\gamma_4 - 1}}
$$
(1)

Design enhancement

A simple shock tube cannot generate shock with extremely high Mach numbers and, in consequence, the gas temperature attainable in such a tube is low.

Design enhancement

A simple shock tube cannot generate shock with extremely high Mach numbers and, in consequence, the gas temperature attainable in such a tube is low.

Single diaphragm with variable area shock tube

Cross-section area reduction at the diaphragm is equivalent to an increase of the driver gas temperature

Figure 5: Flow diagram of shock tube with convergent geometry [not at scale].

Design enhancement

A simple shock tube cannot generate shock with extremely high Mach numbers and, in consequence, the gas temperature attainable in such a tube is low.

Single diaphragm with variable area shock tube

Cross-section area reduction at the diaphragm is equivalent to an increase of the driver gas temperature

Double diaphragm shock tube at scale].

Figure 6: Flow diagram of a double shock tube with cross-section area reductions [not to scalel.
Diana Luís (IST)

 $\overline{u_2}$ u_s

Figure 5: Flow diagram of shock tube with convergent geometry [not

Disturbance effects

Wall boundary layer and wall drag effects

- The presence of a wall boundary layer removes mass from region 2, causing the shock to decelerate and the contact surface to accelerate, decreasing the effective test time
- Milne [\[2\]](#page-32-2) developed a theory to estimate the effects of the shock-boundary layer interaction by adding a source term to the ideal case

Figure 7: Disturbance effects.

Blast wave formation

For sufficiently long working sections, the wave structure evolves into a shape resembling an air blast wave

Figure 8: Blast wave formation [not to scale].

[Introduction](#page-2-0)

- 2 [Hypervelocity facilities](#page-4-0)
- [Shock tube theory](#page-7-0)
- 4 [Performance design](#page-15-0)
	- 5 [Trigger system](#page-27-0)

[Achievements](#page-30-0)

Table 1: Initial properties considered.

Test gases

J.

- Earth: 78% N_2 , 21% O_2 and 1% Ar
- Mars (and Venus): 95.7% CO₂, 2.7% N₂ and 1.6% Ar
- Titan: 98.5% N₂ and 1.55% CH₄
- Gas Giants: 90% H₂ and 10% He

Area ratio gains

Figure 9: Effect of area ratio on shock speed.

Diana Luís (IST) [Performance design](#page-0-0) September 25, 2018 15/28

Area ratio gains

Figure 10: Effect of area ratio on shock speed.

Diana Luís (IST) [Performance design](#page-0-0) September 25, 2018 16/28

Intermediate pressure optimization

Figure 11: Effect of intermediate pressure.

Performance estimates

ESTHER envelope performance

Figure 12: ESTHER shock tube envelope performance for different planetary atmospheres.

Performance estimates

Double diaphragm configuration

- Conditions for driver, intermediate and working sections:
	- Minimum speed: 100 bar, 100 Pa and 100 Pa
	- Maximum speed: 600 bar, optimal and 10 Pa

 \sim

Table 2: Extreme speeds expected.

 λ

Gas substitutions

• Stalker and Edward [\[3\]](#page-32-3) proposed increasing the molar percentage of helium above the true atmospheric composition, or substituting it with neon

Gas substitutions

• Stalker and Edward [\[3\]](#page-32-3) proposed increasing the molar percentage of helium above the true atmospheric composition, or substituting it with neon

(b) Post-shock temperature.

Figure 13: Effects of helium and neon diluent.

Diana Luís (IST) [Performance design](#page-0-0) September 25, 2018 20 / 28

Test times

- Test times between 3 μ s and 30 μ s
- Worst estimated test times correspond to Gas Giants' atmosphere

Test times

- Test times between 3 μ s and 30 μ s
- Worst estimated test times correspond to Gas Giants' atmosphere

Wall loss velocities

- Independent of the shock tube configuration, driver pressure and test gas
- Wall losses between 30 m/s and 50 m/s
- Exception observed for Gas Giants with wall losses between 57 m/s and 200 m/s

Blast wave formation

- Blast wave predicted to form almost 800 m and 150 m after the first diaphragm (single and double diaphragm configurations)
- Confirmed by the characteristic method implemented

Figure 14: Wave diaphragm for ESTHER in double diaphragm configuration.

[Introduction](#page-2-0)

- 2 [Hypervelocity facilities](#page-4-0)
- [Shock tube theory](#page-7-0)
- [Performance design](#page-15-0)
- 5 [Trigger system](#page-27-0)

Trigger generation

Heaviside signal

- Input signal: heaviside signals
- Output signal: response to a Butterworth second order filter

Figure 15: Simulation with a heaviside signal.

Trigger generation

Representative signal

To more accurately study and predict the behaviour of the trigger system, a representative signal from the X2 expansion tube was extracted from James et al. [\[4\]](#page-32-4)

[Introduction](#page-2-0)

- 2 [Hypervelocity facilities](#page-4-0)
- [Shock tube theory](#page-7-0)
- [Performance design](#page-15-0)
- 5 [Trigger system](#page-27-0)

- Performance optimization:
	- High speed: areas and intermediate pressure
	- Low speed: intermediate pressure
- ESTHER compliant for:
	- Earth, Venus, Titan high speed entries
	- Mars high and low speed entries
	- Gas Giants with H_2/He or H_2/Ne substitutions
- Non ideal effects:
	- Mirels' theory: very small test times $(10^{-6} 10^{-5} s)$
	- Milne drag effects negligible $(< 50 \text{ m/s}, \text{except for Gas Giant} < 200$ m/s)
	- No risk of blast wave formation (two theories cross-checked)
- Improved trigger system design, accurate up to 18 km/s

Bibliography I

- National Aeronautics and Space Administration. <https://apod.nasa.gov/apod/ap951208.html>, Accessed on September 23, 2018.
- 譶 A. Milne, "Wall effects in a 1D shock tube." Private communication, July 2017.
	- R. J. Stalker and B. P. Edwards, "Hypersonic blunt-body flowns in hydrogen-neon mixtures," Journal of Spacecraft and Rockets, vol. 35, no. 6, pp. 729–735. <http://doi.org/10.2514/2.3399>.
- 歸 C. M. James, D. E. Gildfind, S. Lewis, R. G. Morgan, and F. Zander, "Implementation of a state-to-state analytical framework for the calculation of expansion tube flow properties," Shock Waves, vol. 28, pp. 349–377, 2018. <http://doi.org/10.1007/s00193-017-0763-3>.