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Instituto Superior Técnico
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Context

50 years of planetary landings
Mission to asteroids, comets and planetary sample return imply
high speed Earth reentries (up to 13 km/s)
US National Research Council ”Vision and Voyages for Planetary
Science in the Decade 2013-2022” identified probes to Uranus and
Saturn as high priorities
Europe priority is Mars exploration and also renewed interest in
Gas Giants

Figure 1: Artists rendition of the Galileo Probe’s entry into Jupiter [1]
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World outlook
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Figure 2: World outlook of hypersonic facilities.

Diana Lúıs (IST) Performance design September 25, 2018 6 / 28



ESTHER shock tube

New kinetic shock tube being developed by international
consortium led by IST.

Support planetary exploration missions, by studying high-speed
radiative and chemical processes kinetics relevant to planetary
entries

Combustion-driver
Compression tube Shock tube

Test section

Dump tank

pressure gauge

DiaphragmIsometric view

Scale: 1:20

Figure 3: Schematic view of ESTHER shock tube.
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Ideal shock tube theory

The simplest shock tube
consists of two sections
separated by a single
diaphragm

4 1

Driver section Working section

The gas expands towards the
working section, causing a
normal shock wave

u2 us
4 3 2 1

Figure 4: Flow diaphragm of a constant
area ratio shock tube [not at scale].

The shock wave propagates to the left with velocity us, increasing
the pressure behind it (region 2) and induces a mass motion with
velocity u2

Simultaneously, the expansion waves move into the high pressure
section
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Design enhancement

A simple shock tube cannot generate shock with extremely high Mach
numbers and, in consequence, the gas temperature attainable in such a
tube is low.

Single diaphragm with variable area shock tube

Cross-section area reduction at the
diaphragm is equivalent to an increase
of the driver gas temperature

u2 us

Figure 5: Flow diagram of shock
tube with convergent geometry [not
at scale].Double diaphragm shock tube

An intermediate section allows the main shock wave to be
produced from a primary shock wave, reaching higher velocities

u6 us7 u5 u2 us1

Figure 6: Flow diagram of a double shock tube with cross-section area reductions [not to
scale].
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Disturbance effects

Wall boundary layer and wall drag effects

The presence of a wall boundary layer removes mass from region 2,
causing the shock to decelerate and the contact surface to
accelerate, decreasing the effective test time
Milne [2] developed a theory to estimate the effects of the
shock-boundary layer interaction by adding a source term to the
ideal case
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(a) Boundary layer development [not to scale].
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(b) Wall drag effects [not to scale].

Figure 7: Disturbance effects.
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Disturbance effects

Blast wave formation

For sufficiently long working sections, the wave structure evolves
into a shape resembling an air blast wave

short driver

long driver

x-t diagram

Figure 8: Blast wave formation [not to scale].
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Aerodynamic design

Table 1: Initial properties considered.

Section
Driver Intermediate

Temperature (in K) 2800 300

Specific heats ratio 1.56 1.667

Molar mass (in g/mol) 7.1 4.0

Gas composition 7:2:1 He:H2:O2 Ideal

Test gases

Earth: 78% N2, 21% O2 and 1% Ar

Mars (and Venus): 95.7% CO2, 2.7% N2 and 1.6% Ar

Titan: 98.5% N2 and 1.55% CH4

Gas Giants: 90% H2 and 10% He
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Aerodynamic design

Area ratio gains
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Figure 9: Effect of area ratio on shock speed.
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Aerodynamic design
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Figure 10: Effect of area ratio on shock speed.
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Aerodynamic design

Intermediate pressure optimization
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Figure 11: Effect of intermediate pressure.
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Performance estimates

ESTHER envelope performance
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Figure 12: ESTHER shock tube envelope performance for different planetary atmospheres.
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Performance estimates

Double diaphragm configuration

Conditions for driver, intermediate and working sections:

Minimum speed: 100 bar, 100 Pa and 100 Pa
Maximum speed: 600 bar, optimal and 10 Pa

Table 2: Extreme speeds expected.

Atmosphere
Minimum shock

speed (km/s)
Maximum shock

speed (km/s)

Earth
(78% N2, 21% O2, 1% Ar)

5.37 14.44

Mars and Venus
(95.7% CO2, 2.7% N2, 1.6% Ar)

4.60 13.85

Titan
(98.5% N2, 1.5% CH4)

5.44 14.50

Gas Giants
(90% H2, 10% He)

10.61 18.36
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Gas substitutions

Stalker and Edward [3] proposed increasing the molar percentage
of helium above the true atmospheric composition, or substituting
it with neon
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(a) Normalized performance variables.
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Figure 13: Effects of helium and neon diluent.
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Disturbance effects

Test times

Test times between 3 µs and 30 µs

Worst estimated test times correspond to Gas Giants’ atmosphere

Wall loss velocities

Independent of the shock tube configuration, driver pressure and
test gas

Wall losses between 30 m/s and 50 m/s

Exception observed for Gas Giants with wall losses between 57
m/s and 200 m/s
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Disturbance effects

Blast wave formation

Blast wave predicted to form almost 800 m and 150 m after the
first diaphragm (single and double diaphragm configurations)

Confirmed by the characteristic method implemented

Figure 14: Wave diaphragm for ESTHER in double diaphragm configuration.
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Trigger generation

Heaviside signal

Input signal: heaviside signals
Output signal: response to a Butterworth second order filter

Figure 15: Simulation with a heaviside signal.
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Trigger generation

Representative signal

To more accurately study and predict the behaviour of the trigger
system, a representative signal from the X2 expansion tube was
extracted from James et al. [4]

1500 1550 1600 1650 1700 1750 1800 1850 1900
-2

0

2

4

6

8

10

12

1546 1550 1554 1558 1562
-2

0

2

4

6

8

10

(a) ωn = 0.0005

1500 1550 1600 1650 1700 1750 1800 1850 1900
-4

-2

0

2

4

6

8

10

12

1546 1550 1554 1558 1562
-2
0
2
4
6
8

10

(b) ωn = 0.001

Figure 16: Filtered signal pressures.
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Achievements

Performance optimization:

High speed: areas and intermediate pressure
Low speed: intermediate pressure

ESTHER compliant for:

Earth, Venus, Titan high speed entries
Mars high and low speed entries
Gas Giants with H2/He or H2/Ne substitutions

Non ideal effects:

Mirels’ theory: very small test times (10−6 − 10−5s)
Milne drag effects negligible (< 50 m/s, except for Gas Giant < 200
m/s)
No risk of blast wave formation (two theories cross-checked)

Improved trigger system design, accurate up to 18 km/s
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