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Context 1ff MG

50 years of planetary landings

Mission to asteroids, comets and planetary sample return imply
high speed Earth reentries (up to 13 km/s)

e US National Research Council ”Vision and Voyages for Planetary
Science in the Decade 2013-2022” identified probes to Uranus and
Saturn as high priorities

Europe priority is Mars exploration and also renewed interest in
Gas Giants

Figure 1: Artists rendition of the Galileo Probe’s entry into Jupiter [1]
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World outlook i Y
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Figure 2: World outlook of hypersonic facilities.
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ESTHER shock tube 1ff MG

o New kinetic shock tube being developed by international
consortium led by IST.

@ Support planetary exploration missions, by studying high-speed
radiative and chemical processes kinetics relevant to planetary
entries

pressure gauge

Diaphragm

Figure 3: Schematic view of ESTHER shock tube.
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Ideal shock tube theory

@ The simplest shock tube
consists of two sections Driver section
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Ideal shock tube theory 1ff MG

@ The simplest shock tube

consists of two sections Driver section Working section
separated by a single ’ @ ‘ 0 ‘
diaphragm

o The gas expands towards the ’ © ﬂHH i © i?@ RO, ‘

WOI"kiIlg section, causing a Figure 4: Flow diaphragm of a constant
normal shock wave area ratio shock tube [not at scale].

o The shock wave propagates to the left with velocity us, increasing
the pressure behind it (region 2) and induces a mass motion with
velocity ug

e Simultaneously, the expansion waves move into the high pressure
section
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Design enhancement 1ff MG
A simple shock tube cannot generate shock with extremely high Mach

numbers and, in consequence, the gas temperature attainable in such a
tube is low.
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Design enhancement 1ff MG

A simple shock tube cannot generate shock with extremely high Mach

numbers and, in consequence, the gas temperature attainable in such a
tube is low.

Single diaphragm with variable area shock tube
©2 Us
diaphragm is equivalent to an increase 1 ”m - |
of the driver gas temperature -

Figure 5: Flow diagram of shock

tube with convergent geometry [not
at scale].

o Cross-section area reduction at the @H}
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Design enhancement, 1ff MG

A simple shock tube cannot generate shock with extremely high Mach
numbers and, in consequence, the gas temperature attainable in such a
tube is low.

Single diaphragm with variable area shock tube

u2 Us
H —
I

Figure 5: Flow diagram of shock
tube with convergent geometry [not

Double diaphragm shock tube at scale].
e An intermediate section allows the main shock wave to be
produced from a primary shock wave, reaching higher velocities

o Cross-section area reduction at the
diaphragm is equivalent to an increase
of the driver gas temperature
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Figure 6: Flow diagram of a double shock tube with cross-section area reductions [not to

scale].
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Disturbance effects 1ff MG

Wall boundary layer and wall drag effects
@ The presence of a wall boundary layer removes mass from region 2,
causing the shock to decelerate and the contact surface to
accelerate, decreasing the effective test time
e Milne [2] developed a theory to estimate the effects of the
shock-boundary layer interaction by adding a source term to the
ideal case
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(a) Boundary layer development [not to scale]. (b) Wall drag effects [not to scale].

Figure 7: Disturbance effects.
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Disturbance effects 1ff MG

Blast wave formation

e For sufficiently long working sections, the wave structure evolves
into a shape resembling an air blast wave

x-t diagram

short driver I

long driver I

Figure 8: Blast wave formation [not to scale].
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Aerodynamic design 1ff M

Table 1: Initial properties considered.

Section
Driver \ Intermediate
Temperature (in K) 2800 300
Specific heats ratio 1.56 1.667
Molar mass (in g/mol) 7.1 4.0
Gas composition 7:2:1 He:H9:09 Ideal

Test gases
o Earth: 78% Na, 21% O and 1% Ar
e Mars (and Venus): 95.7% COa, 2.7% N and 1.6% Ar
o Titan: 98.5% Na and 1.55% CHy
o Gas Giants: 90% Hs and 10% He
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Aerodynamic design 1ff MG

Area ratio gains

Optimal area ratio - single diaphragm
Driver conditions: 600 bar, 2800 K
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Figure 9: Effect of area ratio on shock speed.
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Aerodynamic design 1ff MG
Area ratio gains

Optimal area ratio

Driver conditions: 600 bar, 2800 K
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Figure 10: Effect of area ratio on shock speed.
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Aerodynamic design 1ff MG
Intermediate pressure optimization

Optimal intermediate pressure

Driver conditions: 600 bar, 2800 K
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Figure 11: Effect of intermediate pressure.

Performance design September 25, 2018 17 /28



Performance estimates 1ff MG

ESTHER envelope performance

ESTHER - Envelopes performance
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Figure 12:

ESTHER shock tube envelope performance for different planetary atmospheres.
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Performance estimates 1ff MG

Double diaphragm configuration
e Conditions for driver, intermediate and working sections:

e Minimum speed: 100 bar, 100 Pa and 100 Pa
o Maximum speed: 600 bar, optimal and 10 Pa

Table 2: Extreme speeds expected.

Minimum shock | Maximum shock

Atmosphere speed (km/s) specd (lm)s)
(78% N2,E2)?91’;tc})12, 1% Ar) 5.37 14.44
057 o A0 VRS s 4.60 13.85
(98.5% gzi,t??% CHy) 5.44 14.50
s, Clants 10.61 18.36
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Gas substitutions 1ff MG

e Stalker and Edward [3] proposed increasing the molar percentage
of helium above the true atmospheric composition, or substituting
it with neon
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Gas substitutions 1ff MG

e Stalker and Edward [3] proposed increasing the molar percentage
of helium above the true atmospheric composition, or substituting
it with neon

Effect of diluent fraction Effect of diluent fraction
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Figure 13: Effects of helium and neon diluent.
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Disturbance effects 1ff MG

Test times
o Test times between 3 us and 30 us

o Worst estimated test times correspond to Gas Giants’ atmosphere
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Disturbance effects 1ff MG

Test times
o Test times between 3 us and 30 us

o Worst estimated test times correspond to Gas Giants’ atmosphere

Wall loss velocities

o Independent of the shock tube configuration, driver pressure and
test gas

e Wall losses between 30 m/s and 50 m/s

e Exception observed for Gas Giants with wall losses between 57
m/s and 200 m/s
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Disturbance effects 1ff MG

Blast wave formation

e Blast wave predicted to form almost 800 m and 150 m after the
first diaphragm (single and double diaphragm configurations)
o Confirmed by the characteristic method implemented

Wave diagram 7 ¢
AufA = 23668, A5/ A, = 2.6406

Figure 14: Wave diaphragm for ESTHER in double diaphragm configuration.
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Trigger generation 1ff M

Heaviside signal
e Input signal: heaviside signals
e Output signal: response to a Butterworth second order filter

Section 7 Pressures v=10km/s
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Figure 15: Simulation with a heaviside signal.
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LISBOA

Trigger generation W TECNICO

Representative signal

@ To more accurately study and predict the behaviour of the trigger
system, a representative signal from the X2 expansion tube was
extracted from James et al. [4]

Pressures Pressures
w, = 0.0005; f, =125 MS/s

w, = 0.001; f, =125 MS/s
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Figure 16: Filtered signal pressures.
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Achievements 1ff MG

Performance optimization:

e High speed: areas and intermediate pressure
e Low speed: intermediate pressure

ESTHER compliant for:

e Earth, Venus, Titan high speed entries
e Mars high and low speed entries
o Gas Giants with Hy/He or Hy/Ne substitutions

Non ideal effects:

o Mirels’ theory: very small test times (107¢ — 10~°s)
o Milne drag effects negligible (< 50 m/s, except for Gas Giant < 200

m/s)

o No risk of blast wave formation (two theories cross-checked)

e Improved trigger system design, accurate up to 18 km/s
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