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Resumo

As condições de não-equiĺıbrio térmico, qúımico e radiativo que se obtêm ao sujeitar-se um gás de N2 puro

a uma forte onda de choque foram quantificadas usando modelos estado-para-estado espećıficos quanto

aos ńıveis de energia vibrónica. O modelo do Oscilador Harmónico Forçado (FHO) foi implementado no

cálculo de taxas de transição vibracional e dissociação de N2 e N +
2 por impacto com espécies pesadas.

Taxas de dissociação termal de N2(X
1Σ+

g ) por impacto com N2 e N foram obtidas e comparadas com os

mais recentes resultados experimentais, mostrando uma concordância entre −59.9 e 8.9 %, e entre −80.9

e −36.1 % para os dois casos, respetivamente. Constatou-se impraticável uma extensão dos modelos de

Landau-Zener e Rosen-Zener-Demkov para transições vibrónicas de part́ıculas moleculares por impacto

com espécies pesadas, preferindo-se uma lei do tipo “exponencial de hiato energético”. Ajustando-se a

curva que representa esta lei aos valores obtidos experimentalmente para as taxas de várias transições

vibrónicas de N2, foram obtidas discrepâncias de até uma ordem de grandeza, revelando alguma ineficácia

do modelo. Os disparos 19, 20 e 40 da campanha nº 62 do Tubo de Choque de Arco Eléctrico em

Ames (EAST), foram simulados numericamente usando o código SPARK. Constatou-se que os valores

de pico da intensidade radiativa obtidos através de uma simulação de escoamento unidimensional do

tipo Euler corresponderam entre o dobro e o quintúplo daqueles obtidos através de uma simulação de

relaxação temporal, mostrando-se inválida a hipótese de transferência de momento ser negligenciável

(sendo esta considerada na última). Os valores obtidos experimentalmente para as variáveis que descrevem

a radiação foram subestimados por uma a duas ordens de grandeza. Testes de sensibilidade quanto às

taxas cinéticas simuladas mostraram ser ineficazes na obtenção de uma concordância razoável entre os

resultados numéricos e os experimentais. As simulações permitiram descrever corretamente a forma

dos perfis de intensidade radiativa obtidos no disparo de reduzida velocidade, mas não a dos obtidos

nos de moderada e elevada velocidades, pois estes revelaram patamares procedendo ou coalescendo com

picos que não foram reproduzidos numericamente. Encontrou-se uma forte evidência das discrepâncias

terem resultado da não modelação da transferência de calor por radiação no interior do gás-teste, e

possivelmente, entre o gás de alta pressão (assim como o arco eléctrico do tubo de choque) e o gás-teste.

Palavras-chave: Entrada atmosférica, Aerotermodinâmica, Plasma de azoto, Estado-para-

estado, Radiação, Tubo de choque
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Abstract

The conditions of thermal, chemical and radiative non-equilibrium attained in a pure N2 gas subjected to

a strong shock wave were quantified using vibronic-specific state-to-state models. The Forced-Harmonic-

Oscillator model (FHO) was employed in the computation of rate coefficients for vibrational transition and

dissociation of N2 and N +
2 by heavy particle impact. Thermal dissociation rate coefficients of N2(X

1Σ+
g )

by collisions with N2 and N were obtained and compared with state-of-the-art experimental results,

showing an agreeability between −59.9 and 8.9 %, and between −80.9 and −36.1 % for the former and

latter interactions, respectively. An extension of the Landau-Zener and Rosen-Zener-Demkov models

to vibronic transitions of molecular particles by heavy particle impact was found to be impractical,

and an exponential gap law was ultimately preferred. By fitting the curve that represents the law to

experimentally obtained values for rate coefficients values of several vibronic transitions of N2 reported in

the literature, discrepancies of as much as one order magnitude were obtained, showing some crudeness

of the model. Shots 19, 20 and 40 of the test 62 of the Ames Electric Arc Shock Tube (EAST) were

simulated using the SPARK code. The peak values of radiative intensity obtained from a Euler one-

dimensional simulation were found to be between the double and the quintuple of the ones obtained from

a zero-dimensional simulation, showing the hypothesis of the momentum transfer being negligible (which

is taken by the latter) to be invalid. The experimental radiation variables were underestimated by one

to two orders of magnitude, and sensibility tests performed on the rate coefficients weren’t successful in

getting a reasonable agreeability. The shape of the radiative intensities profiles of the low speed shot

was correctly predicted, but not the ones of the medium and high speed shots which revealed non-null

plateaus proceeding or coalescing with peaks. These plateaus weren’t predicted at all. Strong evidence

was found for such discrepancies resulting from the non-modelling of heat transfer by radiation within

the test gas, and possibly, between the driver gas (as well as the driver arc of the shock tube) and the

test gas.

Keywords: Atmospheric entry, Aerothermodynamics, Nitrogen plasma, State-to-state, Radiation,

Shock tube
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(solid black lines), ΛVUV = 0.1 (solid blue lines), and ΛVUV = 0.01 (solid red lines), as

well as the respective experimental instrumentally resolved radiative intensities ÎBlue,exp(x)
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λ (x), obtained with ΛVUV =

1 (solid black lines), ΛVUV = 0.1 (solid blue lines), and ΛVUV = 0.01 (solid red lines),

as well as the respective experimental instrumentally resolved non-equilibrium metrics
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λ (x), obtained with ΛVUV =

0.01, and unscaled dissociation of N2(X
1Σ+

g ) (solid black lines), and scaled by 0.1 (solid

green lines), and by 10 (solid blue lines), as well as the respective experimental instrumentally

resolved non-equilibrium metrics Î ne,Red,exp
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0.01, and unscaled excitation of N (solid black lines), and scaled by 10 (solid blue lines),

and by 100 (solid red lines), as well as the respective experimental instrumentally resolved
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Nomenclature

Physical constants

Å Angstrom. 1× 10−10 m

a0 Bohr radius. ε0h
2/(πmee2) = 0.529 177 210 67× 10−10 m

atm Standard atmosphere. 101 325 Pa

c Speed of light. 299 792 458 m/s

“cm−1” Reciprocal “centimeter”. cm−1 · (h · c) = 1.986 445 824× 10−23 J

e Elementary charge. 1.602 176 620 8× 10−19 C

h Plank constant. 6.626 070 040× 10−34 J·s

~ Reduced Plank constant. h/(2π) = 1.054 571 800× 10−34 J·s

kB Boltzmann constant. 1.380 648 52× 10−23 J/K

me Electron mass. 9.109 383 56× 10−31 kg

NA Avogadro constant. (g/u) ·mol−1 = 6.022 140 857× 1023 mol−1

Ry Rydberg unit of energy. mee4/(8ε2
0h

2) = 2.179 872 325× 10−18 J

R Molar gas constant. kBNA = 8.314 459 8 J/(mol ·K)

Torr Torricelli unit of pressure. 1/760 atm= 133.322 368 4 Pa

u Atomic mass unit. 1.660 539 040× 10−27 kg

ε0 Vacuum permittivity. 8.854 187 817× 10−12 F/m

π Pi number. 3.141 592 653 589 793 ...

Roman symbols

A Chemical symbol of the first collision partner (regarding binary collisions); or nucleus A (regarding

the FHO model).

AB Molecular particle AB (regarding the FHO model).
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A Pre-exponential factor of the repulsive exponential potential (regarding the FHO model); or

pre-exponential factor considered considered on the model for H12 (regarding the Rosen-Zener-

Demkov model).

Ae
′,v′

s,e,v Level-specific Einstein coefficient associated to spontaneous emission.

a Mixture speed of sound; or value of H12 at the pseudo-crossing or crossing point (regarding the

Landau-Zener model).

an n-Th coefficient of the expansion of the electronic wave function Φ with respect to the adiabatic

basis {φn} (regarding the semiclassical approximation).

a1 First coefficient of the expansion of the electronic wave function Φ with respect to the adiabatic

basis {φ1, φ2} (regarding the two-states approximation).

a2 Second coefficient of the expansion of the electronic wave function Φ with respect to the adiabatic

basis {φ1, φ2} (regarding the two-states approximation).

B Chemical symbol of the second collision partner (regarding binary collisions); or nucleus B

(regarding the FHO model).

Bv Spectroscopic rotational function associated to the v-th vibrational and e-th electronic levels.

Be Spectroscopic rotational constant associated to the e-th electronic level.

Be
′,v′

s,e,v Level-specific Einstein coefficient associated to induced emission, if Te′v′ < Tev or absorption if

Te′v′ > Tev.

bn n-Th coefficient of the expansion of the electronic wave function Φ with respect to the diabatic

basis {φ0
n} (regarding the semiclassical approximation).

b1 First coefficient of the expansion of the electronic wave function Φ with respect to the diabatic

basis {φ0
1, φ

0
2} (regarding the two-states approximation).

b2 Second coefficient of the expansion of the electronic wave function Φ with respect to the diabatic

basis {φ0
1, φ

0
2} (regarding the two-states approximation).

C Nucleus C (regarding the FHO model).

CD Molecular particle CD (regarding the FHO model).

CV Mixture specific heat at constant volume.

CV,s s-Th species specific heat at constant volume.

CV,s,i s-Th species specific heat at constant volume associated to the i-th energy mode.

Cp Mixture specific heat at constant pressure.

Cp,s s-Th species specific heat at constant pressure.

xxviii



Cp,s,i s-Th species specific heat at constant pressure associated to the i-th energy mode.

C
(n)
kj V-V-T transition probability parameter: (k, j)-th entry of the transformation matrix considered

in the V-V-T transitions probabilities (regarding the FHO model).

Ĉnm Coupling operator with respect to the n-th andm-th adiabatic electronic wave functions (regarding

the adiabatic approximation).

cs Mass fraction of the s-th species.

cnm m-Th coefficient of the expansion of the n-th adiabatic wave function φn with respect to the

diabatic basis {φ0
m} (regarding the semiclassical approximation).

c11 First coefficient of the expansion of the first adiabatic wave function φ1 with respect to the diabatic

basis {φ0
1, φ

0
2} (regarding the two-states approximation).

c12 Second coefficient of the expansion of the first adiabatic wave function φ1 with respect to the

diabatic basis {φ0
1, φ

0
2} (regarding the two-states approximation).

c21 First coefficient of the expansion of the second adiabatic wave function φ2 with respect to the

diabatic basis {φ0
1, φ

0
2} (regarding the two-states approximation).

c22 Second coefficient of the expansion of the second adiabatic wave function φ2 with respect to the

diabatic basis {φ0
1, φ

0
2} (regarding the two-states approximation).

D Nucleus D (regarding the FHO model).

Da Damköhler number.

D0 Dissociation energy.

De Potential well depth.

dAB Distance between the centres of two collision partners when in contact with each other (regarding

the billiard balls model).

dtri Base length of the triangular function.

drect Base length of the rectangular function.

dtrap,1 Lower base length of the trapezoidal function.

dtrap,2 Upper base length of the trapezoidal function.

E Relative kinetic energy (regarding binary collisions); or energy of the system (regarding the

adiabatic approximation).

Ea Activation energy.

E′ Energy of the system relatively to its centre of mass (regarding the adiabatic approximation).
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E′′ Energy of the system relatively to its centre of mass disregarding the centrifugal energy (regarding

the Landau-Zener and the Rosen-Zener-Demkov models).

E0 Initial relative kinetic energy of the collision partners (regarding the FHO model); or arithmetic

mean of the asymptotic values of U1 and U2 (regarding the Rosen-Zener-Demkov model); or

characteristic energy (regarding the energy gap law).

EM Morse potential well (regarding the FHO model).

En n-Th eigenenergy of the quantum free harmonic oscillator (regarding the FHO model).

e e-Th electronic energy level; or initial electronic level; or higher electronic level; or mass-specific

internal energy of the flow associated to the mixture.

e′ Final electronic level; or lower electronic level.

e† e†-Th electronic level which regards fine structure.

es Mass-specific internal energy of the flow associated to the s-th species.

es,tr Contribution of the translation energy mode to the mass-specific internal energy of the flow

associated to the s-th species.

es,trh
Contribution of the heavy particle translation energy mode to the mass-specific internal energy

of the flow associated to the s-th species.

es,tre Contribution of the free electron translation energy mode to the mass-specific internal energy of

the flow associated to the s-th species.

es,rot Contribution of the rotational energy mode to the mass-specific internal energy of the flow

associated to the s-th species.

es,vib Contribution of the vibrational energy mode to the mass-specific internal energy of the flow

associated to the s-th species.

es,el Contribution of the electronic energy mode to the mass-specific internal energy of the flow

associated to the s-th species.

es,0 Contribution of the ground level energy to the mass-specific internal energy of the flow associated

to the s-th species.

es,0h
Contribution of the ground level heavy particle energy to the mass-specific internal energy of the

flow associated to the s-th species.

es,0e Contribution of the ground level free electron energy to the mass-specific internal energy of the

flow associated to the s-th species.

F1 Slope of H11 at the pseudo-crossing or crossing point (regarding the Landau-Zener model).
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F2 Slope of H22 at the pseudo-crossing or crossing point (regarding the Landau-Zener model).

FvJ Particle rotational energy associated to the v-th vibrational, J-th rotational and e-th electronic

levels.

f Distribution of relative speeds (regarding binary collisions); or force constant of the quantum

harmonic oscillator that represents the molecular particle (regarding the FHO model).

f̃ Normalised distribution of relative speeds (regarding binary collisions).

fs Mass-specific Helmholtz free energy associated to the mixture.

~fs Mass-specific external body force vector applied to the s-th species particles.

G Gaussian function.

Gv Particle vibrational energy associated to the v-th vibrational and e-th electronic levels.

g Degree of degeneracy of the energy level.

gs Mass-specific Gibbs free energy associated to the s-th species.

gs,ref Mass-specific Gibbs free energy associated to s-th species, at a partial pressure ps = pref.

Hn n-Th order physicists’ Hermite polynomial (regarding the FHO model).

Hn n-Th eigenfunction of the quantum free harmonic oscillator (regarding the FHO model).

Ĥ Global Hamiltonian operator (regarding the adiabatic approximation).

Ĥe Electronic Hamiltonian operator (regarding the adiabatic approximation).

Ĥ0
e Diabatic Hamiltonian operator (regarding the semiclassical approximation).

Hnm (n,m)-Th entry of the electronic Hamiltonian matrix written with respect to the diabatic basis

{φ0} (regarding the semiclassical approximation).

H11 (1, 1)-Th entry of the electronic Hamiltonian matrix written with respect to the diabatic basis

{φ0
1, φ

0
2} (regarding the two-states approximation).

H12 (1, 2)-Th entry of the electronic Hamiltonian matrix written with respect to the diabatic basis

{φ0
1, φ

0
2} (regarding the two-states approximation).

H21 (2, 1)-Th entry of the electronic Hamiltonian matrix written with respect to the diabatic basis

{φ0
1, φ

0
2} (regarding the two-states approximation).

H22 (2, 2)-Th entry of the electronic Hamiltonian matrix written with respect to the diabatic basis

{φ0
1, φ

0
2} (regarding the two-states approximation).

h0 Mass-specific stagnation enthalpy associated to the mixture.

hs Mass-specific enthalpy associated to the s-th species.
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Iλ Specific radiant intensity.

Î Instrumentally resolved radiative intensity.

Îλ Instrumentally resolved specific radiative intensity.

Îne
λ instrumentally resolved non-equilibrium metric.

J Rotational quantum number.

~Js s-Th species mass diffusion flux vector.

jλ Emission coefficient.

Kn Knudsen number.

Kc Concentration-wise equilibrium constant.

k Rate coefficient; mixture thermal conductivity coefficient.

kλ Absorption coefficient.

ki i-Th thermal conductivity coefficient.

kf Forward process rate coefficient.

kb Backward process rate coefficient.

k
v′1,v

′
2

v1,v2 V-V-T rate coefficient associated to a transition from the vibrational quantum numbers v1 and

v2 to v′1 and v′2 (regarding the FHO model).

kv
′

v V-T rate coefficient associated to a transition from the vibrational quantum number v to v′;

or V-V-T rate coefficient associated to a transition of a molecular particle from the vibrational

quantum number v to v′ which accounts all possible transitions of the other molecular particle

(regarding the FHO model).

kDv V-D rate coefficient associated to dissociation from the vibrational quantum number v; or V-D

rate coefficient associated to dissociation of a molecular particle from the vibrational quantum

number v which accounts all possible transitions of the other molecular particle (regarding the

FHO model).

L Lorentzian function.

l̂2 Squared angular momentum operator (regarding the adiabatic approximation).

M Chemical symbol of a collision partner (regarding binary collisions).

Ma Mach number.

M Mass of the mixture particles inside a space in the fluid.

M̃ Sum of the collision partners masses (regarding the FHO model).
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Ms Mass of s-th species particles inside a space in the fluid.

Mi Mass of the i-th nucleus (regarding the adiabatic approximation).

M1 Mass of the first nucleus of the diatomic particle (regarding the adiabatic approximation).

M2 Mass of the second nucleus of the diatomic particle (regarding the adiabatic approximation).

m̃ Reduced mass of the collision partners (regarding the FHO model).

ms Mass of a s-th species particle.

mA Mass of the first collision partner (regarding binary collisions); or mass of nucleus A (regarding

the FHO model).

mB Mass of the second collision partner (regarding binary collisions); or mass of nucleus B (regarding

the FHO model).

mC Mass of nucleus C (regarding the FHO model).

mD Mass of nucleus D (regarding the FHO model).

N Number of particles.

NS Number of species.

NR Number of processes.

NT Number of assigned temperatures.

Ns Number of s-th species particles.

Ns,j Number of s-th species particles in the j-th total energy level.

n Number density of the mixture particles inside a space in the fluid.

ns Number density of s-th species particles inside a space in the fluid.

P Process probability.

P
v′1,v

′
2

v1,v2 V-V-T transition probability from the vibrational quantum numbers v1 and v2 to v′1 and v′2

(regarding the FHO model).

P v
′

v V-T transition probability from the vibrational quantum number v to v′ (regarding the FHO

model).

PDv Dissociation probability from the vibrational quantum number v (regarding the FHO model).

P1,2 Probability of transition from the first electronic adiabatic state to the second electronic adiabatic

state in the approaching motion or in the departing motion of the collision partners (regarding

the Landau-Zener and Rosen-Zener-Demkov models).
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P̄1,2 Probability of transition from the first electronic adiabatic state to the second electronic adiabatic

state in the full motion of the collision partners (regarding the Landau-Zener and Rosen-Zener-

Demkov models).

p Pressure.

pref Reference pressure.

ps s-Th species partial pressure.

Q Partition function.

~q Mixture heat flux vector.

~qs s-Th species heat flux vector.

~qi Contribution of the i-th energy mode to the mixture heat flux vector.

~qc Contribution of conduction to the mixture heat flux vector.

~qc,i Contribution of the i-th energy mode, under the form of conduction, to the mixture heat flux

vector.

~qrad Contribution of radiation to the mixture heat flux vector.

~qrad,i Contribution of the i-th energy mode, under the form of radiation, to the mixture heat flux vector.

Re Reynolds number.

{~R} Set of nuclei position vectors (regarding the adiabatic approximation).

~Ri Position vector of the i-th nucleus (regarding the adiabatic approximation).

~Rj Position vector of the j-th nucleus (regarding the adiabatic approximation).

~R1 Position vector of the first nucleus of the diatomic particle (regarding the adiabatic approximation).

~R2 Position vector of the second nucleus of the diatomic particle (regarding the adiabatic approximation).

~̄R Position vector of the nuclei centre of mass (regarding the adiabatic approximation).

~R Difference between the position vectors of the diatomic particle nuclei ~R2 − ~R1 (regarding the

adiabatic approximation).

R Internuclear distance of the diatomic particle (regarding the adiabatic approximation).

Rp Internuclear distance of the diatomic particle at which a pseudo-crossing of the adiabatic electronic

terms occurs (regarding the Landau-Zener model).

Rc Internuclear distance of the diatomic particle at which a crossing occurs of the adiabatic electronic

terms (regarding the Landau-Zener model).
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Rs Mass-specific gas constant associated to the s-th species.

{~r} Set of electrons position vectors (regarding the adiabatic approximation).

~rα Position vector of the α-th electron (regarding the adiabatic approximation).

~rβ Position vector of the β-th electron (regarding the adiabatic approximation).

rA Radius of the first collision partner (regarding the billiard balls model).

rB Radius of the second collision partner(regarding the billiard balls model).

r Internuclear distance (regarding the RKR method).

re Equilibrium internuclear distance.

rect Rectangular function.

S Quantum number for the total electronic spin of the diatomic molecular particle.

SV-T V-T steric factor (regarding the FHO model) introduced in the transition probability parameter

η0.

SV-V V-V steric factor (regarding the FHO model) introduced in the transition probability parameter

ρ.

ss Mass-specific entropy associated to the s-th species.

T Thermal equilibrium temperature; or temporal wave function (regarding the adiabatic approximation).

Te Particle electronic energy associated to the e-th electronic level.

Tev Particle vibronic energy associated to the e-th electronic and v-th vibrational levels.

TvJ Particle rovibrational energy associated to the v-th vibrational and J-th rotational levels.

TevJ Particle rovibronic energy associated to the e-th electronic, v-th vibrational and J-th rotational

levels.

T0 Stagnation heavy particle translational temperature.

Tw Temperature of the forefront wall of the entry body

Ti i-Th energy mode temperature.

Ttrh
Heavy particle translational temperature.

Trot Rotational temperature.

Tvib Vibrational temperature.

Tel Electronic temperature.
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Ttre
Free electron translational temperature.

Ttrh-rot Heavy particle translational-rotational temperature.

Tel-tre
Electronic-free electron translational temperature.

Tvib-el-tre Vibrational-electronic-free electron translational temperature.

Tc Controlling temperature.

T̂i Kinetic energy operator associated to the i-th nucleus (regarding the adiabatic approximation).

T̂α Kinetic energy operator associated to the α-th electron (regarding the adiabatic approximation).

t Instant of time.

tri Triangular function.

trap Trapezoidal function.

Un n-Th adiabatic electronic term (regarding the adiabatic approximation).

U1 First adiabatic electronic term (regarding the two-states approximation).

U2 Second adiabatic electronic term (regarding the two-states approximation).

U0
n n-Th diabatic electronic term (regarding the semiclassical approximation).

~u Mixture flow velocity vector.

u Mixture flow speed; or x-component of the flow velocity vector.

~us s-Th species flow velocity vector.

us s-Th species flow speed.

~u′s s-Th species diffusion flow velocity vector.

u′s s-Th species diffusion flow speed.

V Space in the fluid.

Vs Space in the fluid which boundary moves with the s-th species particles.

V Volume of a space in the fluid; or global potential energy of the collision partners (regarding the

FHO model); or non-centrifugally corrected internuclear potential (regarding the RKR method);

or Voigt function.

VJ Centrifugally corrected internuclear potential curve (regarding the RKR method).

Vsr Short-range part of the non-centrifugally corrected internuclear potential.

Vlr Long-range part of the non-centrifugally corrected internuclear potential.
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VRKR Non-centrifugally corrected internuclear potential obtained through the RKR method.

VHH Hulburt-Hirschfelder potential.

VER Extended Rydberg potential.

Vij Potential energy associated to the Coulomb electrostatic interaction between the i-th and j-th

nuclei (regarding the adiabatic approximation).

Vαβ Potential energy associated to the Coulomb electrostatic interaction between the α-th and β-th

electrons (regarding the adiabatic approximation).

Viα Potential energy associated to the Coulomb electrostatic interaction between the i-th nucleus and

α-th electron (regarding the adiabatic approximation).

V̂s.o. Spin-orbit interaction potential (regarding the adiabatic approximation).

V ′ Interaction potential energy between the collision partners (regarding the FHO model).

V ′M Morse potential (regarding the FHO model).

V ′LJ Lennard-Jones (12− 6) potential (regarding the FHO model).

V ′HS Hard-spheres potential (regarding the FHO model).

~v Relative velocity vector (regarding binary collisions).

v Relative velocity speed (regarding binary collisions); or relative speed of the collision partners

at the pseudo-crossing or crossing point (regarding the Landau-Zener model); or initial relative

speed of the collision partners (regarding the Rosen-Zener-Demkov model); or v-th vibrational

quantum number; or initial vibrational quantum number.

v0 Initial relative speed of the collision partners (regarding the FHO model).

vi Initial relative speed of the collision partners (regarding the FHO model).

vf Final relative speed of the collision partners (regarding the FHO model).

v1 Initial vibrational quantum number of the molecular particle AB (regarding the FHO model).

v2 Initial vibrational quantum number of the molecular particle CD (regarding the FHO model).

vD Vibrational quantum number associated to the dissociation limit (regarding the FHO model).

vmax Maximum vibrational quantum number for which the respective Dunham expansion is valid.

v′ Final vibrational quantum number.

v′1 Final vibrational quantum number of the molecular particle AB (regarding the FHO model).

v′2 Final vibrational quantum number of the molecular particle CD (regarding the FHO model).
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w Half-width at half-maximum of the symmetric function.

Xs s-Th species chemical symbol.

[Xs] s-Th species amount concentration (number of s-th species particles per unit volume).

X̃ Difference between x̃ and x̃t (regarding the FHO model).

x̃ Difference between the centres of mass positions of the collision partners (regarding the FHO

model).

x̃t Classical turning point of the trajectory (regarding the FHO model).

x̃A Position of nucleus A (regarding the FHO model).

x̃B Position of nucleus B (regarding the FHO model).

x̃C Position of nucleus C (regarding the FHO model).

x̃D Position of nucleus D (regarding the FHO model).

x̃R Centre of mass of the two collision partners (regarding the FHO model).

xn,l,m n-Th radial wave function associated to the rotational quantum number l and quantum number

for the z-component of the angular momentum m (regarding the adiabatic approximation).

Yij (i, j)-Th Dunham parameter.

Yl,m Spherical harmonic function associated to the rotational quantum number l and quantum number

for the z-component of the angular momentum m (regarding the adiabatic approximation).

Ỹ Difference between ỹ and ỹ0 (regarding the FHO model).

Ỹ1 Difference between ỹ1 and ỹ0,1 (regarding the FHO model).

Ỹ2 Difference between ỹ2 and ỹ0,2 (regarding the FHO model).

ỹ Difference between the positions of the molecular particle nuclei (regarding the FHO model).

ỹ1 Difference between the positions of the molecular particle AB nuclei (regarding the FHO model).

ỹ2 Difference between the positions of the molecular particle CD nuclei (regarding the FHO model).

ỹ0 Equilibrium difference between the positions of the molecular particle nuclei (regarding the FHO

model).

ỹ0,1 Equilibrium difference between the positions of the molecular particle AB nuclei (regarding the

FHO model).

ỹ0,2 Equilibrium difference between the positions of the molecular particle CD nuclei (regarding the

FHO model).
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Z Specific collisional frequency (regarding binary collisions).

Zi Number of protons in the i-th nucleus (regarding the adiabatic approximation).

z̃ Difference between the positions of two interacting particles (regarding the FHO model).

z̃0 Equilibrium difference between the positions of two interacting particles (regarding the FHO

model).

Greek symbols

α Inverse length parameter of the repulsive exponential potential; or inverse length parameter of

the Morse potential (regarding the FHO model); or inverse length parameter considered on the

model for H12 (regarding the Rosen-Zener-Demkov model).

αe Spectroscopic rotational constant associated to the e-th electronic level.

γ Ratio of specific heats; or mass factor associated to the molecular particle (regarding the FHO

model).

γ1 Mass factor associated to the molecular particle AB (regarding the FHO model).

γ2 Mass factor associated to the molecular particle CD (regarding the FHO model).

∆ Difference between the asymptotic values of U2 and U1 (regarding the Rosen-Zener-Demkov

model).

∆F Difference between F2 and F1 (regarding the Landau-Zener model).

∆ε0 Difference between the sum of the products ground level energies and the one associated to the

reactants of the chemical equation.

∆E Energy defect (regarding the energy gap law).

ε Particle sensible energy.

ε′ Particle absolute energy.

εi Particle sensible energy associated to the i-th energy mode.

εtr Particle sensible translational energy.

εint Particle sensible internal energy.

εrot Particle sensible rotational energy.

εvib Particle sensible vibrational energy.

εel Particle sensible electronic energy.

εsp Particle sensible spin energy.
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εs s-Th species particle sensible energy.

εm Molecular particle sensible energy.

εa Atomic particle sensible energy.

εe Free electron sensible energy.

εi,j Particle sensible energy associated to the j-th level of the i-th energy mode.

εi,0 Particle ground-level energy associated to i-th energy mode.

εs,j s-Th species particle sensible energy associated to the j-th total energy level.

ε+s Ionisation energy of a s-th species particle.

η0 V-T and V-V-T transition probability parameter: ratio between the energy of a classical free

harmonic oscillator and the quantum energy ~ω (regarding the FHO model).

θ Polar angle; or wave function associated to the relative translation of the collision partners as

well as the translation of their centre of mass (regarding the FHO model).

Λe
′,v′

s,e,v Escape factor with respect to the vibronic levels (e, v) and (e′, v′).

Λ Quantum number for the projection of the total electronic orbital angular momentum vector on

the internuclear axis of the diatomic molecular particle.

Λ̂ Label given to the quantum number for the projection of the total electronic orbital angular

momentum vector on the internuclear axis of the diatomic molecular particle.

λ Photon wavelength; or mixture bulk viscosity coefficient.

λ0 Centre of the wavelength-specific symmetric function.

µ Mixture dynamic viscosity coefficient; or reduced mass of collision partners (regarding binary

collisions); or reduced mass of the diatomic molecular particle (regarding the FHO model and the

the adiabatic approximation).

µ1 Reduced mass of the molecular particle AB (regarding the FHO model).

µ2 Reduced mass of the molecular particle CD (regarding the FHO model).

ν Photon frequency.

νs s-Th species stoichiometric coefficient in the reactants side of the chemical equation.

ν′s s-Th species stoichiometric coefficient in the products side of the chemical equation.

ν0 Centre of the frequency-specific symmetric function.

ξ V-V-T corrective factor introduced in the transition probability parameter ρ, for the case of

collisions between molecular particles of different species (regarding the FHO model).
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ρ Mass density of the mixture particles inside a space in the fluid; or V-V-T transition probability

parameter (regarding the FHO model).

ρs Mass density of s-th species particles inside a space in the fluid.

σ Symmetry factor of the diatomic particle nuclei; or collisional cross section.

σav Average collisional cross section.

σp Process cross section.

σp,av Average process cross section.

σ0 Characteristic cross section (regarding the energy gap law).

[σ] Mixture Cauchy’s stress tensor.

[σs] s-Th species Cauchy’s stress tensor.

[τ ] Mixture viscous stress tensor.

[τs] s-Th species viscous stress tensor.

Φ Electronic wave function (regarding the adiabatic approximation).

φn n-Th adiabatic electronic wave function (regarding the adiabatic approximation).

φ1 First adiabatic electronic wave function (regarding the two-states approximation).

φ2 Second adiabatic electronic wave function (regarding the two-states approximation).

φ0
n n-Th diabatic electronic wave function (regarding the semiclassical approximation).

φ0
1 First diabatic electronic wave function (regarding the two-states approximation).

φ0
2 Second diabatic electronic wave function (regarding the two-states approximation).

φe
′,v′

λ,s,e,v Wavelength-specific line-shape factor associated to the set of vibronic levels (e, v) and (e′, v′) of

the s-th species.

φe
′,v′

ν,s,e,v Frequency-specific line-shape factor associated to the set of vibronic levels (e, v) and (e′, v′) of

the s-th species.

φ̂spe Instrument line-shape factor.

φ̂spa Spatial resolution function.

φ̂spa
opt Optics spatial resolution function.

φ̂spa
cam Camera spatial resolution function.

φ̂spa
mot Motion spatial resolution function.
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ϕ Azimuthal angle.

χn n-Th nuclei wave function (regarding the adiabatic approximation).

Ψ Global wave function (regarding the FHO model and the adiabatic approximation).

ψ Wave function associated to the vibration of the collision partners (regarding the FHO model);

or global spatial wave function (regarding the adiabatic approximation).

Ω Solid angle.

Ω̇j,i Rate of energy transfer from the j-th energy mode to the i-th internal energy mode due to

collisional processes.

Ω̇int
s,e Energy transferred per unit of time per unit of volume from the inner s-th species particles to

the inner free electrons.

Ω̇rad Variation in time of the mixture energy density due to radiative processes.

ω Natural angular frequency of the quantum harmonic oscillator that represents the molecular

particle (regarding the FHO model); Photon angular frequency.

ωe Spectroscopic vibrational constant associated to the e-th electronic level.

ω̇s Variation of mass of the s-th species particles per unit of time and per unit of volume due to

chemical reactions.

ω̇s,v Variation of mass of the s-th species particles at the vibrational level v per unit of time and per

unit of volume due to collisional and radiative processes.

ω̇s,e Variation of mass of the s-th species particles at the electronic level e per unit of time and per

unit of volume due to collisional and radiative processes.

ω̇s,e,v Variation of mass of the s-th species particles at the electronic level e and vibrational level v per

unit of time and per unit of volume due to collisional and radiative processes.

Subscripts

0 Ground-level.

∞ Flow upstream of the shock wave.

1 Molecular particle AB (regarding the FHO model); or first nucleus of the diatomic particle

(regarding the adiabatic approximation); or first adiabatic or diabatic electronic state(regarding

the two-states approximation).

2 Flow immediately downstream of the shock wave; or molecular particle CD (regarding the FHO

model); or second nucleus of the diatomic particle (regarding the adiabatic approximation); or

second adiabatic or diabatic electronic state (regarding the two-states approximation).
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a Atomic particle.

b Backward direction of the process.

c Crossing of adiabatic electronic terms (regarding the Landau-Zener model).

D Doppler broadening.

e Free electron.

e e-Th electronic energy level; or initial electronic level; or electronic level of the higher vibronic

level.

el Electronic energy mode.

el-tre Electronic-free electron translational energy mode.

e′ Electronic level of the lower vibronic level.

f Forward direction of the process.

G Gaussian function.

int Internal energy mode.

i i-Th energy mode; or i-th nucleus (regarding the adiabatic approximation).

J Rotational quantum number.

j j-Th total energy level; or j-th energy level of some energy mode; or j-th nucleus (regarding the

adiabatic approximation).

k k-Th translational energy level.

k1 Translational quantum number with respect to the x1 axis.

k2 Translational quantum number with respect to the x2 axis.

k3 Translational quantum number with respect to the x3 axis.

l l-Th rotational energy level.

L Lorentzian function.

m Molecular particle.

m m-Th vibrational energy level.

n n-Th electronic energy level.

p p-Th spin energy level; or p-th process; or pseudo-crossing of adiabatic electronic terms (regarding

the Landau-Zener model).
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q q-Th species.

rot Rotational energy mode.

r r-Th reaction.

res Resonance broadening.

S Stark broadening.

sp Spin energy mode.

s s-Th species.

tr Translational energy mode.

trh Heavy particle translational energy mode.

tre Free electron translational energy mode.

tr-rot Heavy particle translational-rotational energy mode.

V Voigt function.

vib Vibrational energy mode.

vib-el-tre Vibrational-electronic-free electron translational energy mode.

v v-Th vibrational quantum number; or initial vibrational quantum number; or vibrational quantum

number of the higher vibronic level.

v′ Vibrational quantum number of the lower vibronic level.

w Forefront wall of the entry body.

α α-Th electron (regarding the adiabatic approximation).

β β-Th electron (regarding the adiabatic approximation).

Superscripts

0 Diabatic electronic state (regarding the semiclassical approximation).

* Thermodynamic equilibrium condition.

a Absorption.

Blue “Blue” radiation.

D Dissociation.

e Electronic level of the higher vibronic level.

e′ Final electronic level; or electronic level of the lower vibronic level.
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ie Induced emission.

IR Infra-red radiation.

l l-Th wavelength interval.

Red “Red” radiation.

se Spontaneous emission.

s s-Th species.

VUV Vacuum ultra-violet radiation.

v Vibrational quantum number of the higher vibronic level.

v′ Final vibrational quantum number; or vibrational quantum number of the lower vibronic level.

Mathematical entities

· Product; or inner product; or matrix-vector product.

∗ Convolution.

⊗ Dyadic product.

~∇ Gradient.

∇2 Laplacian.

[ ]∗ Complex conjugate (being “[ ]” the operand).

[ ]−1 Tensor inverse (being “[ ]” the operand).

[ ]T Tensor transpose (being “[ ]” the operand).

[ ]† Tensor conjugate transpose (being “[ ]” the operand).

˙[ ] Time derivative (being “[ ]” the operand).

[̈ ] Double time derivative (being “[ ]” the operand).

‖[ ]‖ Norm (being “[ ]” the operand).

div Divergence.

H(x) Heaviside function of argument x.

i Unit imaginary number.

[I] Identity tensor.

~n Outward-pointing normal vector of a closed surface.

δij Kronecker delta.
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Acronyms

ADV Adaption in respect of the Database for the Vibrational energy levels.

CCD Charge-Coupled Device.

CFD Computational Fluid Dynamics.

EAST Electric Arc Shock Tube.

FGH Fourier Grid Hamiltonian method.

FHO Forced Harmonic Oscillator model.

FOPT First Order Perturbation Theory.

IPFN Instituto de Plasmas e Fusão Nuclear (or in english, Institute for Plasmas and Nuclear Fusion).

IR Infra-Red radiation.

IST Instituto Superior Técnico.

JAXA-HIEST Japan Aerospace Exploration Agency’s High-Enthalpy Shock Tunnel.

NASA National Aeronautics and Space Administration.

NIST National Institute of Standards and Technology.

QCT Quasi-Classical Trajectory model.

RKR Rydberg-Klein-Rees method.

SPARK Software Package for Aerothermodynamics, Radiation and Kinetics.

SSH Schwartz-Slawsky-Herzfeld model.

TPS Thermal Protection System.

V-D Vibrational-Dissociation process.

V-T Vibrational-Translational process.

V-V-T Vibrational-Vibrational-Translational process.

VRP Vibrational Redistribution Procedure.

VUV Vacuum Ultra-Violet radiation.
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Glossary

Boltzmann distribution The Boltzmann distribution associated to an

energy mode of the particles, corresponds to

the population distribution of these particles

with respect to the different energy levels of this

energy mode, if its self-equilibrium was reached.

CFD Computational Fluid Dynamics (CFD) is a

branch of Fluid Mechanics that uses numerical

methods and algorithms to solve problems

involving fluid flows.

Chemical equilibrium Chemical equilibrium with respect to the

interior of an element of matter corresponds to

a condition in which there’s no change of its

chemical composition.

Chemical kinetics The chemical kinetics of a system correspond to

the rates of the chemical reactions that occur in

them.
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Energy mode self-equilibrium An energy mode of particles that compose

an element of matter is said to be in self-

equilibrium, or in equilibrium with itself, if

the energy (associated to that energy mode)

transferred between the particles, due to

interactions, is such, that no heat transfer

(associated to that energy mode) occurs inside

the element of matter. For instance, if a body,

with a sufficiently higher dimension than the

typical one of the particles, was present in the

element of matter when the energy mode self-

equilibrium was reached, no energy from that

energy mode would be transferred to the body.

If this condition is satisfied, a temperature

specific to that energy mode can be attributed

to the element of matter.

Mechanical equilibrium Mechanical equilibrium with respect to the

interior of an element of matter corresponds to

a condition in which the transfer of momentum

between its particles, due to interactions, is

such, that the produced internal forces are

balanced. For instance, if a body, with a

sufficiently higher dimension than the typical

one of the particles, was present in the element

of matter when the mechanical equilibrium was

reached, the sum of all interaction forces that

act on it would be null. If this condition is

satisfied, a pressure can be attributed to the

element of matter.

Multi-temperature model A multi-temperature model is a thermodynamic

model which assumes that all energy modes

of the particles are in self-equilibrium or even

in equilibrium with some other. Multiple

temperatures should therefore be assigned to

the system, each one associated to a single or

combination of energy modes.
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Non-chemical kinetics The non-chemical kinetics of a system

correspond to the rates of the non-chemical

processes (processes in which there’s no change

of the involved particles chemical species) that

occur in them.

Plasma Plasma is one of the known four states of

the matter, being the other three the solid,

liquid and gas. A plasma has charges (ions

and free electrons) in its composition, meaning

that such matter can conduct electricity,

produce magnetic fields, and respond strongly

to electromagnetic forces.

Radiative equilibrium Radiative equilibrium with respect to the

interior of an element of matter corresponds to a

condition in which the absorption and emission

of radiation by the particles is balanced (both

in intensity and energy).

SPARK Software Package for Aerothermodynamics,

Radiation and Kinetics (SPARK) is a code for

the numerical simulation of hypersonic non-

equilibrium flows, developed by Lopez et al. and

being maintained at the University of Illinois at

Urbana-Champaign (UIUC) and at the research

unit Instituto de Plasmas e Fusão Nuclear

(IPFN) of Instituto Superior Técnico (IST).

Shock tube A shock tube is a ground-based test facility used

for the study of the chemical and non-chemical

kinetics, as well as heat transfer on a post-shock

flow. In a shock tube, a shock wave is generated

by the rupture of a diaphragm that separates

two sections of the tube: one containing a gas

at very high pressure and the other containing a

gas at low pressure. The low pressure gas is the

one being tested, which is subjected to post-

shock high temperature phenonema for a very

brief period of time.
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Single-temperature model A single-temperature model is a thermodynamic

model which assumes thermal equilibrium,

i.e. all energy modes of the particles are

considered to be in equilibrium with each other.

These energy modes are described by a single

temperature.

State-to-state model A state-to-state model is a thermodynamic

model which assumes that some energy modes

of the particle are not in self-equilibrium, and

therefore the respective energy levels need to be

dealt one by one.

Thermal equilibrium Thermal equilibrium with respect to the interior

of an element of matter corresponds to a

condition in which all their energy modes are in

self-equilibrium and the respective temperatures

are identical - therefore, a single temperature

is enough to describe all of the particles

energy modes. One can also say that in

thermal equilibrium, the energy modes are in

equilibrium with each other, besides themselves.

Thermochemical equilibrium Thermochemical equilibrium is a condition of

both thermal and chemical equilibrium.

Thermochemistry The thermochemistry of a system corresponds

to the heat energy associated to the chemical

reactions and physical transformations

occurring in them.

Thermodynamic equilibrium Thermodynamic equilibrium is a condition

of both mechanical, thermal, chemical and

radiative equilibrium.
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Chapter 1

Introduction

“If you want to learn about nature, to appreciate nature, it is necessary to understand the

language that she speaks in.”

— Richard P. Feynman

In this chapter a brief introduction to the problems and the state-of-the-art of the possible solutions

associated to the study of atmospheric entry flows will be presented with a lot of words and not much of

mathematics. Mostly, to acquaint the reader with all the highly technical terms and their meaning, which

will suffer overuse from the very beginning to the very end of this thesis. The thorough mathematics will

be saved for chapter 2.

1.1 A synopsis on atmospheric entry flows

When a body from the outer space moves towards a planet, it suffers acceleration due to gravity, increasing

its speed. Let’s assume here that the body is blunt (which is a very common characteristic of entry

objects like meteors and the modern spacecrafts). The acceleration will be such that the body enters the

atmosphere at a supersonic speed (a speed higher than the sound speed in the unperturbed flow) producing

a detached1 shock wave, which corresponds to a propagating disturbance that causes an abrupt increase in

temperature, pressure and density of the gas immediately downstream of the wave. For simplicity reasons,

let’s assume here that the atmosphere is solely composed by heavy particles2. The above-mentioned

temperature is associated to the translational energy mode of the particles, being called heavy particle

translational temperature, Ttrh
. It’s important to warn the reader about the concept of a temperature,

which as will be shown later in this work, isn’t as evident as may seem (see section §2.2). Immediately

downstream of the shock wave, the fast collisions between the gas particles induce a very rapid distribution

of their translational energy - such distribution can be proved to be a Boltzmann distribution - and

1The shock wave is detached from the body, acquiring a bow shape, if the body is blunt. This is one of the main reasons
for modern spacecrafts having a blunt nose, since a detached shock wave is stronger than an attached oblique one, heating
more the flow and less the body [1]. On the other hand, the bluntness of the nose gives it more volume, requiring more
energy to melt. A major drawback is in respect of the heat received by radiation, which increases with the area of the nose.

2A heavy particle corresponds to a particle with a mass equal or greater than the mass of the proton. A heavy particle
then needs to be an atomic or a molecular particle.
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translational equilibrium is said to occur [2]. Only in these conditions a translational temperature can

be attributed to the gas. That means that there’s a region, however very tiny, downstream of the shock

wave and upstream of the translational equilibrium region, where enough collisions didn’t occur and

a translational temperature can’t be defined. To not leave the reader into the void, the Boltzmann

distribution and the equilibrium condition will be explored later in this work (see section §2.2).

In the flowfield between the shock wave and the body - termed shock layer - a lot of physical

phenomena occur besides the abrupt change in the translational mode of the particles. The increase of the

translational temperature is associated to an increase of the relative speed between the colliding particles

as well as an increase of the number of collisions per unit of time. Collisions in these circumstances induce

an excitation of the rotational and vibrational modes of the molecular particles, with the cost of some

of the translational energy being transformed into rotational and vibrational energies, which in its turn

reduces the translational temperature [2]. Since these physical aspects may be new to the reader, the

different energy modes that the atomic and molecular particles can assume will be further described in

this work (see section §2.1). The rotational excitation occurs almost simultaneously with the translational

equilibration (except for cases in which the gas is composed by molecular hydrogen [2]) and therefore

a rotational temperature Trot being equal to the translational temperature Ttrh
can almost immediately

be defined. This equality means that a designation for the combination of both temperatures may be

employed: the heavy particle translational-rotational temperature Ttrh-rot = Ttrh
= Trot. Translational

and rotational excitations are much more faster than vibrational excitation (except, again, for cases in

which the gas is composed by molecular hydrogen [2]), and translational-rotational equilibrium can be

assumed to occur even before the commence of the vibrational excitation.

With the excitation of the rotational and vibrational modes, comes the dissociation of the molecular

particles, occurring through overstretching of the vibrational stroke (vibrational dissociation) or centrifugal

tearing (rotational dissociation), by collisions with another particles [2]. Such processes produce atomic

particles. The higher the rotational or vibrational energy of the molecular particle, the higher the

probability of the particle to suffer dissociation (since less energy is required to cause the dissociation).

Therefore, the dissociation process is preferential to the highly rotationally and vibrationally excited

molecular particles, meaning an aftermath reduction of the number of these particles in the gas. Also,

dissociation requires energy, which is supplied by the translational energy of the colliding particles,

reducing even more the translational temperature. Since dissociation is preceded by excitation of the

molecular particles, an interval of time called incubation period can be defined, corresponding to the

period in which rotational and vibrational excitation occur without dissociation.

With the presence of atomic particles in the flow, comes the possibility of occurring associative

ionisation reactions in which the atomic particles associate, creating excited molecular particles, that

spontaneously ionise, producing ionic molecular particles and free electrons. The produced ions and free

electrons that become part of the flowing fluid may conduct electricity, produce magnetic fields, and

respond strongly to electromagnetic forces. Such resultant fluid is termed plasma (plasma is one of the

known four states of the matter, being the other three the solid, liquid and gas). Collisions between the

free electrons and atomic particles will excite and ionise them, freeing even more electrons. Similarly,
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collisions between free electrons and molecular particles will excite and ionise them, and may even cause

their dissociation. The electronic excitation of heavy particles (i.e. excitation of the bound electrons of

heavy particles) by electron impact is much more efficient than the respective excitation by heavy particle

impact [2], and therefore, the electronic excitation process has its major importance in the region of the

flow where free electrons are present.

Excited particles, may de-excite by a process termed spontaneous emission, which consists in the

emission of a photon without any kind of external stimulus (therefore in a “spontaneous” way), lowering

the particle internal energy. A radiation field is then created, inducing the emission of even more photons

(by a process called induced emission), causing de-excitation of the particles. Some of the emitted photons

may be absorbed by the particles in the plasma and in the body (by a process called absorption), causing

their excitation. Also, the emitted photons may even dissociate or ionise the particles. Such processes

are called photodissociation and photoionisation [3], respectively. The transfer of radiative energy to the

body is termed radiative heating. Since the present author doesn’t want the reader to feel blank about all

these introduced radiative processes, a section in this work will be dedicated to them (see section §2.5).

After a considerable amount of collisions, the plasma begins a process of relaxation, i.e. it initiates an

evolution to thermodynamic equilibrium. However, equilibrium may not be reached since as the flow gets

more and more close to the body, new interactions between the two start to occur. The density of the

plasma increases due to compressibility effects, and a boundary layer is formed, in which the viscosity

effects are significant (due to a coexistence of a flow and a stationary wall), decelerating the flow - some of

the flow translational kinetic energy is converted to thermal energy (the energy associated to the energy

modes of the particles). Also, due to the temperature of the particles in the boundary layer being much

higher than the one of the particles in the surface of the body, there’s a transfer of energy, by the name

of convective heating, from the former to the latter (through collisions between the particles of the two

mediums). The plasma temperature therefore decreases in the boundary layer, with the possibility of

occurring atomic particles association, and recombination of ionic particles with electrons [4].

The surface of the body may induce chemical reactions, more specifically, between particles of the

plasma and particles of the body, as well as between the particles of plasma solely. Such reactions are

termed plasma-surface reactions. Particles of the plasma are adsorbed by the surface (i.e. “stuck” to the

surface), due to the interaction forces between these particles and the particles of the body, which after

reacting with other adsorbed gas particles or body particles, may or may not desorb (i.e. ”unstick” the

surface) [2]. One example of a plasma-surface reaction is the so-called surface-catalytic recombination,

in which two adsorbed atomic particles associate forming a molecular particle. The reaction occurs

with a transfer of energy to a particle in the body wall, being therefore exothermic (such reaction heats

the body). Another two examples of plasma-surface reactions are the oxidation of atomic carbon by

a molecular oxygen, and the oxidation of atomic carbon by an atomic oxygen. The former is and

endothermic reaction, and the latter is an exothermic one [2]. These details are of capital importance for

the design of the spacecraft thermal protection system (TPS) - the ideal TPS would be one that catalyses

endothermic reactions and inhibits exothermic reactions, since the less the received heat, the higher the

chance of the spacecraft to survive the atmospheric entry.
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Particles from the body may be transferred to the flow by processes that don’t change their chemical

composition. Ablation is the general designation for such processes, which are twofold: sublimation -

if the particles are removed one by one, forming a gas - and spallation - if fragments (i.e. clusters of

particles, still forming a solid material) are ejected as a result of the cracks and slits caused by the gas

particles impact and by stress. These processes reduce the heat transferred to the inner part of the body,

since a substantial part of the energy is spent in bond breaking and other substantial part is carried away

by the removed particles.

Some spacecrafts may use active cooling in their thermal protection system, corresponding to an

injection of a cooled gas from the body to the boundary layer. If the gas injection is restricted to a

limited surface area of the body wall, such as from a slot, the process is called film cooling. If the gas

injection occurs over a wide surface are, the process is called transpiration cooling [4]. Such processes

reduce the amount of heat transferred to the body - some of the energy in the boundary layer is transferred

to the injected gas instead of the body wall, and some of the energy in the body wall is transferred to

the injected gas as it flows through the supply tube to the boundary layer.

The products of the plasma-surface reactions, ablation, and active cooling become part of the boundary

layer plasma, meaning that reactions involving the new species in the flow may occur, influencing the

physics around the body.

This whole wording is just a small introduction to the relevant phenomenology that occurs in atmosphere

entry flows. Such introduction is necessary to properly define hypersonic flows - the flow upstream of

a shock wave is said to be hypersonic if the herein described physical phenomena (with less or more

accentuation) are present in the flow downstream of the wave. The Mach number3 of a hypersonic flow

needs to be much greater than unity, i.e Ma∞ � 1. Anderson [1] refers that, as a rule of thumb, a flow

can be considered to be hypersonic if the respective Mach number is greater than five, i.e. Ma∞ > 5.

Meanwhile there are other authors, such as Park [2] and Bertin [4], that consider a different value for

this lower limit: Ma∞ > 4. The uncertainty in attributing a threshold value to the Mach number

of a hypersonic flow comes mostly from the fact that the transformation of an supersonic flow into a

hypersonic flow is with respect to an accentuation of the post-shock physical effects which evolve in a

non abrupt way, and not to a discontinuity in the physical phenomena. There’s actually no threshold,

but an interval of Ma∞ values for which both labels may be subjectivity used to describe the type of

flow. Another reason for the difficulty of defining hypersonic flows is with respect to the amount of other

parameters beyond the Mach number that the respective post-shock phenomena depend on. Examples

of such parameters are the Knudsen number Kn - corresponding to the ratio between the particles mean

free path (i.e. the average distance travelled by the particles between two consecutive collisions) and

a characteristic dimension of the flowfield (for example the body length) - the Reynolds number Re

- corresponding to the ratio between the inertial and the viscous forces - and the Damköhler number

Da- corresponding to the ratio between some characteristic flow time and some characteristic chemical

reaction time [5].

Some remarkable examples of Earth atmospheric entries are the ones of the Mercury, Gemini and

3The Mach number of a flow in a point corresponds to the ratio between the flow and sound speeds evaluated at that
same point.

4



Vostok manned orbital spacecrafts reaching a Mach number of 25 in 1960, the Apollo spacecraft which

returned men from the moon in 1969, reaching a Mach number of 36 [1], and the Chelyabinsk meteor

that penetrated the atmosphere at an estimated Mach number of 60 over the city Chelyabinsk, Russia in

2013 [6].

1.2 The importance of experiments and numerical simulations

for Spacecraft Design

The main objective of Spacecraft Design with respect to atmospheric entries is to devise a vehicle that

can sustain the harsh conditions of the flight, descend in a stable and controllable way, and decelerate so

that landing can safely happen. Regarding the survival of the spacecraft against the harsh conditions, one

should speak about the strong convective and radiative heats received by the vehicle. The distribution of

the heat around the body needs to be well predicted for a correct estimation of the thickness of the thermal

protection system. A thermal protection system with an underestimated thickness would compromise the

integrity of the vehicle due to the removal of a considerable part of the protective material by ablative

processes. On the other hand, a thermal protection system with an overestimated thickness would make

the spacecraft inevitably heavier. The higher the structural weight, the higher the required rate of ejected

fuel to provide the same acceleration, at its launch from the ground and in manoeuvrers at the outer

space - a higher structural weight would therefore also mean a higher fuel weight. Note that a thermal

protection system may even be required for the spacecraft base (the back of the vehicle) besides the nose,

due to the considerable amount of radiation emitted by the wake [5].

Regarding the stability and controllability of the spacecraft, one should speak about aerodynamic

forces (lift and drag) and moments that act on it. These are a result of the pressure and shear stress

distributions around the body. The intensity and direction of the forces will dictate the trajectory of the

body, and the intensity and direction of the moments will dictate its attitude. A trimmed descent (i.e.

without rotation of the body) is of capital interest to the spacecraft designers, since a rotation would

drift the vehicle to undesired angles of attack. Some spacecrafts (as is example the Space Shuttle) require

control surfaces to redistribute the pressure and shear stress around the body in way that the designed

angle of attack is achieved. The knowledge of the value for the deflection angle of such control surfaces to

trim the vehicle would be undoubtedly convenient (and obviously much safer than trying to find it in real

time flight). A historic example in which the required body-flap deflection angle wasn’t at all correctly

predicted, was the case of the Space Shuttle. The actual required value was two times higher than the

one predicted from wind-tunnel data [4]. This is an indication of the lack of reliability on some of the

experimental tests made at the time.

There is other relevant phenomenology to be concerned with - the free electrons produced in the

entry flow will absorb radio-frequency radiation, causing communications blackout to and from the vehicle

during parts of the entry trajectory. In the modern days, this problem can be alleviated, since the radio-

frequency radiations may be sent to a satellite and resent to the spacecraft from a path that doesn’t

intersect the region of high electrons density. However, it’s still of high priority to predict the electron
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density distribution around the body, if not at least to know the path through which the radio-frequency

radiations should be sent [1].

All of these aspects referred here are with respect to the spacecraft design objectives. To accomplish

them, the interaction between the flow and the body, in a microscopic and macroscopic way, needs to be

understood. Experiments and Computational Fluid Dynamics (CFD) simulations are the two required

tools to achieve such understanding. Regarding the experiments, one should speak about the ones that

would immediatly tell us all the truth (although only in a macroscopic way) about the atmospheric entry:

flight-tests of the full-scale vehicle. These provide an uncompromising representation of the vehicle’s

environment, but are too expensive and can only be done in the final stage of the design, development

and fabrication process. Flight-tests of simpler small-scale models4 would be more feasible, but still

too expensive. The majority of the experiments are therefore made in ground-based test facilities. Not

only ground-based tests can be used to estimate aerodynamic forces and moments, the distribution of

heat-transfer and another important variables, useful for the design of the spacecraft in a direct way,

but they can also provide data for calibration and validation of CFD codes. These CFD codes, in their

turn, may then be put into practice for the spacecraft design. Validation of a code corresponds to the

quantification of its predictability with respect to some reliable experimental results. A valid code should,

in principle, produce results which are very similar with those obtained through experiment. On the other

hand, calibration of a code consists in making its results more agreeable with the experimental ones, by

adjusting its numerical parameters. An invalid code can then be transformed into a valid one, if a proper

calibration through sufficient reliable experimental results is performed (and if the code had already a

good physical and mathemical structure in its basis). The number of ground-based tests for the purpose

of benchmarking CFD codes is increasing as much as the reliance on CFD as a design tool [4]. This shows

how important is CFD becoming for the spacecraft design.

According to Bertin [4], there are nine parameters that can be simulated in ground based facilities:

free stream Mach number M∞, free stream Reynolds number Re∞, free stream velocity ~u∞, free stream

static pressure p∞, specific stagnation enthalpy of the flow h0, the density ratio across the shock wave

ρ∞/ρ2 (being ρ∞ the free stream density and ρ2 the density immediately downstream of the shock wave),

the free stream chemical composition of the gas, the wall-to-stagnation temperature ratio Tw/T0 (being

Tw the temperature of the wall and T0 the stagnation heavy particle translational temperature of the

flow), and the thermochemistry of the flowfield (the heat energy associated with chemical reactions). It’s

not however possible to simulate simultaneously all of these parameters in a ground-based faciliy (the

same can’t be said about CFD) [4]. In ground-based facility tests, some parameters are then chosen to be

simulated with the expense of the remainder. An experiment is therefore only a “partial simulation” and

various different tests need to be performed for a more complete study of the entry flow. Examples of

ground-based facilities dedicated to study of hypersonic flows are the shock tubes, arc-heated test facilities,

hypersonic wind tunnels and ballistic free-flight ranges [4]. Some comments about shock tubes should

be made, since experimental data obtained from a test performed on the NASA’s EAST shock tube was

found useful in this work. Shock tubes are mainly used for the study of the chemical kinetics (i.e. the

4An historic example of such flight-tests is the so-called Re-entry F Flight Test [4].
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rates of chemical reactions), non-chemical kinetics5 (rates of processes which involve transitions in the

energy levels of the particles) and heat transfer on a post-shock flow. In particular, the resultant radiative

field is of paramount importance for the validation of CFD codes regarding the population distribution

of the particles internal energy levels [7]. Note that radiative processes are intimately associated to the

degree of excitation of the particles, and therefore, numerical results which agree with experimentally

measured radiative fields, should, in priciple, also agree with the population distribution of the internal

energy levels. In a shock tube, a shock wave is generated by the rupture of a diaphragm that separates

two sections of the tube: one containing a gas at very high pressure (the driver gas) and the other

containing a gas at low pressure (the driven gas). The low pressure gas is the one being tested, which

is subjected to post-shock high temperature phenonema for a very brief period of time. Due to the high

temperatures of the free stream that these facilities produce, the respective Mach number can’t be high

enough to match the typical values of an entry flow [4]. Note that the free stream speed of sound is given

by a∞ =
√
γ∞R∞T∞ [1], being γ∞ the free stream ratio of specific heats and R∞ the free stream mass-

specific ideal gas constant. For a fixed free stream speed u∞, the higher the temperature T∞, the lower

the Mach number Ma∞ = u∞/a∞. This is an example that illustrates the above mentioned impossibility

of ground-based facilities to perform complete simulations of entry flows in the present days.

In respect of the optimisation of some particular configuration, one should say that CFD can be

used for such goal without spending the resources and labour that a full set of equivalent models in an

optimisation by experiment would require [4]. A numerical optimisation would therefore make a more

effective use of the ground-test facilities, since the resultant numerically optimised model would be firstly

tested in those instead of others which, together with all the effort put into them, would be probably

disregarded. Another particular advantage of CFD simulations is the fact that they can provide a lot

more details about the variables on the flowfield, from the microscopic to the macroscopic ones, not

requiring intrusive methods for their extraction.

1.3 Numerical models

The accuracy of the numerical simulations is intimately linked to the accuracy of the considered models

for representation of the important physical phenomena which occur in the problem of study. One

big difficulty about modelling entry post-shock flows is with respect to the quantification of the non-

equilibrium effects. It is here that non-equilibrium thermodynamic and kinetic models come into play.

1.3.1 Thermodynamic models

The term “non-equilibrium” may seem too vague when heard for the first time. There are a lot of

different types of non-equilibrium that may occur in the flow: mechanical non-equilibrium, chemical non-

equilibrium, radiative non-equilibrium, thermal non-equilibrium and energy mode self-non-equilibrium.

And from these five terms, even more complicated ones can be built to represent a simultaneity of

5Non-chemical processes are processes that don’t involve a chemical change of the species of the particles, and therefore
they can’t be identified as chemical reactions. They do involve a change in the internal energy levels of the particles.
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different types of non-equilibrium, as is example the thermochemical non-equilibrium, corresponding to a

condition of both thermal and chemical non-equilibria.

A mechanical equilibrium with respect to the interior of an element of fluid corresponds to a condition

in which the transfer of momentum between its particles, due to interactions, is such, that the produced

internal forces are balanced. For instance, if a body, with a sufficiently higher dimension than the typical

one of the particles, was present in the element of fluid when the mechanical equilibrium was reached,

the sum of all interaction forces that act on it would be null. If this condition is satisfied, a pressure p

can be attributed to the element of fluid.

The interior of an element of fluid is in chemical equilibrium if there’s no tendency for a change in

its chemical composition. As referred in section §1.1, there is a cascade of physical phenomena in the

post-shock flows which changes its chemical composition as an aftermath, and therefore one shouldn’t

assume that chemical equilibrium is reached in those cases.

Radiative equilibrium with respect to the interior of an element of fluid corresponds to a condition

in which the internal absorption and emission of radiation by the particles is balanced (both in intensity

and energy). Such condition is not observed in post-shock flows, and therefore, radiative equilibrium

shouldn’t be assumed [3].

Thermal equilibrium occurs if the energy transferred between the particles, due to interactions, is

such, that no heat transfer occurs inside the element of fluid. For instance, if a body, with a sufficiently

higher dimension than the typical one of the particles, was present in the element of fluid when the

thermal equilibrium was reached, no heat would be transferred to the body. If this condition is satisfied,

a temperature T can be attributed to the element of fluid, and the population of the particles energy

levels would follow a Boltzmann distribution, with the temperature T as parameter.

An energy mode of the particles that constitute some element of fluid is in self-equilibrium if the

conditions said above about thermal equilibrium were true for that energy mode in particular. Therefore,

if the i-th energy mode associated to the particles of the s-th species is in self-equilibrium, a temperature

Ts,i can be assigned. The population of the particles energy levels in that energy mode would follow a

Boltzmann distribution, with the temperature Ts,i as parameter. The term “self-equilibrium” is used to

emphasize the fact the mode may be in equilibrium with itself but not with others. Thermodynamic

models which account the possibility of energy modes to be in self-equilibrium correspond to the so-

called multi-temperature models. Well known examples of multiple-temperature models are the Lee’s

three-temperature model [8] and the Park’s two-temperature model [9]. In both models it’s assumed that

all heavy species have the same temperature values for the same type of energy modes. Such proposition

comes from the assumption that the particles of the considered heavy species are sufficiently similar to

be affected by the physical phenomena in an identical way. Lee and Park consider other two common

assumptions. The first one regards the tendency that the rotational mode has to equilibrate very fast with

the heavy particles translational mode. Therefore, both authors define a heavy particle translational-

rotational temperature, Ttrh-rot = Ttrh
= Trot. The second assumption regards the strong dependency

that the electronic excitation of particles have on the translation of free electrons - this proposition is

particular true for the low laying electronic levels of the particles. Park considers one more assumption
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than Lee, corresponding to a fast energy transfer between the translational mode of free electrons and

the vibrational mode of molecular particles - which is particular true for the case of molecular nitrogen

N2 [9]. Therefore Lee considers two temperatures besides the heavy particle translational-rotational one

- the vibrational temperature Tvib and the electronic-free electron translational temperature Tel-tre
=

Tel = Ttre
- and Park considers one - the vibrational-electronic-free electron translational temperature

Tvib-el-tre = Tvib = Tel = Ttre .

As pointed out by Park [10], numerical results obtained through multi-temperature models are

significantly more agreeable with the accurate experimental ones for the post-shock conditions than the

single-temperature models, which assume thermal equilibrium. Several works such as the ones of Candler

[11], Hornung [12] and Lobb [13] evidenced that the single-temperature model predicts the flow to be

closer to thermodynamic equilibrium than it actually is. The use of the single-temperature model may

then lead for incorrect predictions for the aerodynanamic characteristics of a hypersonic vehicle. And as

Park [10] said “[b]ecause of this mistake, most people thought that the flight regime of the most hypersonic

vehicles would be in the equilibrium regime, while, in reality, they would be in the nonequilibrium regime.

The mistake is caused by using the one-temperature model”.

There is the possibilty of the particles vibrational energy mode not being in self-equilibrium in some

post-shock flows, as shown by Candler et al. [14], which means that a vibrational temperature Tvib can’t

even be assigned, and that the population of the vibrational energy levels doesn’t follow a Boltzmann

distribution. Since the distribution of the vibrational energy levels is unknown in such cases, there is

no chance to treat all the vibrational levels as a group. Each vibrational energy level does need to be

treated individually. The electronic energy mode and even the rotational energy mode may also not be in

self-equilibrium, as referred by Munafó et al. [15], and a similar procedure with respect to the rotational

and electronic energy levels would be needed. Such procedures require models which are specific to the

internal energy levels of the involved particles. Models that treat internal energy levels of the particles

individually are the so-called state-to-state models (some authors also call them collisional -radiative

models) [16]. Dealing with internal levels introduces an extensive set of variables to the problem, requiring

much more computational resources than for the case of the multi-temperature models. The higher the

number of specified internal energy modes the higher the associated computational costs. Therefore,

the simultaneous assumption of self-equilibrium with respect to the fastest equilibrating energy modes,

such as the rotational one, may be convenient if not necessary. And in fact, this approach is commonly

taken: the most part of the existing state-to-state models aren’t rotational-specific [16]. In this work a

vibronic6-specific state-to-state model will be considered.

1.3.2 Kinetic models

Models for the plasma kinetics, i.e. the chemical and non-chemical processes, are required to properly

describe the phenomenology in an entry post-shock flow. These models may be purely theoretical,

semi-empirical (with a theoretical form, calibrated by experimental results) or purely empirical (solely

described by experimental results). Both valid theoretical and semi-empirical models should agree with

6The term vibronic is an agglutination of two other terms: vibrational and electronic.
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the experimental results. However, a significant part of the experimental data is obtained at room

temperature (around 300 K), without specificity of the internal energy levels of the particles. Therefore,

the validity of some of the theoretical and semi-empirical models may be only assured for the low

temperature regime, and not for each internal energy level but for the overall contribution of the set. When

the process isn’t reasonably well understood, there’s no option but to consider some crude assumptions

for the dependencies on the temperature and internal levels. Example of such crude assumptions are

the expressions associated to the so-called vibrational redistribution procedure, being employed by João

Vargas [17], and by Julien Annaloro [18] in their thesis, the latter in a more sophisticated form.

One important non-chemical process that will be further addressed in this work is the vibrational

excitation and de-excitation of molecular particles by heavy particle impact. Adamovich et al. [19–21]

did a good job reviewing the currently available models that can describe this particular process. One of

the simplest models is the Schwartz—Slawsky—Herzfeld model (SSH) [22]. This is a semiclassical model7

derived under a first-order perturbation theory (FOPT) approach, assuming collinearity of the collision

(all nuclei and the collision velocity vector are disposed in a single line), harmonicity of the molecular

particles (internuclear forces follow Hooke’s law), and an exponential repulsive interaction potential. Due

to the first-order perturbation theory approach, only single vibrational energy level jumps are regarded

to occur in the excitation or de-excitation process, which is solely true for cases of small collision speeds.

The model shouldn’t therefore be employed in numerical simulations of entry post-shock flows, due to

the very high heavy particle translational temperatures that occur in those conditions. The most precise

models include the exact quantum mechanical models, like the one suggested by Secrest and Johnson

[23], and semiclassical models like the one developed by Billing [24]. The latter, which corresponds

to a Quasi-Classical Trajectory model (QCT) [25], considers three-dimensional collisions, and a more

reallistic interaction potential. Both the model of Secrest and Johnson, and the one of Billing, require a

considerable amount of computational resources, limiting their applicability. An alternative model which

is much more accurate than the SSH model, and at the same time more practical than the two above

mentioned, is the Forced Harmonic Oscillator model (FHO) [21]. It was originally conceived by Kerner

[26] and Treanor [27], being only applicable for the case of a molecular particle-atomic particle collision.

It consisted of a non-perturbative semiclassical model, assuming collinearity of the collision, harmonicity

of the molecular particle and an exponential repulsive interaction potential. It was then generalised by

Zelechow et al. [28] for the case of molecular particle-molecular particle collisions. At last, Adamovich et

al. [19–21] applied corrections in the model to account the anharmonicity of the molecular particles, the

attractive long-range part of the interaction potential, the possible non-collinearity of the collision, the

case in which the molecular particles are non-identical, and energy conservation. The resultant model was

shown to agree considerable well with the results obtained through the state-of-the-art Billing’s model

[24]. The work of M. Lino da Silva et al. [29], which considers the model of Adamovich et al. additionally

regarding a more accurate method for computing the energies of the vibrational levels of the colliding

particles, endorses this agreeability.

Another important non-chemical processes that should be accounted for are the vibronic transitions

7In semiclassical models both Quantum Mechanics and Classical Mechanics laws are taken into consideration.
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of molecular particles by heavy particle impact. There are two well-known theoretical models which

deal with the homologous processes for the case of atomic particles - the electronic transitions of atomic

particles by atomic particle impact: the Landau-Zener model [30, 31] and Rosen-Zener-Demkov model

[32, 33]. In this work, the possibility of these models being extended to the case of vibronic transitions

of molecular particles by heavy particles will be studied. Empirical models may be used alternatively,

such as the exponential gap law considered in the works of Bachmann et al. [34, 35], and a different kind

of exponential gap law regarded in the works of Katayama et al. [36–38]. In the latter, the so-called

Franck-Condon factors are employed. Katayama et al. [39] even suggests a different model, which takes

into account the intermolecular potential well depth of the interaction.

1.4 The case of Earth atmospheric entries

When considering Earth atmospheric entries, one needs to deal with air. Its chemical composition and

thermodynamic properties vary with altitude, due to the Earth and outer space effects. The higher the

altitude the lower the gravitational force, and therefore, the higher the probability of an air particle

surpassing the so-called escape speed - the required speed to escape Earth’s attraction. This implies a

decrease of the air density with altitude. On the other hand, the higher the altitude the higher the

probability of a photon emitted by the sun to reach an air particle causing its excitation, photoionisation

or photodissociation. These trigger a cascade of other processes, changing the air chemistry as aftermath.

However it is only below the Kármán line (∼ 100 km) that air is dense enough to interact strongly with

an spacecraft or meteor in its entry, being the chemical composition of the air almost constant in that

layer of the atmosphere. The air components in such conditions are molecular nitrogen N2, with a

mole fraction of xN2
:= NN2

/N = 78.08 %, molecular oxygen O2 with xO2
= 20.95 %, water H2O with

xH2O ∼ 2 × 10−6 - 3 × 10−2 %, argon Ar with xAr = 9.34 × 10−3 %, and some other chemical species

whose mole fractions are negligible [40]. However, it is important to add that the water mole fraction

is only relevant below the tropopause (∼ 11 km), and since the body already suffered most of the entry

effects above that limit, one can disregard the water in the entry environment.

As referred in the section §1.1, the unperturbed flow suffers a lot of physical phenomena downstream

of the entry shock wave, causing a change in its chemical composition. By neglecting the small mole

fraction of argon and the other trace chemical species, one can expect at least eleven species in the

post-shock flow - N, O, N2, O2, NO, O+, N+, N +
2 , O +

2 , NO+ and e– - resultant from the two ones in

the unperturbed flow - N2 and O2 [2]. There are therefore a lot of chemical species to take into account

in an Earth atmospheric entry, which complicates the job of creating a reliable model that replicates all

the inherent physical phenomena in the post-shock flow. One smart move is to start by building a less

extensive model dedicated to hypothetical entry flows composed by solely one chemical species upstream

of the shock wave, i.e. solely by N2 or by O2. The only way to validate it is by experimental data taken

from ground-based facilities using the one chemical species gas, such as shock tubes.

This work will only deal with pure nitrogen hypersonic flows (i.e. in which the gas upstream of the

shock wave is solely composed by molecular nitrogen N2), and therefore, only five post-shock chemical
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species were considered - N, N2, N+, N +
2 and e–. Also, this work will be restricted to zero-dimensional and

one-dimensional simulations, being these used to describe the physical phenomena obtained in shock tube

tests. Figure 1.1 tries to depict such phenomena. Note that the label “n-dimension simulation” is used to

describe the simulation in respect of the number of spatial dimensions (the number n), along which, the

flowfield variables are allowed to vary. The number n also represents the number of components of the

flow velocity vector. Therefore, in a zero-dimensional simulation, all variables are assumed to be constant

in space, and no flow occurs (the gas is assumed to be at rest) - the change in the variables values occurs

only in time, or in other words, the change occurs simultaneously and identically at all points of the space.

For instance, in a one-dimensional simulation, the variables may vary along one direction and the flow

velocity vector has only one component, defined by this same direction. A zero-dimensional simulation is

particularly useful for a focused study on the chemical and non-chemical kinetics of the plasma from some

initial conditions, disregarding fluid flow effects [41]. It runs faster than a one-dimensional simulation

since it considers the momentum transfer between elements of fluid to be negligible, solving one less

differential equation. The use of a zero-dimensional simulation as an approximation of a one-dimensional

flow will turn to be more clear after the reading of section §3.4.
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Figure 1.1: Representation of the post-shock physical phenomena that occur in a pure nitrogen hypersonic

flow, inside a shock tube.
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1.5 Objectives

In this thesis, as said before, a hypothetical pure nitrogen entry flow was studied. Zero and one-

dimensional numerical simulations were performed to mimic the high-temperature phenomena of the

post-shock flow. The main objective of this study is to create a database of chemical and non-chemical

rates, as well as a full set of vibrational and electronic energy levels of the involved species, which together

could accurately depict the physical phenomena that occur in a pure nitrogen post-shock flow. This main

objective can only be achieved by following a recipe of tasks, each one associated to an accessory smaller

objective:

• Computation of the internuclear potential curves associated to the molecular particles N2 and N +
2 ,

in their ground and electronically excited electronic levels, by employing the Rydberg–Klein–Rees

method allied with an extrapolation procedure for the short and long-range parts. Computation

of the vibrational energy values by applying the Fourier Grid Hamiltonian method and using the

previously obtained internuclear potential curves. ;

• Computation of rates for vibrational excitation and vibronic-specific dissociation of the molecular

particles N2 and N +
2 by collisions with the heavy particles (N, N2, N+ and N +

2 ), using the Forced

Harmonic Oscillator model. Computation of the respective thermal rates of dissociation (the

dissociation rates of the involved molecular particles, at thermal equilibrium) and their comparison

with numerically and experimentally determined values taken from the literature;

• Study of the possibility of computation of rate coefficients for transitions between vibronic levels

of N2 by collisions with heavy particles, through the Landau-Zener model and the Rosen-Zener-

Demkov model ;

• Zero and one-dimensional numerical simulations, regarding vibronic-specific state-to-state approaches,

of the high-temperature phenomena that occur in pure nitrogen post-shock flows, employing the

conceived database in the CFD in-house code SPARK (see reference [42] to know more about this

numerical code). Calibration and validation of the database by comparison of the radiative field

obtained in the simulations with the radiative field measured in the test 62 of the EAST shock tube

in 2018 (data taken from reference [43]).

By reaching this milestone, the reader should now be able to decipher the title of the thesis: “High-

temperature kinetic and thermodynamic models for nitrogen plasmas”. The term “high-temperature” is

with respect to the high temperatures that the entry post-shock flows (the object of study of this thesis)

can achieve, “kinetic” is with respect to the modelling of chemical kinetics (rates of chemical reactions) as

well as the modelling of non-chemical kinetics (the excitation and de-excitation of the internal modes of

the particles) that occur in those conditions, “thermodynamic models” is with respect to the modelling of

the thermodynamic variables (temperatures, enthalpies, internal energies, etc.), and “nitrogen plasmas”

is with respect to the state of the matter in the post-shock flow, which, upstream of the shock wave,

corresponds to gaseous nitrogen.
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1.6 Thesis Outline

This work is divided into five parts:

• Chapter 1 (the present one), which acquaints the reader to the the post-shock physical phenomena

that typically occur in atmospheric entries, the state-of-the-art of the models used in the numerical

simulations of such entries, the objectives of this thesis and its outline;

• Chapter 2, that provides the mathematical formulation of the models introduced in Chapter 1, and

enunciates relations for the involved physical variables and their dynamics;

• Chapter 3, which presents the application of the theory reported in Chapter 2 to the computation

of rate coefficients values of the processes regarded in the kinetic database, and the way that the

governing equations were adapted for the simulation of post-shock flows generated by a shock tube;

• Chapter 4, that reports the results of the zero and one-dimensional SPARK simulations of three

benchmark shots executed in the EAST 62th campaign, and presents the obtained values for the

radiation variables, mole fractions, temperatures and evolution to equilibrium. A discussion on the

discrepancies from the experimental results is made, possible causes for them are enunciated, and

sensibility tests on the rate coefficients values are reported;

• Chapter 5, which presents the conclusions of this work, its achievements, and modifications that

may be tried in a near future in order to achieve better results.
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Chapter 2

Background

In this chapter, a detailed physical and mathematical characterisation of the high-temperature phenomena

that occur in atmospheric entry flows will be done. To properly guide the reader, such characterisation

will firstly address the most microscopic aspects of the problem (the ones associated to the particles). The

object of study will then gradually grow in scale, offering a general description about the quantification

of the collisional and radiative processes, the thermodynamic variables, as well as the fluid flow governing

equations. In the last part of this chapter, emphasis will be given to some particular models for collisional

processes.

2.1 Energy modes of a particle

The energy of a particle measured relatively to some point in space is a result of the motion of all its

parts: nuclei and electrons. The motion can be described as a combination of two other: the motion of

some reference point of the particle and the motion of its parts relatively to that point. For convenience,

the reference point is usually defined as the centre of mass of the particle. Therefore, the energy of the

particle ε′ is the sum of two contributions: the translational kinetic energy of its centre of mass ε′tr, and

the so-called particle internal energy ε′int, which corresponds to the energy associated to the motion of

the nuclei and electrons relatively to the center of mass [3]. One has then ε′ = ε′tr + ε′int.

Due to the fact that electrons have a much lower mass than the nuclei, they move much faster, and

therefore the motion of the electrons and the motion of the nuclei can be considered to be independent

of each other. This is the so-called adiabatic approximation (or Born–Oppenheimer approximation)

[44]. On the other hand, the motion of the nuclei relatively to the centre of mass corresponds to a

combination of rotation, vibration and spin (rotation upon themselves). Nuclear spin can be neglected

since it doesn’t play any role in the chemical and non-chemical processes [3]. Rotation and vibration are

in some way coupled, since the rotation causes stretching by centrifugation, which affects the vibration,

while the vibration changes the distance between the nuclei, and therefore also the moment of inertia of the

molecular particle, which ultimately influences the rotation. Anyway, for most engineering purposes the

decoupling of the rotational and vibrational motions can also be assumed [3]. In theses circumstances, the
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internal energy of the particle is a sum of the rotational contribution (ε′rot, rotational kinetic energy of the

molecular particle around its centre of mass), vibrational contribution (ε′vib, sum of the nuclei translational

kinetic energy relatively to the molecular particle centre of mass, and the respective internuclear potential

energy) and electronic contribution (ε′el, sum of the translational kinetic energy of the electrons around

the nuclei, and the potential energy between themselves as also between them and the nuclei), i.e.

ε′int = ε′rot + ε′vib + ε′el.

The above paragraphs assumed that the depicted particle has multiple nuclei and electrons in their

internal structure. Some particles can’t express some of the stated energy modes. The number of nuclei

and electrons in their internal structure will dictate this expression. Molecular particles are constituted

by multiple nuclei, and therefore, they may rotate and vibrate. Atomic particles are constituted by a

single nucleus, and no rotation and vibration can be associated to them. If electrons aren’t present in the

internal structure of the molecular or atomic particle, then, obviously there’s no electronic contribution to

its energy. Free electrons, on the other hand, can translate and spin, being the latter motion associated

their only form of internal energy (ε′e,int = ε′sp). Mathematically, the energy of a molecular particle,

atomic particle and free electron is given by

ε′m = ε′tr + ε′rot + ε′vib + ε′el , (2.1) ε′a = ε′tr + ε′el , (2.2) ε′e = ε′tr + ε′sp , (2.3)

respectively. The translational, rotational, and vibrational energy modes of a diatomic molecular particle,

and the electronic energy mode of an atomic particle are depicted by Figures 2.1, 2.2, 2.3 and 2.4.

CM

Figure 2.1: Representation of the translational

energy mode of a diatomic molecular particle.

CM

Figure 2.2: Representation of the rotational energy

mode of a diatomic molecular particle.

CM

Figure 2.3: Representation of the vibrational energy

mode of a diatomic molecular particle.

Figure 2.4: Representation of the electronic energy

mode of an atomic particle.
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It’s well known that particles follow the laws of Quantum Mechanics (although in some cases, the

laws of Classical Mechanics may depict considerably well the related physical phenomena). According

to the theory of Quantum Mechanics, the movement of the particles and their internal structure agree

with restrictedly defined directions and intensities. The restriction is in respect of the distribution of the

admissible values: they are discrete, or in other words, quantised. These admissible values of directions

and intensities, combined, are called energy states, or simply states of the particle [3]. Due to the fact

that movement has an energy associated to it, the quantisation of the former leads to the quantisation

of the latter, and therefore, the admissible energy values of a particle are also discrete. These are called

energy levels. There’s the possibility of various different movements associated to some energy mode,

having the same energy value. Thus, an energy level may admit different energy states - in this case,

the energy level is said to be degenerate, being the number of the different admissible states the degree

of degeneracy of the level, g. In addition to the fact of particle movements and energies values being

discrete, it’s also known that the energies of each energy mode are lower bounded, i.e. for each energy

mode there’s an energy level whose value is the lowest of them all. Such energy level is termed ground

energy level. Let ε′i,j correspond to the energy associated to the j-th level of the i-th mode, and εi,0 the

energy of the ground level of that mode. A convenient physical quantity, by the name of sensible energy

associated to the j-th level of the i-th mode, may be defined as the energy above the ground level energy

of that mode [1], that is

εi,j = ε′i,j − εi,0 . (2.4)

To better differentiate the nomenclature in respect of the energy ε′ and the sensible energy ε of a

particle, the former will be for now on termed absolute energy.

Since the energies of all modes are quantised, the sum of them is also quantised, which gives the

opportunity of defining a total energy level. Therefore, the sensible energy of the j-th total energy level

of a molecular particle corresponds to the sum of the sensible energies of the respective k-th translational

level, l-th rotational level, m-th vibrational level and n-th electronic level, i.e.

εm,j = εm,k,l,m,n = εtr,k + εrot,l + εvib,m + εel,n . (2.5)

And the respective degree of degeneracy is given by the multiplication between the degrees of degeneracy

of the respective modes levels, i.e.

gm,j = gm,k,l,m,n = gtr,k · grot,l · gvib,m · gel,n . (2.6)

Analogous expressions hold for the energy of the j-th total energy level of an atomic particle - εa,j =

εa,k,n = εtr,k + εel,n - and its degree of degeneracy - ga,j = ga,k,n = gtr,k · gel,n - as well as for the j-th

total energy level of a free electron - εe,j = εe,k,p = εtr,k + εsp,p - and the respective degree of degeneracy

- ge,j = ge,k,p = gtr,k · gsp,p.

Although decoupling of the energy modes was assumed (leading to relations (2.1), (2.2) and (2.3)) it’s

possible to account, in an approximated way, the coupling of the modes by applying corrections on the
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constants that describe each motion [44], has it is usually done in Spectroscopy (the scientific area that

studies the interaction between matter and electromagnetic radiation). As result, a set of vibrational

levels is defined for each electronic level, and a set of rotational levels is defined for each vibrational level

(see appendix B to know more about this). In order to express these dependencies, the vibrational sensible

energy and its degree of degeneracy should now take into account the label for the respective electronic

level, and the rotational sensible energy and its degree of degeneracy should take into account the labels

for the respective vibrational and electronic levels. Relations (2.5) and (2.6) are then transformed into

εm,j = εtr,k + εrot,n,m,l + εvib,n,m + εel,n , (2.7) gm,j = gtr,k · grot,n,m,l · gvib,n,m · gel,n . (2.8)

2.2 The Boltzmann distribution

2.2.1 The case of the single-temperature model

Let’s consider a system constituted by several different chemical species. There’s a set of admissible total

energy levels for each species. If the system has reached thermal equilibrium, it’s possible to show that

the number of particles of the s-th species which is in the j-th total energy level is given by the so-called

Boltzmann distribution [3]

Ns,j = Ns
gs,j e

−
εs,j
kBT

Qs
, (2.9)

in which Ns is the number of particles of the s-th species in the system, εs,j and gs,j are the sensible

energy and the degree of degeneracy of the j-th total energy level of the s-th species, respectively, kB is

the Boltzmann constant, T is the temperature of the system, and Qs is the so-called partition function

of the s-th species. This last quantity is given by

Qs =
∑
j

gs,j e
−
εs,j
kBT , (2.10)

in which the sum is in respect of all total energy levels of the s-th species.

Let’s consider that the particles of the s-th species are molecular. By inserting the identities (2.7)

and (2.8) in (2.10), it’s possible to obtain [2]

Qs =
∑
k

∑
n

∑
m

∑
l

gs,tr,k · gs,rot,n,m,l · gs,vib,n,m · gs,el,n e
−
εs,tr,k+εs,rot,n,m,l+εs,vib,n,m+εs,el,n

kBT =

=

(∑
k

gs,tr,k e
−
εs,tr,k
kBT

)
︸ ︷︷ ︸

:=Qs,tr

·

{∑
n

gs,el,n e
−
εs,el,n
kBT

[∑
m

gs,vib,n,m e
−
εs,vib,n,m

kBT

(∑
l

gs,rot,n,m,l e
−
εs,rot,n,m,l

kBT

)]}
︸ ︷︷ ︸

:=Qs,int

.

(2.11)

The partition function of the s-th species is therefore a multiplication between its translational partition
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function Qs,tr and its internal partition function Qs,int. And this latter quantity can be expressed through

Qs,int =
∑
n

gs,el,n e
−
εs,el,n
kBT Qs,vib-rot,n =

∑
n

gs,el,n e
−
εs,el,n
kBT

(∑
m

gs,vib,n,m e
−
εs,vib,n,m

kBT Qs,rot,n,m

)
︸ ︷︷ ︸

:=Qs,vib-rot,n

=

=
∑
n

gs,el,n e
−
εs,el,n
kBT


∑
m

gs,vib,n,m e
−
εs,vib,n,m

kBT

(∑
l

gs,rot,n,m,l e
−
εs,rot,n,m,l

kBT

)
︸ ︷︷ ︸

:=Qs,rot,n,m

 , (2.12)

being Qs,vib-rot,n the vibrational-rotational partition function associated to the n-th electronic level and

Qs,rot,m,n the rotational partition function associated to the n-th electronic level and m-th vibrational

level of the s-th species. If the rotational, vibrational and electronic energy modes were completely

decoupled from each other, the internal partition function would instead correspond to a multiplication

between three partition functions, each one associated to a different internal energy mode, i.e. Qs,int =

Qs,el ·Qs,vib ·Qs,rot.

By inserting the identities (2.7) and (2.8) in (2.9), one has

Ns,k,l,m,n = Ns
gs,tr,k · gs,rot,n,m,l · gs,vib,n,m · gs,el,n e

−
εs,tr,k+εs,rot,n,m,l+εs,vib,n,m+εs,el,n

kBT

Qs
. (2.13)

The reader should be warned about the very particular nomenclature that is being employed in this

section. The label j represents a total energy level, being subscripted on the respective symbol. The labels

k, l, m and n represent energy levels of the translational, rotational, vibrational and electronic modes,

respectively, being also subscripted on the respective symbol. For the case of the number of particles N ,

the subscripted labels for the energy levels define the specificity of the quantity with respect to the energy

modes. For example, Ns,k,m,n represents the number of particles of the s-th species that are in the k-th

translational, m-th vibrational level and n-th electronic level, and Ns,k,m =
∑
nNs,k,m,n represents the

number of particles of the s-th species that are in the k-th translational and m-th vibrational level.

2.2.2 The case of the multi-temperature model

Let’s assume here the hypothesis of same temperatures for same energy modes of the different heavy

species particles, and consider that the s-th species is molecular (since it allows a more general analysis

than the atomic and free electron species, although one important comment about free electrons is saved

for last). With a particular temperature for each energy mode - Ttrh
for translation, Trot for rotation,

Tvib for vibration and Tel for electronic contribution - the number of particles of the s-th species that is

in the k-th translational level, l-th rotational level, m-th vibrational level and n-th electronic levels can

be expressed by

Ns,k,l,m,n = Ns
gs,tr,k · gs,rot,n,m,l · gs,vib,n,m · gs,el,n e

−
εs,tr,k
kBTtrh

−
εs,rot,n,m,l
kBTrot

−
εs,vib,n,m
kBTvib

−
εs,el,n
kBTel

Qs
. (2.14)
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The expression has then the same structure as the one for the case of thermal equilibrium (2.13).

However, it considers a particular temperature for each particular energy mode, instead of a general

temperature T . This property extends itself to the total partition function Qs, and therefore also to the

translational partition function Qs,tr, internal partition function Qs,int, vibrational-rotational partition

function Qs,vib-rot,n and rotational partition function Qs,rot,n,m. These last four quantities are given by

Qs,tr =
∑
n

gs,tr,k e
−
εs,tr,k
kBTtrh , (2.15) Qs,int =

∑
n

gs,el,n e
−
εs,el,n
kBTel Qs,vib-rot,n , (2.16)

Qs,vib-rot,n =
∑
m

gs,vib,n,m e
−
εs,vib,n,m
kBTvib Qs,rot,n,m ,

(2.17)

Qs,rot,n,m =
∑
l

gs,rot,n,m,l e
−
εs,rot,n,m,l
kBTrot , (2.18)

respectively. Such partition functions can be computed if the sensible energies of the modes levels are

known. The absolute energies of the translational levels associated to the s-th species may be obtained

by solving the Schrödinger equation1 for a free particle2 of the s-th species with a mass ms, inside a

rectangular box of dimensions a1 × a2 × a3 with impenetrable walls [3] (such box may be interpreted as

an hypothetical element of fluid). These absolute energies and the respective degrees of degeneracy are

given by

 ε′s,tr,k1,k2,k3
=

h2

8ms

(
k2

1

a2
1

+
k2

2

a2
2

+
k2

3

a2
3

)
, (2.19a)

gs,tr,k1,k2,k3
= 1 , (2.19b)

in which k1, k2 and k3 = 1, 2, 3, ... correspond to the translational quantum numbers (responsible for the

quantisation of the translational energy, since they are natural numbers). There’s one quantum number

for each dimension of the box. The absolute energy of the ground translational level εs,tr,0 is found to

be small enough to be neglected [1], and therefore, the sensible energy of a translational level may be

approximated by the respective absolute energy, i.e. εs,tr,k1,k2,k3
= ε′s,tr,k1,k2,k3

− εs,tr,0 ≈ ε′s,tr,k1,k2,k3
.

From the definition of the translational partition function (2.15), and by adding the fact that one has

typically h2

8mskBTtrh
� 1 [3], the involved series may be approximated by an integral (since each term has

a very small contribution to the sum), giving

Qs,tr =

∞∑
k1=1

∞∑
k1=2

∞∑
k3=1

gs,tr,k1,k2,k3
e
−
εs,trh,k1,k2,k3

kBTtrh ≈
� ∞

0

� ∞
0

� ∞
0

e
− h2

8mskBTtrh

(
k2
1
a2
1

+
k2
2
a2
2

+
k2
3
a2
3

)
dk1 dk2 dk3 ⇔

⇔ Qs,tr(Ttrh
, V ) = V

(
2πmskBTtrh

h2

) 3
2

, (2.20)

in which V = a1 · a2 · a3 corresponds to the volume of the box.

1The Schrödinger equation is one of the fundamental equations of Quantum Mechanics. From a conceptual perspective
of view, one may state that the Schrödinger equation is for Quantum Mechanics what the Newtown’s equations are for
Classical Mechanics.

2A particle is considered to be free if it isn’t being subjected to any potential.
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For the case of the rotational energy mode, the respective partition function associated to the e-th

electronic level and v-th vibrational level may be easily computed if the particle is diatomic (with two

nuclei) and heteronuclear (in which the nuclei are dissimilar). By solving the Schrödinger equation for a

rigid rotor (or dumb-bell) with a constant moment of inertia Is,e,v, the absolute energies and respective

degrees of degeneracy of the rotational levels associated to the v-th vibrational level and e-th electronic

level of the s-th species, assuming that it is diatomic and heteronuclear, may be shown to be [3]

 ε′s,rot,e,v,J =
h2

8π2Is,e,v
J (J + 1) , (2.21a)

gs,rot,e,v,J = 2J + 1 , (2.21b)

being J = 0, 1, 2, ... the rotational quantum number. Note that from (2.21a) one has εs,rot,0 = 0, meaning

that εs,rot,e,v,J = ε′s,rot,e,v,J . By recalling the expression for the rotational partition function (2.18), and

by enunciating that one has usually h2

8π2Is,e,vkBTrot
� 1 [3], the involved series can be approximated by

an integral, giving

Qs,rot,e,v =

∞∑
J=0

gs,rot,e,v,J e
−
εs,rot,e,v,J
kBTrot ≈

� ∞
0

(2J + 1) e
− h2

8π2Is,e,vkBTrot
J(J+1)

dJ =
8π2Is,e,vkBTrot

h2
:=

kBTrot

Bs,e,v
,

(2.22)

in which Bs,e,v = h2/8π2Is,e,v corresponds to the rotational energy function Bv associated to the e-th

electronic level and v-th vibrational level of the s-th species. This function is introduced in appendix B,

being given by (B.8). For the case of a diatomic homonuclear particle, the expression for the degree of

degeneracy of a rotational level (2.21b) doesn’t hold. The actual one changes in an alternate way with

the rotational level [2]. It’s possible to show that the expression for the rotational partition function of a

diatomic homonuclear particle is one half of the one for the heteronuclear particle (2.23). Therefore, one

can define a general expression for the partition function of a diatomic particle, by writing

Qs,rot,e,v(Trot) =
kBTrot

σBs,e,v
, (2.23)

in which σ corresponds to a symmetry factor, giving 1 if the particle is heteronuclear or 2 if the particle

is homonuclear.

Let’s assume, for instance, that the dependence of the function Bs,e,v on the vibrational quantum

number v can be neglected, so that Bs,e,v ≈ Bs,e. In that case, the vibrational-rotational partition

function associated to the e-th electronic level corresponds to a multiplication between a vibrational

partition function and the rotational partition function, i.e. Qs,vib-rot,e = Qs,vib,e·Qs,rot,e. The vibrational

partition function can be easily computed if the particle is diatomic. The absolute energies and the

respective degrees of degeneracy of the vibrational levels of the s-th species, assuming that it is diatomic,

can be obtained by solving the Schrödinger equation for a harmonic oscillator3 of constant natural

3See appendix A for more details about the quantum harmonic oscillator.
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angular frequency ωs,e, giving [3]

 ε′s,vib,e,v = ~ωs,e
(
v +

1

2

)
, (2.24a)

gs,vib,e,v = 1 , (2.24b)

in which v = 0, 1, 2, ... corresponds to the vibrational quantum number. From (2.24a), one has ε′s,vib,0 =

1
2~ωs,e, and therefore, εs,vib,e,v = v~ωs,e. The vibrational partition function can be shown to be a sum of

a convergent geometric series, resulting in [3]

Qs,vib,e =

∞∑
v=0

gs,vib,e,v e
−
εs,vib,e,v
kBTvib =

∞∑
v=0

e
− v~ωs,e
kBTvib =

∞∑
v=0

(
e
− ~ωs,e
kBTvib

)v
⇔

⇔ Qs,vib,e(Tvib) =
1

1− e−
~ωs,e
kBTvib

. (2.25)

The natural angular frequency ωs,e corresponds to the spectroscopic vibrational constant ωe associated to

e-th electronic level of the s-th species. This constant is introduced in appendix B, being one of several

that describe the vibrational energy function Gv. Such function is given by (B.6).

There’s no simple model for an electronic partition function, and therefore, the internal partition

function needs to be computed through the expression that exactly defines it (2.16), in which the electronic

sensible energy associated to the e-th electronic level εs,el,e is the same as the spectroscopic constant

Ts,e := Te introduced in appendix B

Qs,int(Trot, Tvib, Tel) =
∑
e

gs,el,e e
− Ts,e
kBTel Qs,vib-rot,e(Trot, Tvib) . (2.26)

One should present here an expression for the partition function of the translational energy mode of

free electrons as well as an expression for the partition function of its spin energy mode (spin partition

function). The expression for the free electron translation partition function corresponds the one for the

heavy particle translation partition function (2.20) with Ttrh
substituted by Ttre and ms by me

Qe,tr(Te, V ) = V

(
2πmekBTtre

h2

) 3
2

. (2.27)

The spin energy mode of a free electron has only one energy level, and two possible energy states.

Therefore, the sensible energy of the spin level is null, i.e. εe,sp = 0, and its degree of degeneracy

corresponds to ge,sp = 2. The spin partition function of the free electron is then given by

Qe,sp = 2 . (2.28)

It’s worthy to mention that in the case of thermal equilibrium, one has T := Ttrh
= Ttre

= Trot =

Tvib = Tel, and it can be easily shown that the expressions for the particles population distribution on

their energy levels (2.14) and (2.13) do match with each other.
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2.2.3 The case of the vibronic-specific state-to-state model

Let’s consider here a three-temperature vibronic-specific state-to-state model: temperatures Ttrh
and Trot

are assigned to the translational and rotational energy modes of the heavy particles, respectively, and Ttre

is assigned to the free electron translational energy mode. Also, let’s assume here in similar way to the

previous section that the particles of s-th species are molecular. Although such particles may not follow a

Boltzmann distribution in the electronic and vibrational levels, they will follow a Boltzmann distribution

in the translational and rotational levels. Therefore, the number of particles of the s-th species in the

k-th translational level, l-th rotational level, m-th vibrational level and n-th electronic level corresponds

to4

Ns,k,l,m,n = Ns,m,n
gs,tr,k · gs,rot,n,m,l e

−
εs,tr,k
kBTtrh

−
εs,rot,n,m,l
kBTrot

Qs,tr ·Qs,rot,n,m
, (2.29)

in which Ns,m,n is the number of particles of the s-th species in the m-th vibrational level and n-th

electronic level, Qs,tr is the translational partition function given by (2.15), and Qs,rot,n,m is the rotational

partition function given by (2.23) (if a rigid rotor model is assumed).

2.3 Thermodynamic variables

The thermodynamic variables associated to some system depend on the distribution of the particles on

their energy levels. Let this system correspond to an hypothetical element of fluid. The computation of

these thermodynamic variables for the cases of the single-temperature, multi-temperature and vibronic-

specific state-to-state models will be analysed here.

2.3.1 The case of the single-temperature model

For the case of the single-temperature model, the thermodynamic variables of interest are the mass-

specific internal energy es, enthalpy hs, entropy ss, Helmholtz free energy fs, Gibbs free energy partial

gs, as well as the partial pressure ps for some s-th species. It will be assumed that the particles of the s-th

species correspond to molecular particles so that the most general case may be analysed. The respective

properties for the combination of all species (the mixture) in the element of fluid are also important to

be known.

The term “internal” in “internal energy” is with respect to the element of fluid and not to the particles

that constitute it, and therefore, this internal energy should not be mistaken for the internal energy of

the particles. A less ambiguous designation for this physical quantity would be “internal energy of the

flow”. When a element of fluid moves, therefore producing a flow, a translational kinetic energy may be

attributed to it. Simultaneously, the particles inside the element fluid move relatively to the element of

fluid, being the energy associated to that motion the contribution of all particles energy modes which

were reported in §2.1. Thus, the internal energy of the flow associated to the s-th species, Es, is defined

4For the case of the multi-temperature model, a relation with the same form as (2.29) may be simply obtained by noticing
that Ns,m,n corresponds to a sum on k and l of (2.14). However, for the case of the vibronic-specific state-to-state model,
relation (2.29) holds but not (2.14).
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by the sum of total absolute energy of the particles of s-th species in the element of fluid

Es =
∑
j

ε′s,jNs,j . (2.30)

The specific (in a mass basis) internal energy of the flow associated to the s-th species corresponds

to es = Es/Ms where Ms = Nsms is the mass of s-th species particles in the element of fluid, and ms is

the mass of a single s-th species particle. In thermal equilibrium, Ns,j is given by (2.9), and by invoking

the relation (2.10) for the partition function Qs, and mathematically manipulating expression (2.30), one

can obtain

es = RsT
2

[
∂ (lnQs)

∂T

]
V

+
εs,0
ms

, (2.31)

where Rs = kB/ms is the specific (in a mass basis) gas constant of the s-th species. Note that the

subscripted symbol V in (2.31) means that the derivative is taken at constant volume V .

The specific entropy of the element of fluid associated to the s-th species, ss = Ss/Ms, at thermal

equilibrium, is given according to Statistical Mechanics [3] by

ss = Rs

[
ln

(
Qs
Ns

)
+ 1

]
+RsT

[
∂ (lnQs)

∂T

]
V

. (2.32)

The specific Helmholtz free energy associated to the s-th species, at thermal equilibrium, is defined

by fs = Fs/Ms = es − Tss, and therefore, from (2.31) and (2.32), one has

fs =
εs,0
ms
−RsT

[
ln

(
Qs
Ns

)
+ 1

]
. (2.33)

Before introducing the definition of partial pressure, it’s important to formerly enunciate the first law

of Thermodynamics for a chemically reactive open system in thermal equilibrium [3]

dEs = TdSs − psdV + µsdNs , (2.34)

being µs the chemical potential associated to the s-th species. According to (2.34) and the definition of

the Helmholtz free energy, the differential of this quantity may then be then expressed through

dFs = dEs − SsdT − TdSs = µsdNs − SsdT − psdV . (2.35)

From (2.35) one can immediately find, with the help of relation (2.33), that the partial pressure

associated to the s-th species, ps, is given by

ps = −
(
∂Fs
∂V

)
T,Ns

= NskbT

[
∂ (lnQs)

∂V

]
T,Ns

. (2.36)

From (2.11) one has Qs(T, V ) = Qs,tr(T, V ) · Qs,int(T ). Solely the translational partition function

Qs,tr(T, V ) depends on the volume V , and therefore, only the translation energy mode of the particles
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contributes to the partial pressure ps, as can be shown through the reasoning:

ps = NskbT

[
∂ (lnQs)

∂V

]
T,Ns

= NskbT

(
∂ {ln [Qs,tr(T, V ) ·Qs,int(T )]}

∂V

)
T,Ns

=

= NskbT


(
∂ {ln [Qs,tr(T, V )]}

∂V

)
T,Ns︸ ︷︷ ︸

= 1
V , from (2.20)

+

(
∂ {ln [Qs,int(T )]}

∂V

)
T,Ns︸ ︷︷ ︸

=0

 =
NskbT

V
⇔

⇔ ps = ρsRsT , (2.37)

being ρs = Ms/V the mass density of s-th species particles in the element of fluid. Result (2.37) can be

identified as the well-known ideal gas law.

The specific enthalpy associated to the s-th species, at thermal equilibrium, is defined by hs =

es + ps/ρs, and therefore, by invoking (2.31) and (2.37), it’s possible to show that

hs = RsT +RsT
2

[
∂ (lnQs)

∂T

]
V

+
εs,0
ms

. (2.38)

The specific Gibbs free energy associated to the s-th species, at thermal equilibrium, is defined by

gs = es + ps/ρs − Tss. From (2.31), (2.32) and (2.37) one may then get

gs =
εs,0
ms
−RsT ln

(
Qs
Ns

)
. (2.39)

For compactness reasons the operations applied on the partition function Qs shown in the above

expressions for the specific thermodynamic variables will not be evaluated in this section.

Now that a way to compute the important specific thermodynamic variables for some s-th species

was presented, one may advance to the computation of the specific thermodynamic variables associated

the combination of all these species (the mixture) of the element of fluid. Let Qs ∈ {Es, Ss, Fs, Hs, Gs}

correspond to a thermodynamic variable associated to the s-th species, and Q =
∑
s Qs ∈ {E,S, F,H,G}

the respective thermodynamic variable associated to the mixture. Also, let qs = Qs/Ms ∈ {es, ss, fs, hs, gs}

and q = Q /M ∈ {e, s, f, h, g} be the respective specific quantities, where M corresponds to the mass of

the mixture, i.e. M =
∑
sMs. A relation between the mixture variable q and the species variables qs

can be easily found:

q =
Q
M

=

∑
s Qs
M

=
∑
s

(
Ms

M

)
︸ ︷︷ ︸

:=cs

(
Qs
Ms

)
︸ ︷︷ ︸

=qs

⇔

⇔ q =
∑
s

csqs , (2.40)

being cs = Ms/M the so-called mass fraction of the s-th species. Note that the partial pressure ps

doesn’t satisfy (2.128) since it is not a specific thermodynamic variable. Anyway, a pressure associated
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to the mixture can be defined:

p :=
∑
s

ps =
∑
s

ρsRsT =
∑
s

Ms

V
T =

∑
s

(
M

V

)
︸ ︷︷ ︸

:=ρ

(
Ms

M

)
︸ ︷︷ ︸

=cs

RsT = ρ

(∑
s

csRs

)
︸ ︷︷ ︸

:=R

T ⇔

⇔ p = ρRT , (2.41)

where ρ = M/V and R =
∑
s csRs are the mass density and the specific (in a mass basis) gas constant

of the mixture, respectively. Result (2.41) can be identified as the Dalton’s law of partial pressures.

2.3.2 The case of the multi-temperature model

For the case of the case of the multi-temperature model, the thermodynamic variables that do matter

are the specific internal energy es, enthalpy hs, the partial pressure ps as well as the respective quantities

for the mixture. It will be assumed here that the particles of s-th species are diatomic.

From the definition of the internal energy of the flow associated with the s-th species (2.30), the

relation between the total sensible energy of a particle and the contributions of its energy modes (2.7),

the definition of partition functions with respect to these energy modes (2.15), (2.16), (2.17) and (2.18),

as well as the distribution of particles in their energy levels according to the multi-temperature model

(2.14), it’s possible to show that

Es =
∑
j

ε′s,jNs,j =

∑
j

εs,jNs,j

+ εs,0Ns =

 ∑
k,l,m,n

εs,k,l,m,nNs,k,l,m,n

+ εs,0Ns =

=

 ∑
k,l,m,n

(εs,tr,k + εs,rot,n,m,l + εs,vib,n,m + εs,el,n)Ns,k,l,m,n

+ εs,0Ns ⇔

⇔ es = RsT
2
trh

[
∂ (lnQs,tr)

∂Ttrh

]
V︸ ︷︷ ︸

:=es,tr

+RsT
2
rot

[
∂ (lnQs,int)

∂Trot

]
V︸ ︷︷ ︸

:=es,rot

+RsT
2
vib

[
∂ (lnQs,int)

∂Tvib

]
V︸ ︷︷ ︸

:=es,vib

+RsT
2
el

[
∂ (lnQs,int)

∂Tel

]
V︸ ︷︷ ︸

:=es,el

+
εs,0
ms︸︷︷︸

:=es,0

.

(2.42)

The internal energy of the flow associated to the s-th species is therefore a sum of five contributions,

four associated to each energy mode of the particles regarding solely their sensible energy, and one

associated to the ground level energy of the particles, i.e.

es = es,tr + es,rot + es,vib + es,el + es,0 . (2.43)

The evaluation of the mathematical operations on Qs,int that occur in (2.42) can be rather cumbersome

if the dependence of the internal energy modes on each other is regarded. However, if such dependence is

disregarded, and simple models are chosen for each internal energy modes, then es can be easily expressed.

For instance, if one considers the harmonic oscillator model with an effective natural angular angular

frequency ωs,e = ωs that doesn’t depend on the electronic level e, and a rigid rotor model with a effective

rotational constant Bs,e,v = Bs that doesn’t depend on the electronic level e neither on the vibrational
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level v, the internal partition function will then correspond to the product of three partition functions, each

one associated to an internal energy mode, i.e. Qs,int(Trot, Tvib, Tel) = Qs,rot(Trot)Qs,vib(Tvib)Qs,el(Tel),

with Qs,rot(Trot) and Qs,vib(Tvib) given by (2.23) and (2.25), respectively. In these conditions the specific

internal energy of the flow associated to the s-th species es corresponds to

es = RsT
2
trh

[
∂ (lnQs,tr)

∂Ttrh

]
V︸ ︷︷ ︸

:=es,tr

+RsT
2
rot

[
∂ (lnQs,rot)

∂Trot

]
V︸ ︷︷ ︸

:=es,rot

+RsT
2
vib

[
∂ (lnQs,vib)

∂Tvib

]
V︸ ︷︷ ︸

:=es,vib

+RsT
2
el

[
∂ (lnQs,el)

∂Tel

]
V︸ ︷︷ ︸

:=es,el

+
εs,0
ms︸︷︷︸

:=es,0

,

(2.44)

with es,tr, es,rot, es,vib, es,el and es,0 given by

es,tr(Ttrh
) =

3

2
RsTtrh

, (2.45) es,rot(Trot) = RsTrot , (2.46) es,vib(Tvib) =

~ωs
kBTvib

e
~ωs

kBTvib − 1
RsTvib ,

(2.47)

es,el(Tel) =

∑
e gs,el,e

Ts,e
ms

e
− Ts,e
kBTel∑

e gs,el,e e
− Ts,e
kBTel

, (2.48) es,0 =
εs,0
ms

. (2.49)

Relations (2.20), (2.23) and (2.25) were used in order to obtain results (2.45), (2.46) and (2.48),

respectively. Because there’s no simple model for the electronic energy mode, equation (2.48) expresses

the general definition of es,el.

In respect of the partial pressure of the s-th species, ps, it was shown in section §2.3.1 that only the

translational mode of the particles contributes to this thermodynamic variable. Therefore, ps is given by

(2.37) with T substituted by Ttrh

ps = ρsRsTtrh
. (2.50)

One may then write ps,tr = ps = ρsRsTtrh
, and ps,rot = ps,vib = ps,el = ps,0 = 0.

The specific enthalpy associated to the s-th species, hs, is defined by hs = es + ps/ρs, which under

the assumption of separability of the internal energy modes of the particles can be shown to have a form

similar to (2.43):

hs = hs,tr + hs,rot + hs,vib + hs,el + hs,0 , (2.51)

where the contributions hs,tr, hs,rot, hs,vib, hs,el and hs,0 are given by

hs,tr(Ttrh
) =

5

2
RsTtrh

, (2.52) hs,rot(Trot) = RsTrot , (2.53) hs,vib(Tvib) =

~ωs
kBTvib

e
~ωs

kBTvib − 1
RsTvib ,

(2.54)

hs,el(Tel) =

∑
e gs,el,e

Ts,e
ms

e
− Ts,e
kBTel∑

e gs,el,e e
− Ts,e
kBTel

, (2.55) hs,0 =
εs,0
ms

. (2.56)

The contribution hs,tr = es,tr + ps,tr/ρs is the only one that differs from its specific internal energy

counterpart, es,tr, since all contributions for the partial pressure with the exception of ps,tr are null.
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It’s worthy to also treat here the thermodynamic variables associated to free electrons. Free electrons

express their energy through two energy modes: translation and spin. However there’s only one energy

level for spin - as explained in §2.2.2 - and therefore, spin only contributes to the ground state specific

internal energy of the flow associated to free electrons ee,0 = εe,0/me. Thus, one may write ee = ee,tr +ee,0

as well as he = he,tr + he,0. The contribution of the translational energy mode to the specific internal

energy of the flow associated to free electrons is the same as the one associated to heavy particles (2.45)

with Ttrh
substituted by Ttre . Only translation contributes to the partial pressure and therefore, similarly

to what happened with ee,tr, pe is given by (2.50) with Ttrh
substituted by Ttre

. One has ultimately

ee(Ttre
) =

3

2
ReTtre︸ ︷︷ ︸

=ee,tr(Ttre )

+
εe,0
me︸︷︷︸

=ee,0

,

(2.57)

pe = ρeReTtre
, (2.58) he(Ttre

) =
5

2
ReTtre︸ ︷︷ ︸

=he,tr(Ttre )

+
εe,0
me︸︷︷︸

=he,0

.

(2.59)

2.3.3 The case of the vibronic-specific state-to-state model

For the case of the vibronic-specific state-to-state model, temperatures for the translational and rotational

energy modes can be defined, but not for the vibrational and electronic ones. Let’s assume here that

particles of the s-th species are diatomic. The distribution of the particles of s-th species in their energy

levels follows the law (2.29). Taking this into account, the internal energy of the flow associated to the

s-th species is then given by

es = RsT
2
trh

[
∂ (lnQs,tr)

∂Ttrh

]
V︸ ︷︷ ︸

:=es,tr

+
∑
m,n

Ns,m,n
Ns

RsT
2
rot

[
∂ (lnQs,rot,n,m)

∂Trot

]
V︸ ︷︷ ︸

:=es,rot

+
∑
m,n

Ns,m,n
Ns

εs,vib,n,m

ms︸ ︷︷ ︸
:=es,vib

+
∑
n

Ns,n
Ns

εs,el,n

ms︸ ︷︷ ︸
:=es,el

+
εs,0
ms︸︷︷︸

:=es,0

.

(2.60)

Result (2.60) expresses es as a sum of the contributions of the sensible and ground level energies associated

to the energy modes of the particles, i.e. es = es,tr + es,rot + es,vib + es,el + es,0. The contribution es,0 is

the same as the one obtained for the case of the multi-temperature model, (2.49). Moreover, if the free

particle in a box and the rigid rotor models are considered for the translational and rotational energy

modes, respectively, then es,tr and es,rot can be shown to be also the same as the ones obtained for the

case of the multi-temperature model, (2.45) and (2.46). On the other hand, the contributions es,vib and

es,el are given by

es,vib =
∑
m,n

Ns,m,n
Ns

εs,vib,n,m

ms
, (2.61) es,el =

∑
n

Ns,n
Ns

εs,el,n

ms
. (2.62)

In respect of the partial pressure ps, since the translation is the only energy mode that contributes

to this quantity, and since the vibronic-specific state-to-state model considers the existence of a heavy

particle translational temperature Ttrh
, ps is given by (2.50) as happened with the case of the multi-

temperature model.

The specific enthalpy associated to the s-th species hs = es + ps/ρs may express itself through

the relation hs = hs,tr + hs,rot + hs,vib + hs,el + hs,0 in a similar manner to what happened with the
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specific internal energy es. Contribution hs,0 = es,0 has a form which is identical to the one for the

multi-temperature model (2.56). If the same choices for the models of the translational and rotational

energy models are made, the contributions hs,tr and hs,rot can be shown to correspond to the same

ones obtained for the case of the multi-temperature model, i.e. (2.52) and (2.53), respectively. The

contributions hs,vib = es,vib and hs,el = es,el are given by (2.61) and (2.62).

2.4 Collisional processes

In this section, processes initiated by collisions between particles are analysed. Such processes may induce

a chemical change of the colliding particles - corresponding to chemical reactions - or may solely cause

the excitation or de-excitation of their energy levels - corresponding to non-chemical collisional processes.

2.4.1 The rate coefficient for a collisional process

Rate coefficients for collisional processes by taking and not taking into account the involved energy levels

may be defined in an identical way. By treating a particle in some energy level as a chemical species, the

mathematical relation for the respective rate coefficient has the same form as the one for a homologous

process in which the involved energy levels aren’t regarded. To properly define the rate coefficient for

any collisional process, the term “species” will be employed here with some ambiguity: it may mean a

chemical species - if the energy levels involved in the collisional process aren’t regarded - or a chemical

species and some energy level associated to it - if the energy levels are indeed regarded.

2.4.1.1 Definition

It’s important to know the variation in time of the number of particles of a species in a plasma, so that

its composition may be described at each instant. The rate coefficient is not equivalent to this quantity,

but it’s intimately related to it. Let’s consider a collisional process expressed in the general form

ν1X1 + ν2X2 + ...+ νNSXNS ν′1X1 + ν′2X2 + ...+ ν′NSXNS ⇔

⇔
NS∑
s=1

νsXs

NS∑
s=1

ν′sXs , (2.63)

where Xs is the s-th species in the plasma, νs and ν′s are the associated stoichiometric coefficients5 at

the reactant and products sides, respectively. The index s goes from 1 to NS , being NS the number of

species in the plasma. The variation in time of a species amount concentration (number of particles per

unit of volume), due to this particular process, should follow some kind of law. History tells us that in

many (but not all) collisional processes a well-known law can be observed [3]. If the process is one of

5Note that if the s-th species isn’t present in one side or the other of the equation (or it isn’t at all present in the process)
the correspondent value νs or (and) ν′s are zero.
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those, then the variation in time of amount concentration of the s-th species is given by

d [Xs]

dt
= (ν′s − νs) k

NS∏
q=1

[Xq]
zq , (2.64)

where [Xq] is the concentration (number of particles per unit volume) of the species Xq, and zq is some

number associated to this species, which value may or may not be related to its stoichiometric coefficient

νq. It is known that if the process is a simple, single-step one, then zq = νq. For the sake of simplicity,

let’s from now on assume that the process is indeed a simple, single-step one. Also, it should be borne

in mind that the relation (2.64) doesn’t take into account the contribution from others processes, which

may occur in the plasma. To consider these contributions a summation on all the processes that involve

the species would be required.

The quantity k is the important rate coefficient which the current section tries to focus on. This rate

coefficient is specific to the process, and it may depend on the several different temperatures that govern

the system. One may then write k = k({Ti}), being {Ti} the set of governing temperatures. When taking

into account the fact that a process may be reversible, a better label for the rate coefficient should be

used: kf if the forward (from left to right) process is considered, and kb if the backward (from right to

left) process is considered instead. Each rate is specific to the respective direction. The right pointing

arrow in the chemical equation should be replaced by a double harpoon to represent this reversibility:

NS∑
s=1

νsXs

kf

kb

NS∑
s=1

ν′sXs . (2.65)

By taking into account the equation (2.64), and assuming that the process is a simple, single-step one,

it is easy to conclude that the variations in time of the s-th species amount concentration due to the

forward and backward processes, separately, are given by

(
d [Xs]

dt

)
f

= (ν′s − νs) kf
NS∏
q=1

[Xq]
νq , (2.66)

(
d [Xs]

dt

)
b

= (νs − ν′s) kb
NS∏
q=1

[Xq]
ν′q , (2.67)

respectively. The total variation in time of the s-th species amount concentration, due to one single

reversible process, is the sum of the two contributions:

d [Xs]

dt
=

(
d [Xs]

dt

)
f

+

(
d [Xs]

dt

)
b

⇔

d [Xs]

dt
= (ν′s − νs)

{
kf

NS∏
q=1

[Xq]
νq − kb

NS∏
q=1

[Xq]
ν′q

}
. (2.68)

If the rate coefficients kf and kb solely depend on some controlling temperature6, say Tc, then

the so-called quasi-steady-state condition (QSS) may be assumed [2], and one rate coefficient can be

obtained from the other by analysing the case of thermodynamic equilibrium. When the plasma is in

thermodynamic equilibrium, and therefore also in chemical equilibrium, the concentration of each species

6This concept of controlling temperature will turn to be more evident with the reading of section §2.4.1.2.
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stagnates. By denoting thermodynamic equilibrium conditions by [ ]∗, this statement is expressed by(
d[Xs]
dt

)∗
= 0, for s = 1, ..., NS . And from equation (2.68), one gets

0 = (ν′s − νs)

{
kf (Tc)

NS∏
q=1

(
[Xq]

∗)νq − kb(Tc)

NS∏
q=1

(
[Xq]

∗)ν′q}⇔

⇔ kf (Tc)

kb(Tc)
=

∏NS
q=1

(
[Xq]

∗)ν′q∏NS
q=1

(
[Xq]

∗)νq := Kc(Tc) , (2.69)

being Kc(Tc) a quantity denominated by concentration-wise equilibrium constant7 of the combined

processes (2.65), although it isn’t truly a constant, since it depends on the controlling temperature

Tc. Equation (2.69) is quite useful: if two of three quantities kf (Tc), kb(Tc) and Kc(Tc) are known, then

the other would also be known.

It is also possible to express the equilibrium constant through the specific Gibbs free energies of the

species involved in the process or even through their partition functions [3]. The respective expressions

are

Kc(Tc) = e−
∑NS
s=1(ν

′
s−νs)

gs,ref(Tc)

RsTc

(
pref

RTc

)∑NS
s=1(ν

′
s−νs)

,

(2.70)

Kc(Tc) = e
− ∆ε0
kBTc

NS∏
s=1

[
Qs(Tc, V )

NAV

]ν′s−νs
. (2.71)

These two relations contain a lot of physical quantities, which can’t be explained in a single sentence.

R is the molar gas constant and NA is the Avogadro constant. The quantity gs,ref(Tc) = gs(Tc, pref) is

the specific (in a mass basis) Gibbs free energy associated to the s-th species of the system, at a thermal

equilibrium temperature Tc and partial pressure ps = pref, being pref some reference value. The quantity

∆ε0 corresponds to the difference between the sum of the products ground level energies and the one

associated to the reactants, i.e.

∆ε0 =

NS∑
s=1

(ν′s − νs) εs,0 . (2.72)

And Qs(Tc, V ) is the partition function associated to the s-th species at the equilibrium temperature

Tc and volume V . Note that Qs(Tc, V )/V is independent of the volume V , since one has Qs(Tc, V ) =

Qs,tr(Tc, V )·Qs,int(Tc), and the translational partition functionQs,tr(Tc, V ), given by (2.20), is proportional

to V . Note that expressions (2.70) and (2.71) are stated assuming the number of particles to be regarded

in units of mole, hence the presence of R and NA. If, conversely, the units of the number of particles are

regarded as 1 (unity), then R and NA in the expressions should be substituted by kB and 1, respectively.

By substituting (2.69) in (2.68), one can get the important result

d [Xs]

dt
= (ν′s − νs) kf (Tc)

{
NS∏
q=1

[Xq]
νq − 1

Kc(Tc)

NS∏
q=1

[Xq]
ν′q

}
. (2.73)

Let’s now consider the case when NR different processes (each one with a forward and backward

directions) occur in the plasma. There’s a set of kf (Tc), kb(Tc), Kc(Tc), νs and ν′s values, with s =

7This quantity is expressed in terms of the species concentrations, hence the subscripted “c” in Kc.
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1, ..., NS , for each process. A subscripted index r = 1, ..., NR in each of these quantities symbols will

be used to identify the process which they refer to. The variation in time of the s-th species amount

concentration due to the full set of forward and backward NR processes, corresponds to a summation of

(2.73) in all r, i.e.

d [Xs]

dt
=

NR∑
r=1

((
ν′s,r − νs,r

)
kf,r(Tc)

{
NS∏
q=1

[Xq]
νq,r − 1

Kc,r(Tc)

NS∏
q=1

[Xq]
ν′q,r

})
. (2.74)

And the variation in time of the s-th species mass density due to these processes is simply given by

ω̇s := ms
d[Xs]
dt .

2.4.1.2 Computation

Now that the definion of rate coefficient for a collisional process was given, a way to compute it should

be introduced. The theory in this section will only focus on processes initiated by collisions between

two particles (these are therefore called binary collisions). Such processes can be identified through the

notation “A + B” (being A and B the species of the two colliding particles) in the reactants side of a

a chemical equation. A rate coefficient can be computed through a physical quantity denominated by

process cross section [45], σp. Before explaining what is meant by a process cross section, it’s necessary

to firstly introduce the so-called collisional cross section or scattering cross section, σ. The two are

correlated. The collisional cross section of two colliding particles corresponds to the area of a plane

surface transverse to their relative motion within which they must meet in order to scatter from each

other. For example, if the particles behave like hard spheres, which can only interact through contact

(billiard balls model), the collisional cross section is related to their geometric size, corresponding to

σ = πd2
AB, being dAB = rA + rB the distance between the spheres centres when their surfaces touch each

other (see Figure 2.5). In that case, the cross section area can be visualised as the area of the set of

all the possible B points where a collision is said to occur, projected to a plane normal to the relative

velocity, ~v.

A

B

d
A
B

r
A

r
B

Figure 2.5: Collisional cross section (black circle) for a collision between the particles A (red circle) and

B (blue circle) according to the billiard balls model. The figure depicts a very particular case: a tangent

collision (where the relative velocity vector is normal to the line that connects the two centres). The

plane of view is one perpendicular to the relative velocity vector, ~v.
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But a collision doesn’t necessarily mean contact. Real particles do interact at distance, through

electromagnetic forces, being the scattering cross section generally larger than the one that would be

obtained if the particles only interacted through contact.

The process cross section σp corresponds to a collisional cross section weighted by the probability of

the collision to induce the process: σp = P · σ, being P the given probability. Note that both collisional

cross section and process probability may depend on the relative velocity of the particles, ~v, or even solely

on its norm v (the relative speed of collision), which in such case, one has σ = σ(v) and P = P (v). Let’s

assume here this latter hypothesis.

Now, a helpful function should be introduced. Let f(v) be a function such that σp(v)f(v)[A][B] dv

is the number of forward processes, per unit of time, per unit of volume, induced by collisions between

the particles A and B, with a relative speed v ∈ [v, v + dv]. The function f(v) is commonly referred

to as the distribution of relative speeds. Let C be one of the products of the process, and νC and ν′C

its stoichiometric coefficients. Note that there’s also the possibility of C being identical to A or B. The

respective chemical equation can be expressed through

A + B ν′CC + · · · . (2.75)

By considering the definition of f(v), and by knowing that each forward process results in ν′C−νC new C

particles, it’s easy to find that the change, per unit of time of the amount concentration of the C species,

with v ∈ [v, v + dv], is given by

d

(
d [C]

dt

)
f

(v) = (ν′C − νC)σp(v)f(v)[A][B] dv . (2.76)

And the total change, per unit of time, of the amount concentration of the C species, is obtained by

summing all the contributions of each dv (resulting in an integral) along the whole range of relative speed

values, v ∈ [0,∞]: (
d [C]

dt

)
f

= (ν′C − νC)

{� ∞
0

σp(v)f(v) dv

}
[A][B] . (2.77)

By comparing (2.77) with (2.66), one can find an expression for the forward rate coefficient:

kf =

� ∞
0

σp(v)f(v) dv . (2.78)

If the species of both collision partners A and B have their translational energy mode in self-equilibrium, a

translational temperature Ttr,A and a translational temperature Ttr,B can be respectively assigned to the

particles. The distribution of absolute velocities of each particle will correspond to a Maxwell-Boltzmann

distribution, having the respective translational temperature as parameter [3]. The distribution of relative

speeds between the two particles is directly obtained from the distributions of absolute velocities. If A

and B are heavy particles and their translational temperatures are the same, i.e. Ttr,A = Ttr,B = Ttrh
,
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then the relative distribution of relative speeds can be shown to be

f(v, Ttrh
) =

4π

1 + δAB

(
µ

2πkBTtrh

) 3
2

v3e
− µv2

2kBTtrh , (2.79)

being µ = mA ·mB/ (mA +mB) the reduced mass of the particles, and δAB a Kronecker delta (it gives

1 if the particles are identical, i.e. if A=B, and 0 if not). Therefore, by substituting (2.79) in (2.78) one

may obtain

kf (Ttrh
) =

1

1 + δAB
·

√
8kBTtrh

πµ

2
(
kBTtrh

µ

)2

� ∞
0

σp(v)v3e
− µv2

2kBTtrh dv . (2.80)

This equation can be rewritten considering the relative kinetic energy of the colliding particles, E = 1
2µv

2,

instead of the relative speed, v, by performing a change of variables:

kf (Ttrh
) =

1

1 + δAB
·

√
8kBTtrh

πµ

(kBTtrh
)
2

� ∞
0

σp(E)Ee
− E
kBTtrh dE . (2.81)

And if the adimensional variable u = E
kBTtrh

is considered instead, one gets

kf (Ttrh
) =

√
8kBTtrh

πµ

1 + δAB

� ∞
0

σp(u, Ttrh
)u e−u du . (2.82)

It may now be opportune to introduce here the concept of average process cross section σp,av. This

quantity corresponds to the average of the process cross section with respect to the distribution of relative

speeds of the collision partners, i.e

σp,av(Ttrh
) =

�∞
0
σp(v)f(v, Ttrh

) dv�∞
0
f(v, Ttrh

) dv
=

�∞
0
σp(E)Ee

− E
kBTtrh dE

(kBTtrh
)
2 . (2.83)

With this relation taken into account, the rate coefficient of the process given by (2.81) may be

expressed in the manner

kf (Ttrh
) =

σp,av(Ttrh
)

1 + δAB

√
8kBTtrh

πµ
. (2.84)

The process may require a minimum value of relative kinetic energy of the colliding particles to occur

[3] - the so-called activation energy Ea. The process probability P (E) and consequently the process

cross section σp(E) = P (E)σ(E) would then be null for E < Ea. If the process instead occurs for any

relative kinetic energy E, the respective activation energy would correspond to Ea = 0. The lower limit

of integration in the expression (2.81) may be then substituted by Ea without loss of generality, which

ultimately gives [2]

kf (Ttrh
) =

1

1 + δAB
·

√
8kBTtrh

πµ

(kBTtrh
)
2

� ∞
Ea

σp(E)Ee
− E
kBTtrh dE =

√
8kBTtrh

πµ

1 + δAB

� ∞
Ea

kBTtrh

σp(u, Ttrh
)u e−u du⇔
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⇔ kf (Ttrh
) =

√
8kBTtrh

πµ

1 + δAB
e
− Ea
kBTtrh

� ∞
0

σp(w, Ttrh
)

(
w +

Ea
kBTtrh

)
e−w dw ⇔

⇔ kf (Ttrh
) =

√
8kBTtrh

πµ

1 + δAB
e
− Ea
kBTtrh

[(� ∞
0

σp(w, Ttrh
)w e−w dw

)
+

(� ∞
0

σp(w, Ttrh
) e−w dw

)
Ea

kBTtrh

]
,

(2.85)

being w = u− Ea/kBTtrh
.

Also, it’s worthy to say that a specific collisional frequency, Z, can be simply obtained from (2.80) if

one substitutes the process cross section by the collisional cross section, i.e. σp ↔ σ, giving

Z(Ttrh
) =

σav(Ttrh
)
√

8kBTtrh

πµ

1 + δAB
. (2.86)

The quantity σav corresponds to the average collisional cross section, with a definition homologous to

the expression (2.83). The quantity Z is such that Z · [A] · [B] corresponds to the frequency of collisions

between particles A and B per unit of volume.

If A corresponds to a heavy particle with a translational temperature Ttrh
, and B to a free electron

with a translational temperature Ttre
, one obtains the distribution of relative speeds by simply assuming

the heavy particles to be fixed in space, since the small mass of the free electrons makes them much

faster than the heavy particles [2]. In such conditions, the formulae for the rate coefficient have the

same structure as the ones above, with the reduced mass µ substituted by the electron mass me, the

relative speed v substituted by the absolute speed of the electrons and the heavy particle temperature

Ttrh
substituted by the free electron translational temperature Ttre

. And since the collision partners are

different, one has also δAB = 0, which ultimately gives

kf (Ttre
) =

√
8kBTtre

πme

2
(
kBTtre

me

)2

� ∞
0

σp(v)v3e
− mev

2

2kBTtre dv. (2.87)

The integrals that appear in the formulae for the process rate coefficients aren’t usually analytically

solvable. The known process cross section values σp are often discrete (being obtained through experiment

or even through theory allied with a numerical method) which makes a numerical procedure for the

integrals evaluation much more convenient. Even if an analytical process cross section function σp(E) is

known (being obtained through theory or by curve fitting of experimental results) the resultant integrands

functions are usually still too complicated to make the respective integrals analitically solvable. The

process rate coefficients are then ordinarly obtained through a numerical procedure, resulting in a set

of discrete rate values instead of a curve. A praticabillity problem arises with this circumstance: CFD

simulations require rate values evaluated at some temperatures that may or may not belong to the set

of ones associated to the previously compute rates. Obtaining a rate coefficient function by fitting the

discrete set of rate values may solve this problem. However a proper fitting curve is required to model

the data. History tells us that the process rate coefficient should approximately follow a law [3]. The
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modified Arrhenius equation

kf (Tc) = ATc
ne
− Ea
kBTc , (2.88)

is one possible candidate for that law, being A, n and Ea some constants particular to the process, and Tc

the respective controlling temperature. The constant Ea has the physical meaning of an activation energy,

and for a matter of fact, relation (2.88) do share a similar structure with the previously derived relation

(2.85) for the rate coefficient which takes into account such activation energy. The term “modified” was

employed in the designation “modified Arrhenius equation”, since in the past, a more simple Arrhenius

equation was introduced: kf (Tc) = Ae
− Ea
kBTc . The modified one is however more adjustable, having one

more free parameter (n). A physically coherent function kf (Tc) can be achieved by fitting the function

(2.88) to the previously computed (by equation (2.81)) rate values. If the rate data points don’t follow

a modified Arrhenius equation, then a function with even more degrees of freedom should be used. An

example of such function is

kf (Tc)

[kf ]
= exp

[
a1

(
Tc

Tc,ref

)−3

+ a2

(
Tc

Tc,ref

)−2

+ a3

(
Tc

Tc,ref

)−1

+ a4 ln

(
Tc

Tc,ref

)

+a5 + a6
Tc

Tc,ref
+ a7

(
Tc

Tc,ref

)2

+ a8

(
Tc

Tc,ref

)3

+ a9

(
Tc

Tc,ref

)4
]

, (2.89)

being {ai}, with i = 1, ..., 9, the set of free parameters, which are adimensional, and Tc,ref = 1000K a

reference temperature. Note that the function is adimensional, hence the division of the rate coefficient

by its units [kf ] in the left-hand side of the relation. Function (2.89) can be reduced to the modified

Arrhenius function if the constraints 

a3 = − Ea
kB Tref

,

a4 = n ,

a5 = ln
(
Tnc,ref A

[kf ]

)
,

ai = 0, ∀i 6= 3, 4, 5 .

(2.90)

are applied to the free parameters. This property is rather useful. A function with a lot of parameters

can turn to be unstable when fitting the data. Such function requires good initial estimates to properly

converge. By first fitting a modified Arrhenius function (which has less free parameters, and therefore

is more stable), applying the transformation (2.90) (and also substituting the null ai constants by small

values), and then performing a second fit with the resultant nine parameters function as initial estimate,

convergence is more easily achieved.

2.5 Radiative processes

Radiative processes correspond to transitions between energy levels of atomic particles, molecular particles

and free electrons [3], or the assembly and disassembly of components (nuclei and electrons) of the internal

structure of the heavy particles, in which the involved energy change is transferred to or received from
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photons. The photon is a massless particle corresponding to the quantum (the minimum amount) of

electromagnetic radiation, having an energy E = hν according to the Planck-Einstein relation, being h

the Planck constant, and ν the frequency of the electromagnetic wave associated with it. And since the

wavelength of the electromagnetic wave λ is related to ν through λ = c/ν, being c the speed of light, one

may also write E = hc/λ. The law of conservation of energy tells that the net change of energy of the

particles involved in the radiative process needs to be equal to the absorbed photon energy (for the case

of absorption) or the symmetric of the emitted photon energy (for the case of emission).

The transitions that occur in such processes can be divided into three groups: bound-bound, bound-free

(and free-bound) and free-free transitions. The nomenclature is built in respect of the state of attachment

or detachment of nuclei or/and electrons in the particles internal structure, before and after the transition

occurs.

Bound-bound transitions correspond to radiative processes in which all the components (nuclei and

electrons) of the internal structure of the particles that were previously attached (bound) still remain

attached after the transitions. These particles need to be heavy particles (since they are the ones that

may have a multiplicity of components in the internal structure). The transitions are between two

internal energy levels, which are by definition quantised. Therefore, in bound-bound transitions of atomic

particles, solely changes in their electronic state can happen (atomic particles have only one internal

energy mode, the electronic). And in bound-bound transitions of molecular particles, the changes can

be in their vibrational, rotational, and electronic states. Such transitions correspond to spontaneous

emissions, induced (or stimulated) emissions and absorptions. A spontaneous emission occurs when the

particle, without being subjected to any external stimulus, transits to a lower energy level, emitting a

photon. The photon energy is equal to the gap between the two levels. An induced emission occurs when

the particle after being “hit” by a photon transits to a lower energy level, emitting another photon with

same energy, direction, phase and polarisation as the incident one. Note that the incident photon isn’t

absorbed, it only interacts with the particle. Also, note that both incident and emitted photons need

to have an energy equal to the gap between the initial and final levels. In a photon absorption, as the

name says, the incident photon is absorbed by the particle, causing an excitation: an higher energy level

is achieved. The incident photon needs therefore to have the same energy as the gap between the two

levels8.

Bound-free transitions imply a detachment of components of the particles. Therefore, these particles

also need to be heavy particles. The energy of the incident photon needs to be higher or equal to

the binding energy of the components that suffer the detachment. The remnant energy (the difference

between the photon energy and the binding energy) will contribute to the translational kinetic energy

of the detached components. Since the energy levels associated to the translational kinetic energy mode

of the particles are so close together that a continuum of energy values may be assumed, there’s no

requirement for the incident photon to have some particular discrete energy value. The reverse process

is denominated by free-bound transition.

8One should however to be careful with these statements since in this introductory text the uncertainty principle is
disregarded, and the heavy particle is considered to be stationary and isolated from other particles. Such conditions do not
hold in reality, and the further details treated in section §2.5.2.1 need to be taken into account.
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A bound-free transition may correspond to a photoionisation - in which the detached component is an

electron - or to a photodissociation - in which the detached component is an atomic or molecular particle.

The reverse of these processes, being of the type free-bound, are denominated radiative recombination

and radiative association.

Finally there are the free-free transitions, in which a free electron remains free after the interaction.

A free-free transition corresponds to the so-called bremsstrahlung9 process, in which the interaction of

two charged particles results in the emission of radiation by them. Typically, bremsstrahlung is observed

in free electron-nucleus interactions, or free electron-positive ion interactions.

For simplicity reasons, this work will only address the bound-bound transitions. Furthermore, only

bound-bound transitions that involve electronic and vibrational energy modes of the particles will be

considered. Anyway, a generalisation that accounts transitions in the rotational levels may be done in a

straightforward manner.

2.5.1 The radiation field

The radiation field of a system may be described by the so-called specific radiant intensity Iλ. This

quantity is defined as the radiant energy at wavelengths λ ∈ [λ, λ + dλ], transported by photons

propagating at azimuthal angles ϕ ∈ [ϕ, ϕ+dϕ] and polar angles θ ∈ [θ, θ+dθ], that cross an infinitesimal

surface dS located in ~r, normal to the direction of propagation, during the interval of time [t, t+ dt], per

unit of area, time, solid angle and wavelength. A frequency-specific radiant intensity Iν , which is given per

unit of frequency instead of wavelength, can be shown to be related to the wavelength-specific counterpart

Iλ simply by10 Iν = (c/ν2)Iλ. It can also be proved that in thermodynamic equilibrium (which also

implies radiative equilibrium, ultimately meaning that radiation doesn’t contribute to a change in the

distribution of the species states populations) the distribution of the photon states population is such

that the specific radiant intensity is given by [3]

I∗λ(~r, t, ϕ, θ, λ) =
2hc2

λ5
(
e

hc
λkBT − 1

) := Bλ(λ, T ) . (2.91)

The resulting quantity Bλ(λ, T ) is the so-called Planck function. Equation (2.91) tells that under

conditions of thermodynamic equilibrium, the specific radiant intensity Iλ is an isotropic variable, solely

depending on the wavelength λ and equilibrium temperature T at point ~r and instant t.

2.5.2 Bound-bound transitions

2.5.2.1 Line broadening and shift

Although one may at first expect the radiation field generated by bound-bound transitions to be completely

discrete due to the fact that the internal energy levels of particles are associated to discrete energy values,

it is actually continuous. A plot of the specific radiant intensity Iλ versus wavelength λ would in fact

show finite-height peaks - the so-called broadened lines, instead of infinite-height lines associated to Dirac

9From the German: “bremsen” means “to brake” and “strahlung” means “radiation”.
10Note that one has dλ = d(c/ν) = −c/ν2dν.
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delta functions. One contribution to these line broadening and shift corresponds to the natural line

broadening which is closely related to the Heisenberg uncertainty principle: there’s an uncertainty on the

energy of the heavy particle, resulting in an uncertainty on the energy of the emitted or absorbed photon

[3, 46–48]. This contribution is however usually tiny. As Griem [47] says, “[n]atural line broadening

is almost always completely negligible in applications of plasma spectroscopy”. Collisions between the

particles shorten the lifetimes of their states ultimately influencing the breadth of the lines [48]. Such

contribution - termed collisional broadening - may be accounted by considering an optical collisional

frequency per particle [46]. This quantity is intimately related to the respective collisional frequency per

particle. Another contribution is the Doppler broadening which occurs with the thermal agitation motion

of the particles making the frequency of the radiation observed from some reference point to be different

from the one observed by the emitter or absorber [3, 46–48]. Additionally, the electric field produced

by the particles in the system may induce a splitting of the particles energy levels and therefore also a

splitting of the spectral lines. Since this is a result of interactions between particles of the system, it

is generally called pressure broadening [47]. The phenomena may be associated to an interaction of a

charged particle with another particle - being termed Stark broadening - or an interaction between two

neutral particles through van der Waals forces - hence termed van der Waals broadening - or a resonant

interaction between two particles of the same species - hence termed resonance broadening [47–49]. Van

der Waals broadening was disregarded in this work since no reasonably practical model for the mechanism

was found in the literature. Also, it was assumed that line broadening occurred without shift.

2.5.2.2 The Einstein coefficients

Bound-bound transitions can be described quantitatively through the so-called Einstein coefficients [3].

There’s an Einstein coefficient for each of the three possible types of bound-bound transitions. The

physical meaning of these coefficients will now be presented for the case of molecular particles (since it

is more general).

The Einstein coefficient associated to spontaneous emission, Ae
′,v′

s,e,v, is defined such that the number

of transitions of particles of the s-th species from the electronic level e and vibrational level v to the

electronic level e′ and vibrational level v′ 11 per unit of volume, time and solid angle, in ~r ∈ [x, x+ dx]×

[y, y + dy] × [z, z + dz], during the interval of time [t, t + dt], and spontaneously emitting photons at

azimuthal angles ϕ ∈ [ϕ, ϕ+ dϕ] and polar angles θ ∈ [θ, θ + dθ], is given by

−
(
d2ns,e,v
dt dΩ

)e′,v′,se
s,e,v

(~r, t, ϕ, θ) =
Ae
′,v′

s,e,v

4π
ns,e,v(~r, t) , (2.92)

where ns,e,v = dNs,e,v/dV corresponds to the number density or amount concentration (number of

particles per unit of volume) of s-th species particles in the electronic level e and vibrational level v. The

superscript term “se” in (2.92) is a label for spontaneous emission. Because e, e′, v and v′ represent levels

and not states, the Einstein coefficient Ae
′,v′

s,e,v is level-specific and should be denominated in that way to

11Let’s assume in this section that the energy associated to the vibronic level (e, v) is higher than the one associated to
(e′, v′).
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avoid ambiguity problems with the state-specific counterpart. Note that Ae
′,v′

s,e,v corresponds to a constant

- thus, Ae
′,v′

s,e,v doesn’t depend on the emission direction angles ϕ and θ, and one can say that the law

(2.92) assumes that the spontaneous emission is an isotropic process. The variation in time of the number

density of s-th species particles in the vibronic level (e, v), due to transitions by spontaneous emission

from (e, v) to (e′, v′) can be obtained by multiplication of (2.92) by sin θ (note that dΩ = sin θ dϕ dθ),

integration in ϕ and θ and transfer of the minus sign to the right hand side of the equation. The result is

(
dns,e,v
dt

)e′,v′,se
s,e,v

(~r, t) = −Ae
′,v′

s,e,v ns,e,v(~r, t) . (2.93)

The level-specific Einstein coefficient associated to photon absorption, Be,vs,e′,v′ , is defined such that in a

radiation field of specific radiant intensity Iλ, the number of transitions of particles of the s-th species from

(e′, v′) to (e, v), per unit of volume, time and solid angle, by absorbing photons at angles ϕ ∈ [ϕ, ϕ+ dϕ]

and θ ∈ [θ, θ + dθ], is given by

(
d2ns,e,v
dt dΩ

)e,v
s,e′,v′

(~r, t, ϕ, θ) =
Be,vs,e′,v′

4π
ns,e′,v′(~r, t)

(� ∞
0

Iλ(~r, t, ϕ, θ, λ) · φe
′,v′

λ,s,e,v(~r, t, λ) dλ

)
, (2.94)

in which a superscript term for absorption wasn’t added since it is only by absorption that such radiative

transition can occur. The function φe
′,v′

λ,s,e,v corresponds the so-called line-shape factor [3] associated

to the particular set of vibronic levels (e, v) and (e′, v′) of the s-th species. In absorption, it may be

interpreted as the probability density function of an incident photon of wavelength λ to be absorbed,

causing a transition of the s-th species particle from (e′, v′) to (e, v). By multiplying (2.94) by sin θ, and

integrating it with respect to ϕ and θ one would get the variation in time of the number density of s-th

species particles in (e, v), due to transitions by photon absorption from (e′, v′) to (e, v):

(
dns,e,v
dt

)e,v
s,e′,v′

(~r, t) =
Be,vs,e′,v′

4π
ns,e′,v′(~r, t)

{� π

0

[� 2π

0

(� ∞
0

Iλ(~r, t, ϕ, θ, λ) · φe
′,v′

λ,s,e,v(~r, t, λ) dλ

)
dϕ

]
sin θ dθ

}
.

(2.95)

In a similar manner to the absorption, the level-specific Einstein coefficient associated to induced emission

Be
′,v′

s,e,v is defined such that in a radiation field of specific radiant intensity Iλ, the number of transitions

of particles of the s-th species from (e, v) to (e′, v′), per unit of volume, time and solid angle, by induced

emission, emitting photons at angles ϕ ∈ [ϕ, ϕ+ dϕ] and θ ∈ [θ, θ + dθ], is given by

−
(
d2ns,e,v
dt dΩ

)e′,v′,ie
s,e,v

(~r, t, ϕ, θ) =
Be
′,v′

s,e,v

4π
ns,e,v(~r, t)

(� ∞
0

Iλ(~r, t, ϕ, θ, λ) · φe
′,v′

λ,s,e,v(~r, t, λ) dλ

)
, (2.96)

where the superscript term “ie” is a label for induced emission. By multiplication of (2.96) by sin θ,

integration in ϕ and θ, and transfer of the minus sign to the right hand side one would get

(
dns,e,v
dt

)e,v,ie
s,e′,v′

(~r, t) = −
Be
′,v′

s,e,v

4π
ns,e,v(~r, t)

{� π

0

[� 2π

0

(� ∞
0

Iλ(~r, t, ϕ, θ, λ) · φe
′,v′

λ,s,e,v(~r, t, λ) dλ

)
dϕ

]
sin θ dθ

}
.

(2.97)

The variation in time of the number density of s-th species particles in the vibronic level (e, v), due
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solely to radiative transitions from (e, v) to (e′, v′) is the sum of the contributions from the spontaneous

emission (2.93) and induced emission (2.97):

(
dns,e,v
dt

)e′,v′
s,e,v

(~r, t) =

(
dns,e,v
dt

)e′,v′,se
s,e,v

(~r, t) +

(
dns,e,v
dt

)e′,v′,ie
s,e,v

(~r, t)⇔

⇔
(
dns,e,v
dt

)e′,v′
s,e,v

(~r, t) = −ns,e,v(~r, t)

(
Ae
′,v′

s,e,v +
Be
′,v′

s,e,v

4π

{� π

0

[� 2π

0

(� ∞
0

Iλ(~r, t, ϕ, θ, λ) · φe
′,v′

λ,s,e,v(~r, t, λ) dλ

)
dϕ

]
sin θ dθ

})
.

(2.98)

It can be easily shown that the three Einstein coefficients are correlated. Since these correspond to

properties of the particles and not of the macroscopic system, one may extract a relation between them

by simply considering a system in thermodynamic equilibrium and where the line broadening phenomena

is negligible. In such circumstances the line-shape factor may be approximated by a Dirac delta function,

implying

� ∞
0

Iλ(~r, t, ϕ, θ, λ) · φe
′,v′

λ,s,e,v(~r, t, λ) dλ ≈
� ∞

0

Iλ(~r, t, ϕ, θ, λ) · δ(λ− λe
′,v′

s,e,v) dλ = Iλ(~r, t, ϕ, θ, λe
′,v′

s,e,v) ,

(2.99)

being λe
′,v′

s,e,v the wavelength of a photon with a energy equal to the gap between the involved energy

levels. In thermodynamic equilibrium, and therefore also in radiative equilibrium, radiative processes

can’t contribute to a change in the population of the particles levels. Thus,

(
dns,e,v
dt

)∗
(~r, t) = 0, ∀ (e, v) . (2.100)

A principle should be invoked when speaking about equilibrium: the principle of detailed balancing. This

principle tells us that equilibrium can only be achieved if each elementary process and his reverse are in

equilibrium as well. Note that no reverse process is associated to spontaneous emission, and the above

proposition should be taken with care since the term “elementary process” was used with some abuse.

Herein an “elementary process” is considered to be the most smallest combination of processes that can

be counterbalanced. Therefore, an “elementary process” associated to a transition from an upper to a

lower level corresponds to a combination of both spontaneous and induced emission, and an “elementary

process” associated to a transition from a lower to an upper level corresponds to absorption. Detailed

balancing applied to bound-bound transitions can be expressed mathematically by

(
dns,e,v
dt

)e′,v′,∗
s,e,v

(~r, t) +

(
dns,e,v
dt

)e,v,∗
s,e′,v′

(~r, t) = 0, ∀ (e, v), (e′, v′) . (2.101)

On the other hand, since the population of levels in equilibrium follows a Boltzmann distribution, it can

be shown that the ratio between the number densities ns,e′,v′ and ns,e,v is given by

n∗s,e′,v′(~r, t)

n∗s,e,v(~r, t)
=
gs,e′,v′

gs,e,v
e

hc

λ
e′,v′
s,e,v·kBT . (2.102)
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By substituting (2.91), (2.95), (2.98) and (2.102) in (2.101), neglecting line broadening, one gets

Ae
′,v′

s,e,v

Be
′,v′
s,e,v

=
2hc2(
λe
′,v′
s,e,v

)5 ·

Be,v
s,e′,v′

Be
′,v′
s,e,v

· gs,e′,v′gs,e,v
· e

hc

λ
e′,v′
s,e,v·kBT − 1

e
hc

λ
e′,v′
s,e,v·kBT − 1

. (2.103)

And since Einstein coefficients don’t depend on macroscopic variables, the left hand side of equation

(2.103) doesn’t depend on T , neither the right hand side (due to the equality relation). By knowing that

the derivative of the right hand side in respect of T needs to be null, one can get the result

Be,vs,e′,v′

Be
′,v′
s,e,v

=
gs,e,v
gs,e′,v′

. (2.104)

And by substitution of (2.104) in (2.103), it’s possible to obtain

Ae
′,v′

s,e,v

Be
′,v′
s,e,v

=
2hc2(
λe
′,v′
s,e,v

)5 . (2.105)

Equations (2.104) and (2.105) allows the computation of two Einstein coefficients from knowledge of the

other one.

It’s important to mention that some authors consider a different definition for the Einstein coefficients.

For instance, Vincenti and Kruger [3] consider an Einstein coefficient for spontaneous emission which is

given by the one employed here divided by 4π. And for the induced emission and absorption processes

they consider Einstein coefficients which are given by the ones employed here divided by 4π as well as

by
(
λe
′,v′

s,e,v

)2

/c. The reason for the second division is due to the fact that Vincenti and Kruger regard a

specific radiative intensity in (2.94) and (2.96), which is with respect to frequency instead of wavelength.

2.5.2.3 Emission and absorption coefficients

Each element of matter in a system may emit and absorb photons. The emission coefficient jλ is defined

as the radiative energy emitted at wavelengths λ ∈ [λ, λ + dλ] and at angles ϕ ∈ [ϕ, ϕ + dϕ] and

θ ∈ [θ, θ+dθ], per unit of volume, time, solid angle and wavelength, by particles in the element of volume

[x, x+dx]×[y, y+dy]×[z, z+dz] during the interval of time [t, t+dt]. On the other hand, the absorption

coefficient kλ multiplied by the specific radiative intensity Iλ corresponds to the radiative energy absorbed

at wavelengths λ ∈ [λ, λ+dλ] and at angles ϕ ∈ [ϕ, ϕ+dϕ] and θ ∈ [θ, θ+dθ] by particles in the element

of volume [x, x + dx] × [y, y + dy] × [z, z + dz] during the interval of time [t, t + dt]. The variation in

time of the volumetric radiative energy in ~r ∈ [x, x + dx] × [y, y + dy] × [z, z + dz] during the interval

of time [t, t+ dt] due to solely emission and absorption of photons with wavelengths λ ∈ [λ, λ+ dλ] and

direction angles ϕ ∈ [ϕ, ϕ+ dϕ] and θ ∈ [θ, θ,+dθ], per unit of solid angle and wavelength, by particles

in this same element of volume is then given by

d2Ω̇rad

dΩdλ
(~r, t, ϕ, θ, λ) = jλ(~r, t, ϕ, θ, λ)− kλ(~r, t, ϕ, θ, λ) · Iλ(~r, t, ϕ, θ, λ) (2.106)
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From the definitions of the Einstein coefficients for spontaneous emission (2.92) and induced emission

(2.96) it can be shown that, if solely bound-bound transitions occur in the system, the emission coefficient

is given by

jλ(~r, t, ϕ, θ, λ) =
hc

λ

{[∑
se

Ae
′,v′

s,e,v

4π
φe
′,v′

λ,s,e,v(~r, t, λ)ns,e,v(~r, t)

]
+ Iλ(~r, t, ϕ, θ, λ)

[∑
ie

Be
′,v′

s,e,v

4π
φe
′,v′

λ,s,e,v(~r, t, λ)ns,e,v(~r, t)

]}
,

(2.107)

where the sums are done in all the spontaneous and induced emission processes of all heavy particles12.

And similarly, from the definition of the Einstein coefficient for absorption (2.94), it can be shown that

the absorption coefficient is given by

kλ(~r, t, ϕ, θ, λ) =
hc

λ

[∑
a

Be,vs,e′,v′

4π
φe
′,v′

λ,s,e,v(~r, t, λ)ns,e′,v′(~r, t)

]
, (2.108)

being the sum done in all the absorption processes of all heavy particles.

2.6 Fluid flow governing equations

The formulation of balance equations for mass, linear momentum and energy of a multicomponent fluid13

flow requires the definition of control volumes that properly account the presence of several different

species. Let V (t) be some space in the fluid and ∂V (t) its boundary. The space may vary in time and

therefore also its boundary, hence the instant of time t in their arguments. Let Bs(t) correspond to some

extensive physical quantity associated to the s-th species in the space V (t) and βs(~r, t) the respective

specific (in a mass basis) quantity. The two quantities are related to each other through

Bs(t) =

�
V (t)

ρs(~r, t)βs(~r, t) dV . (2.109)

The variation in time of Bs(t) is given according to the Reynolds transport theorem14 by

dBs
dt

(t) =
d

dt

(�
V (t)

ρs(~r, t)βs(~r, t) dV

)
=

�
V (t)

∂ [ρs(~r, t)βs(~r, t)]

∂t
dV+

�
∂V (t)

ρs(~r, t)βs(~r, t) (~v · ~n) dS ,

(2.110)

being ~v the velocity of a point on the surface that represents the boundary ∂V (t), and ~n the respective

outward-pointing normal vector at that point.

Physical laws may be applied more conveniently if V (t) is chosen so that the boundary ∂V (t) moves

with the average bulk of particles of the s-th species, implying that ~v = ~us in (2.110), being ~us the flow

velocity15 of s-th species particles. Let Vs(t) = V (t) be the space and ∂Vs(t) = ∂Vs its boundary in such

12Although the notation employed in (2.107) is solely with respect to the molecular particles, it does as well implicitly
refer to the atomic particles (for which the labels v and v′ should be supressed).

13A multicomponent fluid is one which is constituted by multiple chemical species.
14The Reynolds transport theorem is also referred to as the Leibniz integral rule.
15The flow is considered to be constituted by a continuum of material and therefore the velocity that one needs to regard

(the so-called flow velocity) corresponds to an average of the velocities of the individual particles.
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circumstances. The Reynolds transport theorem (2.110) would then give

dBs
dt

(t) =
d

dt

(�
Vs(t)

ρs(~r, t)βs(~r, t) dV

)
=

�
Vs(t)

∂ [ρs(~r, t)βs(~r, t)]

∂t
dV+

�
∂Vs(t)

ρs(~r, t)βs(~r, t) (~us · ~n) dS .

(2.111)

Note that the particles of different species may move with different flow velocities ~us, due to the mass

diffusion phenomenon [3]. A flow velocity is attributed to the mixture, corresponding to a mass average

of the species flow velocities:

~u :=

∑
sMs~us∑
sMs

=
∑
s

cs~us . (2.112)

This quantity corresponds to the so called mixture flow velocity. The flow motion of the s-th species

relatively to the mixture is described by the respective diffusion flow velocity and the mass diffusion flux

vector - a physical quantity that needs to be modelled. These two quantities are given by

~u′s := ~us − ~u , (2.113) ~Js := ρs~u′s , (2.114)

respectively. Let S be some surface and ~n its normal vector. The quantity
�

S

(
~Js · ~n

)
dS gives the

mass of s-th species particles that escapes from the mixture (in which it was previously in) through the

surface S to the neighbour domain that ~n points to, per unit of time. The diffusive motion of the s-th

species occurs with a gradient in the mass fraction of the s-th species cs or even with a gradient in the

temperatures [3]. For the most cases the latter contribution can be disregarded, since it is usually much

smaller than the former contribution [1]. It’s worthy to mention that the sum of the mass diffusion flux

vectors in all species is null, i.e. ∑
s

~Js = ~0 , (2.115)

which can be shown by simply invoking relations (2.112) and (2.113).

Let’s now consider a space V (t) whose boundary ∂V (t) moves with the bulk velocity ~u. Let’s also

consider a space Vs(t) whose boundary ∂Vs(t) moves with the flow velocity of the s-th species particles.

The space Vs(t) is chosen so that it matches V (t) in the instant of time t. An illustrative evolution in

time of Vs(t) and Vq(t) (being q the q-th species) is depicted by Figure 2.6, as well as the respective flow

velocities of their centres ~us(t) and ~uq(t). This picture is found to be helpful in the treatment of the

following sections.
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~us(t− dt)
Vs(t− dt)

~uq(t− dt)

Vq(t− dt)

~u(t)

V (t)

~us(t+ dt)

Vs(t+ dt)

~uq(t+ dt)

Vq(t+ dt)

Figure 2.6: Evolution in time of two spaces Vs(t) and Vq(t) whose boundaries move with flow velocities

associated to the s-th and q-th species, respectively. The two spaces match the mixture space V (t) at

instant t.

2.6.1 The case of the single-temperature model

2.6.1.1 Balance equation for mass

The balance equation for the mass of the s-th species particles may be obtained through (2.111) with

βs = 1. The variation of mass of the s-th species particles Ms in the space Vs can only happen through

chemical reactions occurring inside it. Let ω̇s be the variation of mass of the s-th species particles per

unit of time and per unit of volume due to these chemical reactions16. One has then dBs
dt =

�
Vs(t)

ω̇s dV

on the left side of equation (2.111), which ultimately leads to

�
Vs(t)

ω̇s dV =

�
Vs(t)

∂ρs
∂t

dV +

�
∂Vs(t)

ρs (~us · ~n) dS, ∀s . (2.116)

By applying the divergence theorem to the surface integral in (2.116), and choosing an elementary space

Vs, it’s possible to express (2.116) through

ω̇s dV =
∂ρs
∂t

dV + div (ρs~us) dV ⇔
∂ρs
∂t

+ div (ρs~us) = ω̇s, ∀s . (2.117)

And by using relations (2.113) and (2.114), one can obtain the final form of a differential equation for

the balance of mass of the s-th species particles [50]:

∂ρs
∂t

+ div (ρs~u) = −div
(
~Js

)
+ ω̇s, ∀s . (2.118)

16A way to compute ω̇s was described in section §2.4.1.1.
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2.6.1.2 Balance equation for momentum

The balance equation for the momentum of the s-th species particles may be obtained through (2.111)

with βs = ~us. According to the Newton’s second law the variation in time of the momentum of s-

th species particles inside the space Vs is equal to the resultant of all forces applied on them: ~Fs =

~F ext
s,B + ~F ext

s,S +
∑
q
~F int
q,s . The contribution ~F ext

s,B =
�

Vs(t)
ρs ~fs dV corresponds to the external body force

(e.g. gravity) applied to the s-th species particles in the space Vs (being ~fs the respective specific (in a

mass basis) force). The contribution ~F ext
s,S =


∂Vs(t)

([σs] · ~n) dS =
�

Vs(t)
div ([σs]) dV , corresponds to

the surface force applied by the outer particles to the s-th species inner particles of the space Vs. The

tensor [σs] corresponds to the Cauchy’s stress tensor associated to the s-th species, which is a sum of two

contributions, one due to viscosity and another due to pressure, [σs] = [τs]− ps[I], being [τs] the viscous

stress tensor associated to the s-th species and [I] the identity tensor. Lastly,
∑
q
~F int
q,s is the sum of the

forces applied by all the inner particles to the s-th species inner particles of the space Vs. One has then

dBs
dt = ~Fs on the left side of equation (2.111), which by invoking the divergence theorem for the surface

integral on the right side, ultimately gives

�
Vs(t)

ρs ~fs dV+

�
Vs(t)

div ([σs]) dV+
∑
q

~F int
q,s =

�
Vs(t)

∂ (ρs~us)

∂t
dV+

�
Vs(t)

div (ρs~us ⊗ ~us) dV, ∀s .

(2.119)

It’s particularly useful to sum (2.119) in all species (i.e. in s). It’s difficult to evaluate
∑
q
~F int
q,s , but

it’s trivially easy to evaluate
∑
s,q

~F int
q,s : this quantity is null due to the Newton’s third law17. Also, by

knowing that Vs = V for all s at instant t, and by choosing an elementary space V , the sum of (2.119)

in s can be shown to give(∑
s

ρs ~fs

)
dV + div

(∑
s

[σs]

)
dV =

∂ (
∑
s ρs~us)

∂t
dV + div

(∑
s

ρs~us ⊗ ~us

)
dV ⇔

⇔
∂ (
∑
s ρs~us)

∂t
+ div

(∑
s

ρs~us ⊗ ~us

)
= div

(∑
s

[σs]

)
+

(∑
s

ρs ~fs

)
. (2.120)

One can define a Cauchy’s stress tensor for the mixture expressed by

[σ] :=
∑
s

[σs] = [τ ]− p[I] , (2.121)

being [τ ] :=
∑
s[τs] the respective mixture viscous stress tensor. By regarding the mixture as a Newtonian

fluid and by assuming the Stokes’ hypothesis18, it’s possible to show that the i, j-th entry of the mixture

viscous stress tensor τij is given by

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
−2

3
µ︸ ︷︷ ︸

=λ

δij
∑
i

∂ui
∂xi

, (2.122)

17When one body exerts a force on a second body, the second body simultaneously exerts a force equal in magnitude and
opposite in direction on the first body.

18The Stokes hypothesis considers that the bulk viscosity λ and the dynamic viscosity µ are related to each other by
λ = − 2

3
µ.
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being δij a Kronecker delta and µ the so-called mixture dynamic viscosity coefficient - a physical quantity

that needs to be modelled. Let’s now evaluate the sums on the left side of (2.120). By invoking

relations (2.113), (2.114) and (2.115), and by assuming that all ~Js vectors are sufficiently small (first-order

infinitesimals) such that the products between their components are negligible, it can be shown that the

sums are given by ∑
s

ρs ~us︸︷︷︸
=~u+~u′s

=

(∑
s

ρs

)
︸ ︷︷ ︸

=ρ

~u+
∑
s

ρs~u′s︸ ︷︷ ︸
=Js︸ ︷︷ ︸

=~0

= ρ~u , (2.123)

and ∑
s

ρs ~us︸︷︷︸
=~u+~u′s

⊗ ~us︸︷︷︸
=~u+~u′s

=
∑
s

ρs

(
~u+ ~u′s

)
⊗
(
~u+ ~u′s

)
=

=

(∑
s

ρs

)
︸ ︷︷ ︸

=ρ

~u⊗ ~u+ ~u⊗

∑
s

ρs~u′s︸ ︷︷ ︸
~Js


︸ ︷︷ ︸

=~0

+

∑
s

ρs ~u′s︸︷︷︸
~Js


︸ ︷︷ ︸

=~0

⊗~u+
∑
s

ρs~u′s︸ ︷︷ ︸
= ~Js

⊗ ~u′s︸︷︷︸
= ~Js/ρs︸ ︷︷ ︸

≈[0]

= ρ~u⊗ ~u , (2.124)

respectively. By inserting the results (2.121), (2.123) and (2.124) into (2.120), one can obtain the final

form of a differential equation for the balance of momentum of the mixture particles [50]:

∂ (ρ~u)

∂t
+ div (ρ~u⊗ ~u) = div ([τ ])− ~∇p+

(∑
s

ρs ~fs

)
. (2.125)

2.6.1.3 Balance equation for energy

The balance equation for the energy of the s-th species particles may be obtained through (2.111) with

βs = es + 1
2u

2
s, i.e. the sum of the mass-specific internal and kinetic energies of the flow associated

to the s-th species. The variation in time of the energy of s-th species particles inside the space Vs is

equal to the sum of the rates of energy transfer through heat and work between the inner s-th species

particles and the complementary system: Ės = Q̇ext
s + Ẇ ext

s,B + Ẇ ext
s,S +

∑
q Ė int

q,s . The contribution Q̇ext
s =

−

∂Vs(t)

(~qs · ~n) dS = −
�

Vs(t)
div (~qs) dV , where ~qs is the heat flux vector associated to the s-th species,

corresponds to the rate of heat transferred from the outer particles to the s-th species particles inside the

space Vs. The contribution Ẇ ext
s,B =

�
Vs(t)

(
ρs ~fs · ~us

)
dV corresponds to the rate of work done by the

external body forces on the inner s-th species particles. The contribution Ẇ ext
s,S =


∂Vs(t)

([σs] · ~n)·~us dS =�
Vs(t)

div ([σs] · ~us) dV corresponds to the rate of work done by the surface forces applied by the outer

particles on the inner s-th species ones. And
∑
q Ė int

q,s is the sum of the rates of energy transfer from all

the inner particles to the inner s-th species particles. One has then dBs
dt = Ės on the left side of equation

(2.111), which by invoking the divergence theorem for the surface integral on the right side, gives

−
�

Vs(t)

div (~qs) dV +

�
Vs(t)

(
ρs ~fs · ~us

)
dV +

�
Vs(t)

div ([σs] · ~us) dV +
∑
q

Ė int
q,s =

=

�
Vs(t)

∂
[
ρs
(
es + 1

2u
2
s

)]
∂t

dV +

�
Vs(t)

div

[
ρs

(
es +

1

2
u2
s

)
~us

]
dV, ∀s . (2.126)
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As happened with the balance of momentum, it’s of particular interest to sum (2.126) in all species (i.e.

in s). It’s difficult to evaluate
∑
q Ė int

q,s , but it’s trivially easy to evaluate
∑
s,q Ė int

q,s : this quantity is null,

since the energy transferred from one particle to another is the symmetric of the energy transferred from

the latter to the former. By knowing that Vs = V for all s at instant t, and by choosing an elementary

space V , the sum of (2.126) in s can be shown to give

− div

(∑
s

~qs

)
dV +

(∑
s

ρs ~fs · ~us

)
dV + div

(∑
s

[σs] · ~us

)
dV =

=
∂
[∑

s ρs
(
es + 1

2u
2
s

)]
∂t

dV + div

[∑
s

ρs

(
es +

1

2
u2
s

)
~us

]
dV ⇔

⇔
∂
[∑

s ρs
(
es + 1

2u
2
s

)]
∂t

+div

[∑
s

ρs

(
es +

1

2
u2
s

)
~us

]
= −div

(∑
s

~qs

)
+div

(∑
s

[σs] · ~us

)
+

(∑
s

ρs ~fs · ~us

)
.

(2.127)

The three sums on the right side of (2.127) require particular attention. Let ~q =
∑
s ~qs be the mixture

heat flux vector. This physical quantity has two contributions, one due to conduction ~qc, and another due

to radiation ~qrad. The Fourier’s law states that heat conduction occurs with a gradient of temperature

[1], i.e. ~qc = −k~∇T , being k the mixture thermal conductivity coefficient - a physical quantity that needs

to be modelled. The radiative heat flux vector corresponds to ~qrad =
� π

0

[� 2π

0

(�∞
0
Iλ~es dλ

)
dϕ
]

sin θ dθ,

being ~es = cosϕ sin θ~ex + sinϕ sin θ~ey + cos θ~ez the unit vector for the direction of propagation of the

photons at angles ϕ and θ. One may then write

~q = ~qc + ~qrad = −k~∇T +

� π

0

[� 2π

0

(� ∞
0

Iλ~es dλ

)
dϕ

]
sin θ dθ . (2.128)

By invoking relations (2.113) and (2.114), and by assuming that all ~Js vectors and all [τs] tensors are

sufficiently small (first order infinitesimals) such that products between their components are negligible,

the second and third sums on the right side of (2.127) can be shown to give

∑
s

[σs] ·~us =
∑
s

([τs]− ps[I]) · ~us︸︷︷︸
=~u+~u′s

=

(∑
s

[τs]

)
︸ ︷︷ ︸

=[τ ]

·~u+

∑
s

[τs] · ~u′s︸︷︷︸
= ~Js/ρs


︸ ︷︷ ︸

≈~0

−

(∑
s

ps

)
︸ ︷︷ ︸

=p

~u−

(∑
s

ps~u′s

)
=

= [τ ] · ~u− p~u−

∑
s

ps
ρs
ρs~u′s︸ ︷︷ ︸
= ~Js

 = [τ ] · ~u− p~u−

(∑
s

ps
ρs
~Js

)
, (2.129)

and

∑
s

ρs ~fs · ~us︸︷︷︸
=~u+~u′s

=

(∑
s

ρs ~fs · ~u

)
+

∑
s

ρs ~fs · ~u′s︸︷︷︸
= ~Js/ρs

 =
∑
s

ρs ~fs ·

(
~u+

~Js
ρs

)
. (2.130)

Let’s now evaluate the sums on the left side of (2.127). By invoking relations (2.113), (2.114) and
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(2.115), it can be shown that the sums are given by

∑
s

ρs

(
es +

1

2
u2
s

)
=

∑
s

ρs︸︷︷︸
=ρcs

es

+

∑
s

1

2
ρsu

2
s︸ ︷︷ ︸

= 1
2ρs[u2+2(~u·~u′s)+u′s

2]

 =

= ρ

(∑
s

cses

)
︸ ︷︷ ︸

=e

+
1

2

(∑
s

ρs

)
︸ ︷︷ ︸

=ρ

u2 +

∑
s

ρs~u′s︸ ︷︷ ︸
= ~Js


︸ ︷︷ ︸

=~0

·~u+

∑
s

1

2
ρsu
′2
s︸ ︷︷ ︸

=J2
s/ρs≈0

 = ρ

(
e+

1

2
u2

)
, (2.131)

and

∑
s

ρs

(
es +

1

2
u2
s

)
~us︸︷︷︸

=~u+~u′s

=

(∑
s

ρses

)
︸ ︷︷ ︸

=ρe

~u+

∑
s

es ρs~u′s︸ ︷︷ ︸
= ~Js

+

(∑
s

1

2
ρsu

2
s

)
︸ ︷︷ ︸

≈ 1
2ρu

2

~u+

∑
s

1

2
ρsu

2
s
~u′s︸ ︷︷ ︸

= 1
2ρs[u2+2(~u·~u′s)+u′s

2]~u′s

 =

=

[
ρ

(
e+

1

2
u2

)]
~u+

(∑
s

es ~Js

)
+

1

2
u2

∑
s

ρs~u′s︸ ︷︷ ︸
= ~Js


︸ ︷︷ ︸

=~0

+

∑
s

~u · ~u′s︸︷︷︸
= ~Js/ρs

 ρs ~u′s︸︷︷︸
= ~Js


︸ ︷︷ ︸

≈~0

+

∑
s

1

2
ρsu
′
s
2︸ ︷︷ ︸

J2
s/ρs≈0

~u′s

 =

=

[
ρ

(
e+

1

2
u2

)]
~u+

(∑
s

es ~Js

)
. (2.132)

respectively. By inserting the results (2.129), (2.130), (2.131) and (2.132) into (2.127), one can then write

the final form of a differential equation for the energy of the mixture particles [50]:

∂
[
ρ
(
e+ 1

2u
2
)]

∂t
+ div

[
ρ

(
e+

1

2
u2

)
~u

]
+ div

(∑
s

es ~Js

)
=

= −div (~q) + div ([τ ] · ~u)− div (p~u)− div

(∑
s

ps
ρs
~Js

)
+
∑
s

ρs ~fs ·

(
~u+

~Js
ρs

)
⇔

⇔
∂
[
ρ
(
e+ 1

2u
2
)]

∂t
+ div

[
ρ

(
e+

1

2
u2

)
~u

]
=

= div ([τ ] · ~u)− div (p~u)− div (~q)− div

∑
s

(
es +

ps
ρs

)
︸ ︷︷ ︸

=hs

~Js

+
∑
s

ρs ~fs ·

(
~u+

~Js
ρs

)
⇔

⇔
∂
[
ρ
(
e+ 1

2u
2
)]

∂t
+ div

[
ρ

(
e+

1

2
u2

)
~u

]
=

= div ([τ ] · ~u)− div (p~u)− div (~q)− div

(∑
s

hs ~Js

)
+
∑
s

ρs ~fs ·

(
~u+

~Js
ρs

)
. (2.133)
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It should be mentioned that the term div
(∑

s hs
~Js

)
in (2.133) doesn’t usually appears in an explicit

form but implicitly through the definition of the heat flux vector ~q. However, the author avoided to make

such consideration here, since it is a matter of subjectivity.

2.6.1.4 Balance equation for radiative energy

A balance equation for the radiative energy needs to be regarded in order to evaluate div (~qrad). It will

be considered here that the vibronic-specific bound-bound transitions are the only radiative processes

that may occur. Let’s consider a space Vγ(t) whose boundary ∂Vγ(t) moves with the velocity of photons

with wavelength λ and angles ϕ and θ. Let Eγ(t) be the radiant energy in Vγ(t) at instant t and

εγ(~r, t) = (dEγ/dV )(~r, t) the respective volumetric radiant energy. Note that one may also write Eγ(t) =�
Vγ(t)

εγ(~r, t) dV . It can be easily shown that [3]

d2εγ
dΩ dλ

(~r, t, ϕ, θ, λ) =
Iλ(~r, t, ϕ, θ, λ)

c
. (2.134)

Since the boundary ∂Vγ(t) moves with the photons of wavelength λ and angles ϕ and θ, the variation in

time of the respective radiative energy in Vγ(t) is solely due to emission and absorption from particles in

this same space. One has then from (2.106)

d

dt

(
d2Eγ
dΩ dλ

)
=

�
Vγ(t)

d2Ω̇rad

dΩ dλ
dV =

�
Vγ(t)

[jλ − kλ · Iλ] dV . (2.135)

And by invoking the Reynolds transport theorem (2.111), the results (2.134) and (2.135) as well as the

divergence theorem, it’s possible to obtain the so-called equation of radiative transfer :

d

dt

(
d2Eγ
dΩ dλ

)
=

�
Vγ(t)

∂

∂t

(
d2εγ
dΩ dλ

)
dV +

�
∂Vγ(t)

d2εγ
dΩ dλ

(~c · ~n) dS ⇔

⇔
�

Vγ(t)

[jλ − kλ · Iλ] dV =
1

c

�
Vγ(t)

∂Iλ
∂t

dV +

�
Vγ(t)

(
~∇Iλ · ~es

)
dV ⇔

1

c

∂Iλ
∂t

+
(
~∇Iλ · ~es

)
= jλ − kλ · Iλ . (2.136)

The divergence of the radiative heat flux vector ~qrad may be further developed using relation (2.136)

and the definition of ~qrad (the second term of (2.128)):

div (~qrad) =

� π

0

{� 2π

0

[� ∞
0

(
~∇Iλ · ~es

)
dλ

]
dϕ

}
sin θ dθ =

� π

0

{� 2π

0

[� ∞
0

(
jλ − kλ · Iλ −

1

c

∂Iλ
∂t

)
dλ

]
dϕ

}
sin θ dθ .

(2.137)

And since solely bound-bound transitions are regarded, relations (2.107) and (2.108) for the emission and
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absorption coefficients do hold, allowing one to transform (2.137) into

div (~qrad) = hc

� π

0

{� 2π

0

[� ∞
0

1

λ

(∑
se

Ae
′,v′

s,e,v

4π
φe
′,v′

λ,s,e,v ns,e,v

)
dλ

]
dϕ

}
sin θ dθ

+ hc

� π

0

{� 2π

0

[� ∞
0

Iλ
λ

(∑
ie

Be
′,v′

s,e,v

4π
φe
′,v′

λ,s,e,v ns,e,v

)
dλ

]
dϕ

}
sin θ dθ

− hc
� π

0

{� 2π

0

[� ∞
0

Iλ
λ

(∑
a

Be,vs,e′,v′

4π
φe
′,v′

λ,s,e,v ns,e′,v′

)
dλ

]
dϕ

}
sin θ dθ

− 1

c

� π

0

[� 2π

0

(� ∞
0

∂Iλ
∂t

dλ

)
dϕ

]
sin θ dθ ⇔

⇔ div (~qrad) = hc

(∑
se

Ae
′,v′

s,e,v ns,e,v

� ∞
0

φe
′,v′

λ,s,e,v

λ
dλ

)

+ hc

{∑
ie

Be
′,v′

s,e,v

4π
ns,e,v

� π

0

[� 2π

0

(� ∞
0

Iλφ
e′,v′

λ,s,e,v

λ
dλ

)
dϕ

]
sin θ dθ

}

− hc

{∑
a

Be,vs,e′,v′

4π
ns,e′,v′

� π

0

[� 2π

0

(� ∞
0

Iλφ
e′,v′

λ,s,e,v

λ
dλ

)
dϕ

]
sin θ dθ

}

− 1

c

� π

0

[� 2π

0

(� ∞
0

∂Iλ
∂t

dλ

)
dϕ

]
sin θ dθ . (2.138)

By taking the assumption that the ratio between the local variation in time of the specific radiant intensity

divided by the speed of light is negligible (a usually valid hypothesis [3]), the last term in (2.138) may be

disregarded, and one has div (~qrad) = Ω̇rad, i.e. the divergence of the radiative heat flux vector div (~qrad)

corresponds to the volumetric radiative energy source term Ω̇rad referred in (2.135). Therefore,

⇔ div (~qrad) = Ω̇rad = hc

(∑
se

Ae
′,v′

s,e,v ns,e,v

� ∞
0

φe
′,v′

λ,s,e,v

λ
dλ

)

+ hc

{∑
ie

Be
′,v′

s,e,v

4π
ns,e,v

� π

0

[� 2π

0

(� ∞
0

Iλφ
e′,v′

λ,s,e,v

λ
dλ

)
dϕ

]
sin θ dθ

}

− hc

{∑
a

Be,vs,e′,v′

4π
ns,e′,v′

� π

0

[� 2π

0

(� ∞
0

Iλφ
e′,v′

λ,s,e,v

λ
dλ

)
dϕ

]
sin θ dθ

}
. (2.139)

Equation (2.139) may be further simplified, although in a very crude way, by disregarding induced

emission and by introducing the concept of a escape factor [51]. Let Λe
′,v′

s,e,v be the escape factor associated

to bound-bound transitions of the s-th species between the vibronic levels (e, v) and (e′, v′). The

designation of this quantity is self-explanatory: Λe
′,v′

s,e,v corresponds to the fraction of the emitted photons

due to spontaneous emissions from (e, v) to (e′, v′) which escape from the system, or in other words, that

are not absorbed. This factor is limited to the interval [0, 1]. If Λe
′,v′

s,e,v = 0, none of the emitted photons

escape from the system and the medium is said to be optically thick. If, on the other hand Λe
′,v′

s,e,v = 1,

all of the emitted photons escape from the system and the medium is said to be optically thin. One may
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then express (2.139) through

div (~qrad) = Ω̇rad = hc

(∑
se

Λe
′,v′

s,e,vA
e′,v′

s,e,v ns,e,v

� ∞
0

φe
′,v′

λ,s,e,v

λ
dλ

)
. (2.140)

Additionally, the net variation in time of the mass density of particles of the s-th species in the vibronic

level (e, v), due to spontaneous emission and absorption processes between the vibronic levels (e, v) and

(e′, v′) is according to the definition of the escape factor and the relation (2.93)

(ω̇s,e,v)
e′,v′,rad
s,e,v =

(
dρs,e,v
dt

)e′,v′,rad

s,e,v

=

(
dρs,e,v
dt

)e′,v′,se
s,e,v

−
(
dρs,e,v
dt

)s,e,v,a
e′,v′

= −Λe
′,v′

s,e,v A
e′,v′

s,e,v ρs,e,v . (2.141)

2.6.1.5 The number of equations and unknowns

There are as many equations as there are unknowns. The equations are the balance equations for the

species masses (2.118) (NS equations, being NS the number of different species in the mixture), balance

equation for the mixture momentum (2.125) (three equations19) and balance equation for the mixture

energy (2.133) (one equation). There are therefore in total NS + 4 equations. On the other hand, the

unknowns are the species mass densities ρs (NS unknowns), mixture flow velocity ~u (three unknowns20)

and temperature T (one unknown). It should be mentioned that all of these unknowns are necessary

and sufficient to define through appropriate models the variables ω̇s, ~Js, [τ ], p, ~fs, e, ~q and hs, for all s.

There are therefore in total NS + 4 unknowns for the NS + 4 equations.

2.6.2 The case of the multi-temperature model

For the case of the multi-temperature model, all of the balance equations derived for the single-temperature

case (2.118), (2.125) and (2.133) do hold. However, there’s a slight difference with respect to the heat

flux vector ~q. One should define mixture thermal conductivity coefficients for each of the energy modes

of the particles, ki, being i ∈ {trh, rot, vib, el, tre} the i-th energy mode. This can be accomplished, for

instance, by defining thermal conductivity coefficients for each species and each of their energy modes ks,i

through the Eucken’s relation, and then using these to compute mixture thermal conductivity coefficients

for each of the energy modes, ki, through the Wilke’s rule [1]. Or alternatively, one may use the relations

of Gupta et al. [52] for the same effect. The contribution of the i-th mode to the heat flux vector, ~qi, can

be defined in a similar way to (2.128):

~qi = −ki~∇Ti + ~qi,rad , (2.142)

such that ~q =
∑
i ~qi. Note that if thermal equilibrium is reached, then ~q = − (

∑
i ki)

~∇T + ~qrad with

~qrad =
∑
i ~qi,rad, and therefore by comparison with (2.128), one may conclude that the mixture thermal

conductivity coefficient k and the respective coefficients for the energy modes ki are related with each

other through k =
∑
i ki.

19Note that a tridimensional vectorial equation contributes with three three scalar equations: one for each dimension.
20Note that a tridimensional vectorial unknown contributes with three scalar unknowns: one for each component.
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Let NT be the number of assigned temperatures, and n the n-th energy mode or combined energy

modes for which a temperature Tn is considered. For example, if the Park’s two temperature model

is chosen, a heavy particle translational-rotational temperature Ttrh-rot and an vibrational-electronic-

free electron translational temperature Tvib-el-tre
are assigned, implying n ∈ {trh-rot, el-tre}. With the

introduction of these temperatures the number of unknowns increases by NT − 1, being −1 associated to

the necessary act of disregarding the single temperature T . Therefore, there are in total NS + NT + 3

unknowns. For the new NT − 1 unknowns, new NT − 1 equations need to be assigned. The new NT − 1

equations should correspond to mixture energy balance equations associated to each of the regarded

temperatures Tn, with the exception of the one associated to the heavy particle translational mode (a

common consideration [2]). Note that such exception is totally unequivocal since the mixture total energy

balance equation (2.133) - which includes a dependence on this temperature - is regarded. By following

a procedure similar to the one considered in the derivation of equation (2.133), it’s possible to show that

the mixture energy balance equations associated to the i-th internal energy mode corresponds to [2]:

∂ (ρei)

∂t
+ div [(ρei) ~u] = −div (~qi)− div

(∑
s

es,i ~Js

)
+
∑
j

Ω̇ji, ∀i ∈ {rot, vib, el} , (2.143)

being Ω̇ji the rate of energy transfer from the j-th energy mode to the i-th internal energy mode due to

collisional processes - a physical quantity that needs to be modelled. Note that equation (2.143) doesn’t

include the specific kinetic energy of the flow 1
2u

2, the work done by partial pressures ps, neither the

viscous stress tensors [τs] since these are solely associated to the translational energy mode of the particles

(the translational motion relatively to the element of fluid and the translational motion of the element of

fluid).

Particular attention should be given to the energy balance equation for the energy of the free electrons.

By evaluating equation (2.126) for s = e, and by assuming that ~Je and [τe] are negligible, it can be shown

that the energy balance equation for the energy of the free electrons is given by [2]

∂
[
ρe

(
ee + 1

2u
2
)]

∂t
+ div

[
ρe

(
ee +

1

2
u2

)
~u

]
= −div (pe~u)− div (~qe) + ρe

(
~fe · ~u

)
+
∑
s

Ω̇int
s,e , (2.144)

where ~qe is an heat flux vector such that Q̇ext
e = −


∂V (t)

(~qe · ~n) dS corresponds to the rate of heat

transfer from the particles that are outside of the space V to the inner free electrons. This quantity

should not be confused with ~qtre
, which is an heat flux vector such that Q̇ext

tre
= −


∂V (t)

(~qtre
· ~n) dS

corresponds to the rate of heat transfer from the particles outside of the space V to the inner particles

due to the translation energy mode of free electrons. The quantity
∑
s Ω̇int

s,e corresponds to the energy

transferred per unit of time per unit of volume from the inner particles to the inner free electrons, or in

other words, the volumetric quantity associated to
∑
s Ė int

s,e .

It’s worthy to mention that if temperatures are assigned to combinations of energy modes, then the

mixture energy balance equation associated to a temperature should correspond to the sum of the energy

balance equations for the energy modes that were combined.
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2.6.3 The case of the vibronic-specific state-to-state model

All of the balance equations derived for the single-temperature case (2.118), (2.125) and (2.133) do hold

for the case of the vibronic-specific state-to-state model, as also happened for the case of the multi-

temperature model. However, since the electronic and vibrational levels of the particles need to be dealt

one by one, it’s necessary to consider mass balance equations that are vibronic-specific beyond species-

specific. Following a similar procedure to the one regarded in the derivation of equation (2.118), it can

be shown that the mass balance equations for the s-th species particles in their e-th electronic and v-th

vibrational levels correspond to

∂ρs,e,v
∂t

+ div (ρs,e,v~u) = −div
(
~Js,e,v

)
+ ω̇s,e,v, ∀s, e and v . (2.145)

In this model, temperatures should be assigned to the heavy particle translational, rotational, and free

electrons translational modes (or to combinations of these). And therefore, equations in the form of

(2.143) and (2.144) need to be taken into account.

2.6.4 The case of the zero-dimensional vibronic-specific state-to-state model

In this work, the zero-dimensional vibronic-specific state-to-state model was employed assuming an

equilibrium between the translational and rotational energy modes of the heavy particles - therefore,

allowing the assignment of a heavy particle translational-rotational temperature Ttrh-rot = Ttrh
= Trot.

No particular energy balance equation for the combination of the two modes needs to be added since it

includes the heavy particle translational mode (see §2.6.3 for more details about this proposition).

The equations to be dealt with in the zero-dimensional vibronic-specific state-to-state model correspond

to (2.145), (2.133) with div (~qrad) substituted by Ω̇rad as according to (2.140), and (2.144), disregarding

all derivatives in space and the flow velocity vectors of the species, i.e.



dρs,e,v
dt

= ω̇s,e,v, ∀s, e and v , (2.146a)

d (ρe)

dt
= −Ω̇rad , (2.146b)

d (ρeee)

dt
=
∑
s

Ω̇int
s,e . (2.146c)

Note that the partial derivative ∂/∂t was substituted by the total derivative d/dt since the variables

solely depend on the instant of time t. The equations can be further developed. By summing (2.146a) in

s, e and v, one has

d

dt

∑
s,e,v

ρs,e,v︸ ︷︷ ︸
=ρcs,e,v

 =
∑
s,e,v

ω̇s,e,v︸ ︷︷ ︸
=0

⇔ d

dt

ρ
(∑
s,e,v

cs,e,v

)
︸ ︷︷ ︸

=1

 = 0⇔ dρ

dt
= 0 , (2.147)
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where the result
∑
s,e,v ω̇s,e,v = 0 was used21. By inserting (2.147) into (2.146a), it’s possible to obtain

a final expression for the mass balance of the s-th species particles in their e-th electronic and v-th

vibrational levels:

d

dt
ρs,e,v︸ ︷︷ ︸

=ρcs,e,v

= ω̇s,e,v ⇔ ρ
dcs,e,v
dt

+ cs,e,v
dρ

dt︸︷︷︸
=0

= ω̇s,e,v ⇔
dcs,e,v
dt

=
ω̇s,e,v
ρ

, ∀s, e and v . (2.148)

By using the results (2.146c), (2.147) and (2.148), the mixture total energy balance equation (2.146b)

can be transformed into

d

dt
(ρe)︸︷︷︸

=(
∑
s∈{h} ρses)+ρeee

= −Ω̇rad ⇔
d

dt

 ∑
s∈{h}

ρs︸︷︷︸
=ρcs

es

+
d

dt
(ρeee)︸ ︷︷ ︸

=
∑
s Ω̇int

s,e

= −Ω̇rad ⇔

⇔ dρ

dt︸︷︷︸
=0

 ∑
s∈{h}

cses

+ ρ

 ∑
s∈{h}

dcs
dt︸︷︷︸

= ω̇s
ρ

es

+ ρ

 ∑
s∈{h}

cs
des
dt

 = −Ω̇rad −
∑
s

Ω̇int
s,e ⇔

⇔
∑
s∈{h}

cs
des
dt

= −
Ω̇rad +

∑
s Ω̇int

s,e +
(∑

s∈{h} ω̇ses

)
ρ

,

(2.149)

being {h} the set of heavy species in the system.

Let’s now evaluate the left side of (2.149). By invoking the results enunciated in §2.3.3, one can write

∑
s∈{h}

cs
des
dt

=
∑
s∈{h}

cs
d

dt
[es,tr(Ttrh

) + es,rot(Ttrh
) + es,vib + es,el + es,0] =

=
∑
s∈{h}

cs

 des,tr
dTtrh︸ ︷︷ ︸

:=CV,s,tr

dTtrh

dt
+

des,rot

dTtrh︸ ︷︷ ︸
:=CV,s,rot

dTtrh

dt
+
d

dt

(∑
e,v

cs,e,v
cs

εs,vib,e,v

ms

)
+
d

dt

(∑
e

cs,e
cs

εs,el,e

ms

) =

=

 ∑
s∈{h}

cs (CV,s,tr + CV,s,rot)︸ ︷︷ ︸
:=CV,s,tr-rot

 dTtrh

dt
+


∑

s∈{h},e,v

cs
d

dt

(
cs,e,v
cs

)
εs,vib,e,v + εs,el,e

ms︸ ︷︷ ︸
:=

εs,el-vib,e,v
ms

 =

=

 ∑
s∈{h}

csCV,s,tr-rot

 dTtrh

dt
+


∑

s∈{h},e,v

dcs,e,vdt︸ ︷︷ ︸
=
ω̇s,e,v
ρ

−cs,e,v
cs

dcs
dt︸︷︷︸

= ω̇s
ρ

 εs,el-vib,e,v

ms

⇔

21Equation
∑
s,e,v ω̇s,e,v = 0 holds since the contribution of the mass of a species in the increase of the mass of another

species due to some process is the symmetric of the contribution of the mass of the later for the decrease of the mass of the
former due to the same process.
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⇔
∑
s∈{h}

cs
des
dt

=

 ∑
s∈{h}

csCV,s,tr-rot

 dTtrh

dt
+

1

ρ

 ∑
s∈{h},e,v

(
ω̇s,e,v −

cs,e,v
cs

ω̇s

)
εs,el-vib,e,v

ms

 ,

(2.150)

being CV,s,tr-rot = des,tr/dTtrh
+ des,rot/dTtrh

the translational-rotational specific heat at constant volume

of the s-th species particle, and εs,el-vib,e,v = εs,el,e+εs,vib,e,v the sensible energy associated to the (e, v)-th

vibronic level of the s-th species. It can be shown that CV,s,tr-rot = 3
2Rs if the s-th species is atomic or

CV,s,tr-rot = 5
2Rs if the s-th species is molecular. By inserting (2.150) in (2.149), an ultimate expression

for the heavy particle translation-rotational temperature Ttrh
can be obtained:

dTtrh

dt
= −

Ω̇rad +
(∑

s Ω̇int
s,e

)
+
(∑

s∈{h} ω̇ses

)
+
[∑

s∈{h},e,v

(
ω̇s,e,v − cs,e,v

cs
ω̇s

)
εs,el-vib,e,v

ms

]
ρ
(∑

s∈{h} csCV,s,tr-rot

) . (2.151)

Let’s now regard the free electron energy balance equation (2.146c). By invoking relations (2.147),

(2.148) and (2.57), one can ultimately write

d

dt

 ρe︸︷︷︸
=ρce

ee

 =
∑
s

Ω̇int
s,e ⇔

dρ

dt︸︷︷︸
=0

ceee + ρ
dce
dt︸︷︷︸

= ω̇e
ρ

ee + ρce
dee

dTtre︸ ︷︷ ︸
:=CV,e

dTtre

dt
=
∑
s

Ω̇int
s,e ⇔

⇔ dTtre

dt
=

(∑
s Ω̇int

s,e

)
− ω̇eee

ρceCV,e
, (2.152)

being CV,e = 3
2Re the free electrons specific heat at constant volume.

2.6.5 The case of the Euler one-dimensional vibronic-specific state-to-state

model

The equations to be dealt with in the Euler one-dimensional vibronic-specific state-to-state model are

(2.145), (2.125), (2.133) with div (~qrad) substituted by Ω̇rad as according to (2.140), and (2.144), disregarding

all the derivatives with respect to the y and z variables, the y and z-components of the flow velocity vector

~u - due to the one-dimensional hypothesis - as well as the transport phenomena (heat conduction, diffusion

and viscosity) - due to the Euler hypothesis. It was assumed in this work that the external body forces

were negligible, the flow was stationary (the derivatives with respect to the instant of time t were null),

and the translational and rotational energy modes of the heavy particles were in equilibrium with each

other. The resultant fluid flow governing equations were then



d

dx
(ρs,e,vu) = ω̇s,e,v, ∀s, e and v , (2.153a)

d

dx

(
ρu2
)

= −dp
dx

, (2.153b)

d

dx

[
ρ

(
h+

1

2
u2

)
u

]
= −Ω̇rad , (2.153c)

d

dx

[
ρe

(
he +

1

2
u2

)
u

]
=
∑
s

Ω̇int
s,e , (2.153d)
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being u the x-component of the flow velocity vector. Note that the partial derivative ∂/∂x was substituted

by the total derivative d/dx since the variables solely depend on the x-position. The equations can be

further developed. By summing (2.153a) in s, e and v, one has

d

dx


∑
s,e,v

ρs,e,v︸ ︷︷ ︸
=ρcs,e,v

u

 =
∑
s,e,v

ω̇s,e,v︸ ︷︷ ︸
=0

⇔ d

dx

ρu
(∑
s,e,v

cs,e,v

)
︸ ︷︷ ︸

=1

 = 0⇔ d

dx
(ρu) = 0 . (2.154)

By inserting (2.154) into (2.153a), it’s possible to obtain a final expression for the mass balance of the

s-th species particles in their e-th electronic and v-th vibrational levels:

d

dx

 ρs,e,v︸ ︷︷ ︸
=ρcs,e,v

u

 = ω̇s,e,v ⇔ ρu
dcs,e,v
dx

+ cs,e,v
d

dx
(ρu)︸ ︷︷ ︸

=0

= ω̇s,e,v ⇔
dcs,e,v
dx

=
ω̇s,e,v
ρu

, ∀s, e and v .

(2.155)

The balance equation for momentum can be further developed by employing in (2.153b) the result

(2.154), the balance equation for mass (2.155), and the definitions of the partial pressures (2.50) and

(2.58), giving

d

dx

(
ρu2
)

= −dp
dx
⇔ d

dx
(ρu)︸ ︷︷ ︸

=0

u+ ρu
du

dx
= − d

dx

 ∑
s∈{h}

ps

+ pe

⇔ ρu
du

dx
= − d

dx


 ∑
s∈{h}

ρs︸︷︷︸
=ρcs

RsTtrh

+ ρe︸︷︷︸
=ρce

ReTtre

⇔

⇔ ρu
du

dx
= − dρ

dx︸︷︷︸
=− ρu

du
dx

 ∑
s∈{h}

csRsTtrh

+ ceReTtre


︸ ︷︷ ︸

= p
ρ

−ρ


 ∑
s∈{h}

dcs
dx︸︷︷︸

= ω̇s
ρu

RsTtrh︸ ︷︷ ︸
= ps
ρcs

+
dce
dx︸︷︷︸

= ω̇e
ρu

ReTtre︸ ︷︷ ︸
= pe
ρce



−ρ


 ∑
s∈{h}

csRs︸︷︷︸
= ps
ρTtrh

dTtrh

dx

+ ceRe︸︷︷︸
= pe
ρTtre

dTtre

dx

⇔ ρu
du

dx
=
p

u

du

dx
− 1

ρu

 ∑
s∈{h}

ω̇sps
cs

+
ω̇epe

ce

−
 ∑

s∈{h}

ps
Ttrh

dTtrh

dx

+
pe

Ttre

dTtre

dx

⇔

⇔
(
ρu2

p
− 1

)
du

dx
+
u

p

 ∑
s∈{h}

ps
Ttrh

dTtrh

dx

+
pe

Ttre

dTtre

dx

 = − 1

pρ

 ∑
s∈{h}

ω̇sps
cs

+
ω̇epe

ce

 ,

(2.156)

Similarly, by using the result (2.154), the mass balance equation (2.155), and the free electron energy

balance equation (2.153d), one can transform the mixture total energy balance equation (2.153c) into

d

dx

ρ
 h︸︷︷︸

=(
∑
s∈{h} cshs)+cehe

+
1

2
u2

u

 = −Ω̇rad ⇔

 ∑
s∈{h}

d

dx

[
ρcs

(
hs +

1

2
u2

)
u

]+
d

dx

[
ρce

(
he +

1

2
u2

)
u

]
︸ ︷︷ ︸

=
∑
s Ω̇int

s,e

= −Ω̇rad ⇔
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⇔ d

dx
(ρu)︸ ︷︷ ︸

=0

 ∑
s∈{h}

cs

(
hs +

1

2
u2

)+ ρu


 ∑
s∈{h}

dcs
dx︸︷︷︸

= ω̇s
ρu

(
hs +

1

2
u2

)+

 ∑
s∈{h}

cs
dhs
dx

+

 ∑
s∈{h}

cs

u
du

dx

 = −Ω̇rad −

(∑
s

Ω̇int
s,e

)
⇔

⇔

 ∑
s∈{h}

cs
dhs
dx

+

 ∑
s∈{h}

cs

u
du

dx
= −

Ω̇rad +
(∑

s Ω̇int
s,e

)
+
[∑

s∈{h} ω̇s
(
hs + 1

2u
2
)]

ρu
.

(2.157)

Let’s evaluate the first term at the left side of (2.157). According to the definitions of the specific

enthalpies under the vibronic-specific state-to-state model (as stated in §2.3.3), one can write

∑
s∈{h}

cs
dhs
dx

=
∑
s∈{h}

cs
d

dx
[hs,tr(Ttrh

) + hs,rot(Ttrh
) + hs,vib + hs,el + hs,0] =

=
∑
s∈{h}

cs

 dhs,tr
dTtrh︸ ︷︷ ︸

:=Cp,s,tr

dTtrh

dx
+

dhs,rot

dTtrh︸ ︷︷ ︸
:=Cp,s,rot

dTtrh

dx
+

d

dx

(∑
e,v

cs,e,v
cs

εs,vib,e,v

ms

)
+

d

dx

(∑
e

cs,e
cs

εs,el,e

ms

) =

=

 ∑
s∈{h}

cs (Cp,s,tr + Cp,s,rot)︸ ︷︷ ︸
:=Cp,s,tr-rot

 dTtrh

dx
+


∑

s∈{h},e,v

cs
d

dx

(
cs,e,v
cs

)
εs,vib,e,v + εs,el,e

ms︸ ︷︷ ︸
:=

εs,el-vib,e,v
ms

 =

=

 ∑
s∈{h}

csCp,s,tr-rot

 dTtrh

dx
+


∑

s∈{h},e,v

dcs,e,vdx︸ ︷︷ ︸
=
ω̇s,e,v
ρu

−cs,e,v
cs

dcs
dx︸︷︷︸

= ω̇s
ρu

 εs,el-vib,e,v

ms

⇔

⇔
∑
s∈{h}

cs
dhs
dx

=

 ∑
s∈{h}

csCp,s,tr-rot

 dTtrh

dx
+

1

ρu

 ∑
s∈{h},e,v

(
ω̇s,e,v −

cs,e,v
cs

ω̇s

)
εs,el-vib,e,v

ms

 ,

(2.158)

being Cp,s,tr-rot = dhs,tr/dTtrh
+dhs,rot/dTtrh

the translational-rotational specific heat at constant pressure

of the s-th species particle. It can be shown that Cp,s,tr-rot = 5
2Rs if the s-th species is atomic or

Cp,s,tr-rot = 7
2Rs if the s-th species is molecular. By inserting (2.158) in (2.157), one can finally obtain

dTtrh

dx
+

(∑
s∈{h} cs

)
u∑

s∈{h} csCp,s,tr-rot
· du
dx

=

= −
Ω̇rad +

(∑
s Ω̇int

s,e

)
+
[∑

s∈{h} ω̇s
(
hs + 1

2u
2
)]

+
[∑

s∈{h},e,v

(
ω̇s,e,v − cs,e,v

cs
ω̇s

)
εs,el-vib,e,v

ms

]
ρu
(∑

s∈{h} csCp,s,tr-rot

) . (2.159)

Let’s now regard the free electron energy balance equation (2.153d). By invoking relations (2.154),
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(2.155) and the definition of specific enthalpy of the free electrons (2.59), one can ultimately write

d

dx

 ρe︸︷︷︸
=ρce

(
he +

1

2
u2

)
u

 =
∑
s

Ω̇int
s,e ⇔

d

dx
(ρu)︸ ︷︷ ︸

=0

[
ce

(
he +

1

2
u2

)]
+ ρu

dce
dx︸︷︷︸

= ω̇e
ρu

(
he +

1

2
u2

)
+ ρuce

d

dx
he(Ttre

) + ρceu
2 du

dx
=
∑
s

Ω̇int
s,e ⇔

⇔ ω̇e

(
he +

1

2
u2

)
+ ρuce

dhe

dTtre︸ ︷︷ ︸
:=Cp,e

dTtre

dx
+ ρceu

2 du

dx
=
∑
s

Ω̇int
s,e ⇔

⇔ dTtre

dx
+

u

Cp,e

du

dx
=

(∑
s Ω̇int

s,e

)
− ω̇e

(
he + 1

2u
2
)

ρuceCp,e
, (2.160)

being Cp,e = 5
2Re the free electrons specific heat at constant pressure.

2.7 The Forced Harmonic Oscillator model

2.7.1 Characterisation of the modelled kinetic processes

Before going into the details of the Forced Harmonic Oscillator model (FHO), it’s important to describe

the kinetic processes that may be modelled by it. These correspond to the so-called V-T, V-V-T and

V-D processes.

A V-T process corresponds to a collision between a molecular particle and an atomic particle, in which

the former transfers part of its vibrational energy (hence the letter “V” in “V-T”) to the latter, in the

form of translational kinetic energy (hence the letter “T” in “V-T”). This type of energy transfer results

in a quenching or relaxation of the molecular particle vibrational mode. When the direction of energy

exchange is inverted there’s a gain in vibrational energy (therefore an excitation of the mode), and the

T-V label may be used instead. However, the V-T label will be employed in this work to designate both

processes, as in accordance to the usual nomenclature found in the literature. A V-T energy transfer

between a molecular particle AB and an atomic particle C can be depicted by

AB(v) + C AB(v′) + C , (2.161)

where v and v′ are the initial and final vibrational quantum numbers of the molecular particle, respectively.

No labels for the translational kinetic energy of the particles are shown in the above equation, but the

their change in the collision is implicit.

A V-V-T process corresponds to a collision between two molecular particles, in which energy transfers

involving their vibrational and translational energy modes occur. A V-V-T process associated to a

collision between a molecular particle AB and a molecular particle CD may be depicted by

AB(v1) + CD(v2) AB(v′1) + CD(v′2) , (2.162)

where v1 and v′1 are the initial and final vibrational quantum numbers of AB, respectively, and v′2 are
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the initial and final vibrational quantum numbers of CD, respectively .

A V-D process corresponds to a collision between a molecular particle and another heavy particle

(atomic or molecular) which excites the former (or/and the latter, if it is molecular) to a very high

vibrational level (hence the letter “V” in the “V-D” label), leading to its dissociation (hence the letter

“D” in the “V-D” label). Therefore, a V-D process is a combination of a V-T process, if the second

particle is atomic, or V-V-T process, if the second particle is molecular, and dissociation. Representative

equations for a V-D process in which the second particle is atomic, and in which the second particle is

molecular, are given by

AB(v) + C A + B + C , (2.163)

and the set 
AB(v1) + CD(v2) A + B + CD(v′2) , (2.164a)

AB(v1) + CD(v2) AB(v′1) + C + D , (2.164b)

AB(v1) + CD(v2) A + B + C + D , (2.164c)

respectively. It’s important to warn the reader about the multitude of different nomenclatures found

in the literature, with respect to some particular processes. For example, a process that derives from

a collision between two molecular particles, in which vibrational energy comes from one particle to the

other only in translational form may be termed a V-T process, although a process that involves the

vibrational and translational modes of two colliding molecular particles is generally denominated a V-V-

T process, and the V-T label is usually assigned to the case in which the colliding particles correspond

to a molecular particle and an atomic particle. Furthermore, a process that derives from a collision

between two molecular particles, in which vibrational energy comes from one particle to the other only

in vibrational form may be denominated a V-V process. It is worth mentioning that the label V-V

process is even sometimes used when the variation of the vibrational quantum number of one particle

is the symmetric of the variation of the other, i.e. v′1 − v1 = − (v′2 − v2), regardless if there’s also or

not some exchange of translational energy. Also, the symmetric variation of the particles vibrational

quantum numbers only means a symmetric variation of their vibrational energy if the jumps are are also

symmetric in energy. The use of this very particular and sometimes abusive nomenclature was denied in

this work to avoid ambiguity problems.

2.7.2 The case of V-T processes

The probability of a molecular particle AB to transit from some vibrational quantum number to another

one by collision with an atomic particle C, according to the FHO theory [26, 27, 53], will be herein

presented. The collision is assumed to be collinear (all the nuclei are positioned in the same line, and the

relative velocity vector is aligned with this line). Such collision is depicted by Figure 2.7.
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A B Cv0

ỹ

x̃

Figure 2.7: Collinear collision between a diatomic molecular particle AB and an atomic particle C.

Let x̃A, and mA be respectively the position of the nucleus A and its mass. The analogous notation

follows for the other two nuclei, B and C. Let x̃R be the centre of mass of the whole system22. The

coordinates presented by Figure 2.7 are: the difference between the positions of the nucleus C and the

centre of mass of the molecular particle AB, x̃ = x̃C − ˜̄xAB, and the difference between the positions

of the nuclei B and A, ỹ = x̃B − x̃A. Note that “difference between positions” and not “distances” are

mentioned here, to avoid ambiguity problems (distances in a one-dimensional world are by definition the

absolute value of the differences between positions). The quantity v0 corresponds to the approaching

relative speed of the particles v when they are sufficiently far away, i.e. when x̃ =∞, such that there’s no

interaction between them. There are four mass parameters, whose employment will be useful throughout

all this section to describe the dynamics of the system: factor γ, the reduced mass of the molecular

particle µ, the reduced mass of the combination of the molecular particle and the atomic particle m̃, and

the sum of all particles masses M̃ . These are defined by

γ =
mA

mA +mB
, (2.165) µ =

mAmB

mA +mB
, (2.166)

m̃ =
(mA +mB)mC

mA +mB +mC
, (2.167) M̃ = mA +mB +mC , (2.168)

respectively. It’s assumed that the interaction between the nuclei A and C is negligible when in comparison

with the interaction between B and C, since B is much closer to C than A to C. Therefore, the interaction

potential energy between the molecular particle and the atomic particle, V ′, only depends on x̃C−x̃B. The

potential is also assumed to be exponentially repulsive, having the form V ′ (x̃C − x̃B) = Ae−α(x̃C−x̃B),

where A and α are two positive constants. And by noticing that x̃C − x̃B = x̃ − γỹ, the potential can

expressed through

V ′ (x̃, ỹ) = Ae−α(x̃−γỹ) . (2.169)

Note, also, that in contrast to the assumed one, the interaction potential is usually repulsive at short

distances and attractive at long ones. But as said by Svehla [54]: “(...) at higher temperatures the colliding

molecules approach closely, and repulsive forces become dominant”, which supports the consideration of a

purely repulsive potential when dealing with high temperature post-shock flows, and on the other hand,

it simplifies the problem.

22The centre of mass of a system of particles, with masses {mi} and positions {x̃i}, is defined by: ˜̄x =
∑
i=1 mi x̃i∑
i=1 mi

.

61



It’s important to mention that the force that nucleus B imposes on C is given by the symmetric of

the derivative of the interaction potential relatively to its dependence variable, i.e. FBC = − dV ′

d(x̃C−x̃B) .

Because the molecular particle is assumed to be a harmonic oscillator, the force that A imposes on

B follows Hooke’s law, and therefore it is given by FAB = −f (ỹ − ỹ0), being f the force constant and

ỹ0 the difference between the positions of the nuclei of the molecular particle at equilibrium. Forces FAB

and FBC have a conventional positive signal to the right direction.

The FHO model is semiclassical, i.e. it considers one part of the system dynamics to be described

by Classical Mechanics, and the other part to be described by Quantum Mechanics. This model, in

particular, considers that the displacement of the atomic particle relatively to the molecular particle,

x̃, is in agreement with Classical Mechanics and the molecular particle vibrations are in agreement

with Quantum Mechanics. Let’s first try to obtain the trajectory x̃(t). Just for the sake of achieving this

classical quantity, it’s necessary to initially take the assumption that the whole system behaves classically,

i.e. by considering that the Newton’s laws are in fact applicable (and to achieve the quantum mechanical

solutions for the molecular particle vibrations, a Schrödinger equation for the whole system is instead

regarded, in which the previously obtained trajectory x̃(t) is inserted). Because the physics of a collision

is mainly due (and in this model, only) to the relative and to the average properties of the collision

partners, it would be rather useful to express the dynamic equations for each of the individual nuclei

local positions, in terms of relative positions (differences between local positions) and average positions

(centres of mass). According to the Newton’s second law, one can write the equations of movement for

each nucleus as 
mA

¨̃xA = FBA + FCA , (2.170a)

mB
¨̃xB = FAB + FCB , (2.170b)

mC
¨̃xC = FAC + FBC , (2.170c)

where the double dot notation, [̈ ], corresponds to a double derivative in time. Making a change of

variables, and by substituting the already exposed approximations, one can transform the above equations

into 
µ¨̃y = −f (ỹ − ỹ0)− γαAe−α(x̃−γỹ) , (2.171a)

m̃¨̃x = αAe−α(x̃−γỹ) , (2.171b)

M̃ ¨̃xR = 0 . (2.171c)

Equation (2.171c) can be disregarded: it only tells that no external forces are acting in the system

corresponding to the combination of the molecular and atomic particles. Conversely, equation (2.171b)

tells something useful: since the exponential is a positive function, and α and A are positive constants,

the relative acceleration is positive at all instants, i.e. ¨̃x > 0, ∀t. On the other hand, it is known that

at a sufficiently long time before the collision, say t = −∞, the relative velocity is negative. In fact,

˙̃x(−∞) = −v0, with v0 > 0. Therefore, from these two propositions, one can infer that a turning point

in the trajectory of the particles will for sure occur, at which the relative velocity becomes positive. The

62



particles will get closer and then depart after reaching the turning point. Since this is a classical result

(deriving from the Newton’s laws) such point is usually denominated “classical turning point”, being

denoted by x̃t. Let’s associate the zero value to the instant at which the turning point is reached, i.e.

x̃(0) = x̃t. Note that, by definition, the relative velocity is null in the turning point, ˙̃x(0) = 0. A change

of variables will now be performed, to simplify the further work:

X̃ = x̃− x̃t , (2.172) Ỹ = ỹ − ỹ0 . (2.173)

By substituting the above relations in (2.171a), (2.171b), one gets µ ¨̃Y = −fỸ − γαA′′ e−α(X̃−γỸ ) , (2.174a)

m̃ ¨̃X = αA′′ e−α(X̃−γỸ ) , (2.174b)

with A′′ = Ae−α(x̃t−γỹ0). Now, there’s the objective to obtain the function X̃(t), so that the relative

trajectory of the particles may be described. An approximation is commonly performed: there’s the

assumption that the vibrational amplitude of the oscillator is not driven at large values during the

collision, so that |Ỹ | � L, being L = 1/α the characteristic length of the molecular particle-atomic

particle interaction. And therefore, eαγỸ ≈ 1. This approximation is valid if the relative kinetic energy

of the particles is much greater than the transferred vibrational energy. Note also that if there’s any

exchange between translational and vibrational energies, the final relative speed, vf , would not be the

same as the initial relative speed of the particles, v0. Anyway, a corrective approach can be performed

to reduce the eventual inaccuracies [55]: substitution of the initial relative speed v0 by a mean value,

v0 = (vi + vf ) /2, being vi and vf , the relative speeds of the particles before and after the collision (vi

is the same as the previous defined v0, and vf is obtained by an energy balance, taking into account the

vibrational and translational energy transfers). In these terms, to obtain the solution X̃(t), only equation

(2.174b) needs to be solved, and it may be transformed into

m̃ ¨̃X = αA′′ e−αX̃ . (2.175)

The solution of this differential equation can be shown to be

X̃(t) =
2

α
ln

[
cosh

(√
A′′

2m̃
αt

)]
. (2.176)

The relative velocity is then given by ˙̃X(t) =
√

2A′′

m̃ tanh
(√

A′′

2m̃αt
)

. By applying the initial condition

˙̃X(−∞) = −v0, one can find that

A′′ =
1

2
m̃v2

0 := E0 , (2.177)

being E0 the relative kinetic energy of the colliding particles at t = −∞. By inserting the solution

(2.176) and the relation (2.177) into the interaction potential defined by (2.169), the dependence on X̃
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is substituted by a dependence on t, giving

V ′
(
t, Ỹ

)
= E0 sech2

(αv0

2
t
)
eαγỸ . (2.178)

The interaction potential in this form is ready to be inserted into the Schrödinger equation of the whole

system. Such Schrödinger equation is expressed by

[
−~2

2

(
1

mA

∂2

∂x̃2
A

+
1

mB

∂2

∂x̃2
B

+
1

mC

∂2

∂x̃2
C

)
+ V

(
t, Ỹ

)]
Ψ = i~

∂Ψ

∂t
, (2.179)

being V
(
t, Ỹ

)
the sum of the potential energies of all interactions (the interaction between the molecular

particle and the atomic particle and the interaction between the nuclei of the molecular particle):

V
(
t, Ỹ

)
= V ′

(
t, Ỹ

)
+

1

2
fỸ 2 . (2.180)

By making a change of variables of the local coordinates x̃A, x̃B and x̃C to the relative and average ones

x̃R, X̃, Ỹ , it’s possible to transform equation (2.179) into

[
−~2

2

(
1

M̃

∂2

∂x̃2
R

+
1

m̃

∂2

∂X̃2
+

1

µ

∂2

∂Ỹ 2

)
+ V

(
t, Ỹ

)]
Ψ = i~

∂Ψ

∂t
. (2.181)

Because the potential V doesn’t depend on x̃R neither on X̃, the separation of variables method can be

applied, and the wave function Ψ can be transformed into a multiplication of other two, each one with

the respective separated variables as arguments:

Ψ
(
t, x̃R, X̃, Ỹ

)
= θ

(
x̃R, X̃

)
ψ
(
t, Ỹ

)
. (2.182)

By inserting (2.182) into (2.181), and by taking into account the dependence of each side of the resultant

equation on the separated variables, two new equations can be obtained:
−~2

2

(
1

M̃

∂2

∂x̃2
R

+
1

m̃

∂2

∂X̃2

)
θ = λθ , (2.183a)[

− ~2

2µ

∂2

∂Ỹ 2
+ λ+ V

(
t, Ỹ

)]
ψ = i~

∂ψ

∂t
, (2.183b)

being λ some constant. Only equation (2.183b) will matter from now on, since it is the one which deals

with the vibration of the molecular particle. By invoking again the assumption |Ỹ | � L the exponential

term in the interaction potential (2.178) can be approximated by its first order Taylor expansion around

αỸ = 0, i.e. eαγỸ ≈ 1 + αγỸ giving

V ′(t, Ỹ ) = −F (t)

(
1

αγ
+ Ỹ

)
, (2.184)

with F (t) = −αγE0 sech2
(
αv0

2 t
)
. Note that F (t) has units of force, and it would be equivalent to the

quantity −γFBC(t), if Ỹ = 0 ∀ t. By substituting (2.184) in (2.180), and inserting the result in (2.183b),

64



one can obtain [
− ~2

2µ

∂2

∂Ỹ 2
+ λ− F (t)

(
1

αγ
+ Ỹ

)
+

1

2
fỸ 2

]
ψ = i~

∂ψ

∂t
. (2.185)

Let’s now perform a convenient change of variables from ψ to φ, where φ is given by

φ
(
t, Ỹ

)
= ψ

(
t, Ỹ

)
e
i
~
� t
−∞

[
λ−F (t′)

αγ

]
dt′

. (2.186)

By substituting (2.186) in (2.185), an equation which no longer depends on the constant λ and on the

term F (t)/αγ is obtained: [
− ~2

2µ

∂2

∂Ỹ 2
− F (t)Ỹ +

1

2
fỸ 2

]
φ = i~

∂φ

∂t
. (2.187)

Equation (2.187) it’s still too complicated to be solved as it is. Let’s perform another convenient change

of variables

Φ(t, ξ) = φ(t, Ỹ )e−g(t)Ỹ , (2.188)

where ξ
(
t, Ỹ

)
= Ỹ − u(t), being u(t) and g(t) some functions of time. By substituting the relation

(2.188) in (2.187), one can get

(
− ~2

2µ

∂2

∂ξ2
+

[
i~u̇− ~2

µ
g

]
∂

∂ξ
+

{[
1

2
fu2 − Fu− i~uġ − ~2

2µ
g2

]
+ [fu− F − i~ġ] ξ +

1

2
fξ2

})
Φ = i~

∂Φ

∂t
.

(2.189)

Note that no restrictions were imposed to the functions u(t) and g(t). They are arbitrary and can be

defined in any useful manner. To simplify equation (2.189), one can choose u(t) and g(t) such that the

multiplying coefficients of ∂Φ
∂ξ and ξΦ become null. These conditions result in two new equations:

{
i~g(t) = −µu̇(t) , (2.190a)

µü(t) + fu(t) = F (t) . (2.190b)

Curiously, (2.190b) corresponds to the equation of movement of a classical harmonic oscillator, of mass

m = µ, subjected to an applied force F (t), being u(t) the displacement relatively to the equilibrium

position. Note that (2.190b) is a second order differential equation, which requires two boundary

conditions to be totally defined. These boundary conditions will be chosen to be u(−∞) = u̇(−∞) = 0.

The hypothetical classical harmonic oscillator is then considered to be initially at rest and at equilibrium.

By substituting (2.190a) and (2.190b) in (2.189), one obtains

[
− ~2

2µ

∂2

∂ξ2
+ δ(t) +

1

2
fξ2

]
Φ = i~

∂Φ

∂t
, (2.191)

being δ(t) = 1
2µu̇

2(t)− 1
2fu

2(t). As shown before, the change of variables

Θ(t, ξ) = Φ(t, ξ)e
i
~
� t
−∞ δ(t′)dt′ (2.192)
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proves to be useful in simplifying equation (2.191). By substituting (2.192) in (2.191), one obtains

[
− ~2

2µ

∂2

∂ξ2
+

1

2
fξ2

]
Θ = i~

∂Θ

∂t
. (2.193)

Equation (2.193) is the well-known equation of the quantum free harmonic oscillator (A.1) with mass

m = µ, whose solution according to (A.2) is

Θ(t, ξ) =

∞∑
n=0

cnHn(ξ)e−i
En
~ t . (2.194)

And in comparison with (A.3) and (A.4), the eigenfunctions Hn(ξ) and eigenenergies En are given by

Hn (ξ) =
(µω
π~

) 1
4

(2nn!)
− 1

2 Hn

 ξ√
~
µω

 e−
µω
2~ ξ

2

,

(2.195)

En =

(
n+

1

2

)
~ω , (2.196)

respectively. By reverting the last two changes of variables, (2.192) and (2.188), and substituting g(t) by

the result (2.190a), the solution (2.194) can be written as

φ
(
t, Ỹ

)
=

∞∑
n=0

cnHn(ξ)e
i
~ (−Ent+µu̇(t)Ỹ−

� t
−∞ δ(t′)dt′) . (2.197)

And by reverting one more change of variables, the one represented by (2.186), it’s possible to finally

obtain a general solution for the vibrational wave function:

ψ
(
t, Ỹ

)
=

∞∑
n=0

cnHn(ξ)e
i
~

(
−Ent+µu̇(t)Ỹ−

� t
−∞

[
λ+δ(t′)−F (t′)

αγ

]
dt′
)

. (2.198)

It can be shown that at sufficiently long time before the collision, say t = −∞, the solution (2.198) is

identical to the one of the free harmonic oscillator (A.2), with mass m = µ, and displacement Ỹ :

lim
t→−∞

ψ
(
t, Ỹ

)
=

∞∑
n=0

cnHn(Ỹ )e−i
En
~ t . (2.199)

If the molecular particle was initially in the n-th vibrational level, then only the n-th term of the infinite

series is present in the solution (2.199), which means that only the coefficient cn is non-null. In fact, one

has cm = δnm ∀m = 0, ..., ∞, due to the wave function normalisation condition. Hence, solution (2.198)

is simplified to

ψ
(
t, Ỹ

)
= Hn(ξ)e

i
~

(
−Ent+µu̇(t)Ỹ−

� t
−∞

[
λ+δ(t′)−F (t′)

αγ

]
dt′
)

. (2.200)

To compute the probability of transition between vibrational levels it’s necessary to firstly express

function (2.200) in terms of the eigenfunctions Hn

(
Ỹ
)

. Since these constitute an orthonormal basis,

they can be used to express ψ
(
t, Ỹ

)
through a series expansion:

ψ
(
t, Ỹ

)
=

∞∑
m=0

bm(t)Hm

(
Ỹ
)
e−i

Em
~ t , (2.201)
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where bm(t) are some time-dependent functions. According to Born’s rule, the probability of the molecular

particle AB to transit from the vibrational level n to the vibrational level m is given by

Pmn =

∣∣∣∣� ∞
−∞

ψ∗
(
∞, Ỹ

)
Hm(Ỹ )e−i

Em
~ t dỸ

∣∣∣∣2 = |bm(+∞)|2 . (2.202)

From (2.202), (2.201), (2.200) and by considering the properties of the physicists’ Hermite polynomials,

one may express Pn→m through some already known physical quantities:

Pmn = n!m!ηn+m
0 e−η0

(
l∑

k=0

(−1)kη−k0

(n− k)!(m− k)!k!

)2

, (2.203)

where l = min (n, m). The quantity η0 is the energy (sum of kinetic and potential energies) of the

classical harmonic oscillator at t = +∞, divided by the quantum energy ~ω:

η0 =
1
2fu

2(+∞) + 1
2µu̇

2(+∞)

~ω
. (2.204)

By solving the differential equation (2.190b), with the initial conditions u(−∞) = u̇(−∞) = 0, and force

F (t) = −αγE0 sech2
(
αv0

2 t
)
, one may show that

η0 =
2π2ωm̃2γ2

µ~α2
csch2

(
πω

αv0

)
. (2.205)

2.7.3 The case of V-V-T processes

Here, the computation of probabilities of transition between vibrational levels due to a collision between

two diatomic molecular particles, AB and CD, based on the FHO theory [28, 53] will be presented. The

collision model is depicted in Figure 2.8.

A B C Dv0

ỹ1 ỹ2

x̃

Figure 2.8: Collinear collision between two diatomic molecular particles AB and CD.

Similarly to what was previously defined for the V-T processes case, x̃A and mA are the position of

the nucleus A and its mass, respectively. The analogous notation follows for the other nuclei, B, C and

D. The quantity x̃R is the centre of mass of the whole system. The coordinates presented by Figure

2.8 are: the difference between the positions of the molecular particles centres of mass, x̃ = ˜̄xCD − ˜̄xAB,

the difference between the positions of the nuclei of the molecular particle AB, ỹ1 = x̃B − x̃A, and the

difference between the positions of the nuclei of the molecular particle CD, ỹ2 = x̃D − x̃C. There are six

mass parameters that will prove to be useful in the upcoming derivations: factors γ1 and γ2, the reduced

mass of the molecular particle AB µ1, the reduced mass of the molecular particle CD µ2, the reduced
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mass of the two molecular particles m̃, and the sum of all particles masses M̃ . These are defined by

γ1 =
mA

mA +mB
, (2.206) γ2 =

mD

mC +mD
, (2.207) µ1 =

mAmB

mA +mB
, (2.208)

µ2 =
mCmD

mC +mD
, (2.209) m̃ =

(mA +mB) (mC +mD)

mA +mB +mC +mD
,

(2.210)

M̃ = mA +mB +mC +mD ,

(2.211)

respectively. As also happened for the V-T processes case, it’s assumed that only the interaction between

the nearest nuclei, B and C, matters, and therefore, the interaction potential, V ′, only depends on x̃C−x̃B.

It has then the following form: V ′ (x̃C − x̃B) = Ae−α(x̃C−x̃B), being A and α two positive constants. And

by noticing that x̃C − x̃B = x̃− γ1ỹ1 − γ2ỹ2, the potential can be expressed through

V ′ (x̃, ỹ1, ỹ2) = Ae−α(x̃−γ1ỹ1−γ2ỹ2) . (2.212)

Because the molecular particles are assumed to be harmonic oscillators, the force that A imposes in B and

the force that C imposes in D follow Hooke’s law, and therefore these are given by FAB = −f1 (ỹ1 − ỹ0,1)

and FCD = −f2 (ỹ2 − ỹ0,2), respectively, being f1 and f2 force constants and ỹ0,1 and ỹ0,2, the difference

between the positions of the nuclei of the respective molecular particles at equilibrium. Forces FBC, FAB

and FCD have a conventional positive signal to the right direction.

According to the Newton’s second law, one can write



mA
¨̃xA = FBA + FCA + FDA , (2.213a)

mB
¨̃xB = FAB + FCB + FDB , (2.213b)

mC
¨̃xC = FAC + FBC + FDC , (2.213c)

mD
¨̃xD = FAD + FBD + FCD . (2.213d)

By making a change of variables, and by substituting the already referred approximations, one can

transform the above equations into



µ1
¨̃y1 = −f1 (ỹ1 − ỹ0,1)− γ1αAe

−α(x̃−γ1ỹ1−γ2ỹ2) , (2.214a)

µ2
¨̃y2 = −f2 (ỹ2 − ỹ0,2)− γ2αAe

−α(x̃−γ1ỹ1−γ2ỹ2) , (2.214b)

m̃¨̃x = αAe−α(x̃−γ1ỹ1−γ2ỹ2) , (2.214c)

M̃ ¨̃xR = 0 . (2.214d)

Similarly to the V-T processes case, one can conclude from equation (2.214c) that there’s a classical

turning point in the trajectory, at x̃t, at which an inversion in the motion of the particles occurs.

A change of variables will now be performed:

X̃ = x̃− x̃t , (2.215) Ỹ1 = ỹ1 − ỹ0,1 , (2.216) Ỹ2 = ỹ2 − ỹ0,2 . (2.217)
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By substituting the variables in (2.214a), (2.214b) and (2.214c) for the respective new ones, it’s possible

to obtain 
µ1

¨̃Y1 = −f1Ỹ1 − γ1αA
′′ e−α(X̃−γ1Ỹ1−γ2Ỹ2) , (2.218a)

µ2
¨̃Y2 = −f2Ỹ2 − γ2αA

′′ e−α(X̃−γ1Ỹ1−γ2Ỹ2) , (2.218b)

m̃ ¨̃X = αA′′ e−α(X̃−γ1Ỹ1−γ2Ỹ2) , (2.218c)

with A′′ = Ae−α(x̃t−γ1ỹ0,1−γ2ỹ0,2). Under the assumption |Ỹ1|, |Ỹ2| � L, the following approximation

eα(γ1Ỹ1+γ2Ỹ2) ≈ 1 may be performed. In these terms, equation (2.218c) can be transformed into

m̃ ¨̃X = αA′′ e−αX̃ . (2.219)

Equation (2.219) has the same form has the one obtained for the V-T processes case, (2.175). And

therefore, it has also an identical solution:

X̃(t) =
2

α
ln

[
cosh

(√
A′′

2m̃
αt

)]
. (2.220)

And by applying the initial condition ˙̃X(−∞) = −v0, one can find that

A′′ =
1

2
m̃v2

0 := E0 , (2.221)

being E0 the relative kinetic energy of the two molecular particles centres of mass at t = −∞. By

inserting the solution (2.220) and the relation (2.221) into the interaction potential defined by (2.212),

the dependence on X̃ is substituted by a dependence on t, giving

V ′(t, Ỹ1, Ỹ2) = E0 sech2
(αv0

2
t
)
eα(γ1Ỹ1+γ2Ỹ2) . (2.222)

The interaction potential in this form is ready to be inserted into the Schrödinger equation of the whole

system. Such Schrödinger equation is expressed by

[
−~2

2

(
1

mA

∂2

∂x̃2
A

+
1

mB

∂2

∂x̃2
B

+
1

mC

∂2

∂x̃2
C

+
1

m̃D

∂2

∂x̃2
D

)
+ V

(
t, Ỹ1, Ỹ2

)]
Ψ = i~

∂Ψ

∂t
, (2.223)

being V the sum of the potential energy of all interactions (the interaction between the molecular particles

and the interactions between the nuclei of each molecular particle):

V
(
t, Ỹ1, Ỹ2

)
= V ′

(
t, Ỹ1, Ỹ2

)
+

1

2
f1Y

2
1 +

1

2
f2Ỹ

2
2 . (2.224)

By making a change of variables of the local coordinates x̃A, x̃B , x̃C and x̃D to the relative and

average ones x̃R, X̃, Ỹ1 and Ỹ2, it’s possible to transform equation (2.223) into

[
−~2

2

(
1

M̃

∂2

∂x̃2
R

+
1

m̃

∂2

∂X̃2
+

1

µ1

∂2

∂Ỹ 2
1

+
1

µ2

∂2

∂Ỹ 2
2

)
+ V

(
t, Ỹ1, Ỹ2

)]
Ψ = i~

∂Ψ

∂t
. (2.225)
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Because the potential V doesn’t depend on x̃R neither on X̃, the separation of variables method can be

applied, and the wave function Ψ can be transformed into a multiplication of other two, each one with

the respective separated variables:

Ψ
(
t, x̃R, X̃, Ỹ1, Ỹ2

)
= θ

(
x̃R, X̃

)
ψ
(
t, Ỹ1, Ỹ2

)
. (2.226)

By making the substitution of (2.226) in (2.225), and by taking into account the dependence of each side

of the resultant equation on the separated variables, two new equations can be obtained:
−~2

2

(
1

M̃

∂2

∂x̃2
R

+
1

m̃

∂2

∂X̃2

)
θ = λθ , (2.227a)[

−~2

2

(
1

µ1

∂2

∂Ỹ 2
1

+
1

µ2

∂2

∂Ỹ 2
2

)
+ λ+ V

(
t, Ỹ1, Ỹ2

)]
ψ = i~

∂ψ

∂t
, (2.227b)

being λ some constant. Only equation (2.227b) will matter from now on, since it is the one which deals

with the vibration of the molecular particles.

It’s important to refer here that an analytic expression for the transition probabilities between any

vibrational levels can only be obtained for the case of a symmetrical collision AB-BA, i.e. in which C = B

and D = A, as depicted in Figure 2.9. Therefore, one may derive such analytic expression and then apply

a correction that generalises the collision to the asymmetric case (although only in an approximate way).

The details associated to the correction are saved for later.

A B B Av0

ỹ1 ỹ2

x̃

Figure 2.9: Collinear collision between two diatomic molecular particles AB and BA.

Very intuitively, it’s possible to show that the parameters associated to each molecular particle in a

symmetric collision are equal:

γ1 = γ2 =
mA

mA +mB
:= γ ,

(2.228)

µ1 = µ2 =
mAmB

mA +mB
:= µ ,

(2.229)

f1 = f2 := f , (2.230)

and because of this, the subscript indices 1 and 2 in the notation of these quantities will be no more

necessary. Note that if the molecular particles weren’t equal, the above relations would not be satisfied,

and even if they were equal, but their orientation was the inverse (i.e. if the collision was AB-AB instead

of AB-BA) the relation γ1 = γ2 would not hold. Therefore, both constitution and orientation of the

molecular particles do matter in the collision. The theory herein presented for the symmetric collinear

collision between diatomic molecular particles follows the procedure of Zelechow et al. [28].

By invoking again the assumption |Ỹ1|, |Ỹ2| � L, the exponential in equation (2.222) can be approximated
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by its second order Taylor series expansion around α
(
Ỹ1 + Ỹ2

)
= 0, resulting in

eαγ(Ỹ1+Ỹ2) ≈ 1 + αγ
(
Ỹ1 + Ỹ2

)
+
α2γ2

2

(
Ỹ1 + Ỹ2

)2

. (2.231)

And by substituting (2.231) in (2.222), one would get

V ′(t, Ỹ1, Ỹ2) = −F (t)

[
1

αγ
+ Ỹ1 + Ỹ2 +

αγ

2

(
Ỹ1 + Ỹ2

)2
]

, (2.232)

being F (t) = −αγE0 sech2
(
αv0

2 t
)
. Note that F (t) has units of force, and it would be equivalent to the

quantity −γFBC(t), if Ỹ1 = Ỹ2 = 0∀ t.

By taking into account relations (2.228), (2.229), (2.230), (2.224), and the interaction potential in its

new form (2.232), the Schrödinger equation for the molecular particles vibrations (2.227b) becomes

{
− ~2

2µ

(
∂2

∂Ỹ 2
1

+
∂2

∂Ỹ 2
2

)
+ λ− F (t)

[
1

αγ
+ Ỹ1 + Ỹ2 +

αγ

2

(
Ỹ1 + Ỹ2

)2
]

+
1

2
f
(
Ỹ 2

1 + Ỹ 2
2

)}
ψ = i~

∂ψ

∂t
.

(2.233)

The quantity λ− F (t)
αγ can be removed from (2.233), by performing the substitution

φ
(
t, Ỹ1, Ỹ2

)
= ψ

(
t, Ỹ1, Ỹ2

)
e
i
~
� t
−∞

[
λ−F (t′)

αγ

]
dt′

, (2.234)

resulting in

{
− ~2

2µ

(
∂2

∂Ỹ 2
1

+
∂2

∂Ỹ 2
2

)
− F (t)

[
Ỹ1 + Ỹ2 +

αγ

2

(
Ỹ1 + Ỹ2

)2
]

+
1

2
f
(
Ỹ 2

1 + Ỹ 2
2

)}
φ = i~

∂φ

∂t
. (2.235)

By performing a change of variables from Ỹ1 and Ỹ2 to ỸS and ỸA, where ỸS = 1/
√

2
(
Ỹ1 + Ỹ2

)
and

ỸA = 1/
√

2
(
Ỹ1 − Ỹ2

)
, it’s possible to transfrom equation (2.235) into

{
− ~2

2µ

(
∂2

∂Ỹ 2
S

+
∂2

∂Ỹ 2
A

)
− F (t)

[√
2ỸS + αγỸ 2

S

]
+

1

2
f
(
Ỹ 2
S + Ỹ 2

A

)}
ψ = i~

∂ψ

∂t
. (2.236)

Using the method of separation of variables, one can write

φ
(
t, ỸS , ỸA

)
= φS

(
t, ỸS

)
φA

(
t, ỸA

)
. (2.237)

By substituting (2.237) in (2.236), and by taking into account the dependence on the variables ỸS and

ỸA in each side of the resulting equation one, it’s possible to obtain two new equations:



{
− ~2

2µ

∂2

∂Ỹ 2
S

−
√

2F (t)ỸS +
1

2
[f − 2αγF (t)] Ỹ 2

S

}
φS = i~

∂φS
∂t
− g(t)φS , (2.238a)(

− ~2

2µ

∂2

∂Ỹ 2
A

+
1

2
fỸ 2

A

)
φA = i~

∂φA
∂t

+ g(t)φA , (2.238b)

where g(t) is some time-dependent function. Let’s now perform a convenient change of variables from φS
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and φA to ψS and ψA where

ψS

(
t, ỸS

)
= φS

(
t, ỸS

)
e
i
~
� t
−∞ g(t′) dt′ , (2.239) ψA

(
t, ỸA

)
= φA

(
t, ỸA

)
e−

i
~
� t
−∞ g(t′) dt′ . (2.240)

Equations (2.238a) and (2.238b) under such transformations, become:



{
− ~2

2µ

∂2

∂Ỹ 2
S

−
√

2F (t)ỸS +
1

2
[f − 2αγF (t)] Ỹ 2

S

}
ψS = i~

∂ψS
∂t

, (2.241a)(
− ~2

2µ

∂2

∂Ỹ 2
A

+
1

2
fỸ 2

A

)
ψA = i~

∂ψA
∂t

. (2.241b)

If 2αγF (t)� f (note that this condition may not be valid for too high temperatures) one can assume that

fS(t) := f − 2αγF (t) is constant. With this approximation taken into consideration, equation (2.241a)

turns to be identical to equation (2.187) with F (t) substituted by
√

2F (t) and f substituted by fS(t).

Therefore, its solution is in the same manner identical to (2.197), with the referred modifications, i.e.

ψS

(
t, ỸS

)
=
∞∑
n=0

cS,nHS,n(t, ξ)e
i
~ (−ES,n(t)t+µu̇(t)ỸS−

� t
−∞ δ(t′)dt′) , (2.242)

where:

ξ
(
t, ỸS

)
= ỸS − u(t) , (2.243) ωS(t) =

√
fS(t)

µ
, (2.244) δ(t) =

1

2
µu̇2(t)− 1

2
fS(t)u2(t) ,

(2.245)

HS,n (t, ξ) =

[
µωS(t)

π~

] 1
4

(2nn!)
− 1

2 Hn

 ξ√
~

µωS(t)

 e−
µωS(t)

2~ ξ2

, (2.246)

ES,n(t) = ~ωS(t)

(
n+

1

2

)
. (2.247)

According to (2.190b), the quantity u(t) is the solution of the initial value problem

{
µü(t) + fS(t)u(t) =

√
2F (t) , (2.248a)

u(−∞) = u̇(−∞) = 0 . (2.248b)

Equation (2.241b) is identical to (A.1), which governs a free harmonic oscillator of mass µ and natural

frequency ω =
√

f
µ . By comparison with (A.2), one can write

ψA

(
t, ỸA

)
=

∞∑
n=0

cA,nHA,n

(
ỸA

)
e−

i
~EA,nt , (2.249)

being HA,n and EA,n the n-th eigenfunction and n-th eigenenergy of the equation, respectively. These

are given by

HA,n

(
ỸA

)
=
(µω
π~

) 1
4

(2nn!)
− 1

2 Hn

 ỸA√
~
µω

 e−
µω
2~ Ỹ

2
A ,

(2.250)

EA,n =

(
n+

1

2

)
~ω . (2.251)
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Therefore, by reverting the changes of variables (2.240), (2.239) and (2.234) the general solution for the

vibrational wave function is given by

ψ
(
t, Ỹ1, Ỹ2

)
=

∞∑
n,m=0

cnmHS,n(t, ξ)HA,m

(
ỸA

)
e
i
~

(
−ES,n(t)t−EA,mt+µu̇(t)ỸS−

� t
−∞

[
λ+δ(t′)−F (t′)

αγ

]
dt′
)

.

(2.252)

It can be shown that if the molecular particles AB and CD were initially in the vibrational levels n

and m, respectively, the function ψ evaluated at t = −∞ corresponds to

lim
t=−∞

ψ
(
t, Ỹ1, Ỹ2

)
= Hn

(
Ỹ1

)
e−

i
~EntHm

(
Ỹ2

)
e−

i
~Emt . (2.253)

This is the initial condition to impose in the general solution (2.252). By invoking the properties of the

physicists’ Hermite polynomials, and the Born’s rule, one can show, after some cumbersome algebra, that

the probability of the molecular particles AB and CD transiting from the vibrational levels n, m to k, j

is given by

P k,jn,m =

∣∣∣∣∣
q∑
g=1

(−1)n+m−g+1 C
(n+m)
g,m+1 C

(k+j)
g,j+1 η

n+m
2 + k+j

2 −g+1
0 e−

η0
2

× [(n+m− g + 1)! (k + j − g + 1)!]
1
2 e−i(k+j+g−1)ρ

q−g∑
l=0

(−1)lη−l0

(n+m− g + 1− l)! (k + j − g + 1− l)!l!

∣∣∣∣∣
2

,

(2.254)

where q = min (n+m, k + j), and ρ = 2m̃γ2αv0

µω . The quantity C
(n)
kj is the (k, j)-th entry of a transformation

matrix. It is given by

C
(n)
kj = 2−

n
2

(
n

j − 1

)− 1
2
(

n

k − 1

) 1
2
k−1∑
l=0

(−1)l
(
n− k + 1

j − l − 1

)(
k − 1

l

)
. (2.255)

In (2.255), the brackets notations represent combinations. Similarly to the V-T processes case, the

quantity η0 is the energy (sum of kinetic and potential energies) of the classical harmonic oscillator at

t = +∞, divided by the quantum energy ~ω. It can be shown that this quantity is given by

η0 =
4π2ωm̃2γ2

~µα2
csch2

(
πω

αv0

)
. (2.256)

Result (2.256) is equivalent to the one obtained for the V-T processes case (2.205) multiplied by 2.

2.7.4 Consideration of a better interaction potential

In the above sections, when dealing with V-T and V-V-T processes, it was considered a very simple

interaction potential between the colliding particles: the repulsive exponential. A more reasonable

potential would be one that takes into account the long-range attractive forces, beyond the short-range

repulsive ones. The Morse potential V ′M depicted in Figure 2.10, is an example.
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Figure 2.10: The Morse potential V ′M and the repulsive exponential potential V ′exp divided by the

Boltzmann constant kB , with some illustrative parameters values: A/kB = 3000 K, EM/kB = 200 K,

α = 4�A
−1

, and z̃0 = 1�A.

The Morse potential between two particles with difference in positions z̃ is given by

V ′M(z̃) = EM

[
e−α(z̃−z̃0) − 2e−

α
2 (z̃−z̃0)

]
, (2.257)

being EM the potential well (symmetric of the minimum energy value), α an inverse length parameter,

and z̃0 the difference of positions at equilibrium (more specifically, it’s the z̃ value for which there’s no

force between the particles).

Instead of deriving a whole new FHO theory departing from a Morse potential between the B and C

nuclei, a different approach is considered [53], in which the interaction potential is simply substituted by

V ′(x̃, Ỹ ) = EM

[
e−α(x̃−x̃0) − 2e−

α
2 (x̃−x̃0)

]
eαγỸ , (2.258)

for the V-T processes case, and

V ′(x̃, Ỹ1, Ỹ2) = EM

[
e−α(x̃−x̃0) − 2e−

α
2 (x̃−x̃0)

]
eαγ(Ỹ1+Ỹ2) , (2.259)

for the V-V-T processes case, being x̃0 the x̃ equilibrium value. Note that these potentials retain some of

the repulsive exponential form, due to the presence of the Ỹ coordinates in an identical way as before. If

a full derivation from a pure Morse potential was performed (as done for the repulsive exponential case)

different expressions would have been attained for the interaction potential. This isn’t then a purist way

of deducing a new model, but it is simple and rough as many of the approximations that were taken into

account when developing the FHO theory.

By computing F (t) (in which the results of Cottrell and Ream [56] were proven to be useful), and by

following the same recipe as before, it’s possible to obtain new η0 and ρ values:

η0 =
8π2ωm̃2γ2

~µα2
csch2

(
2πω

αv0

)
cosh2

[
2πω

αv0

(
1

2
+
φ

π

)]
,

(2.260)

ρ =
4m̃γ2αv0

µω
, (2.261)
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where φ = arctan
(√

EM/
1
2m̃v

2
0

)
. The quantity given by (2.260) is in respect of the V-T processes case.

For the V-V-T processes case, η0 is the double of that one, i.e. η
(V-V-T)
0 = 2η

(V-T)
0 .

2.7.5 Approximation that reduces the computational efforts

According to Adamovich et al. [21], if Ttrh
� Tvib, which usually happens immediately downstream of a

strong shock wave, the transition probability of a V-V-T process can be approximated by a multiplication

of two uncoupled probabilities with V-T process resemblance:

P
v′1,v

′
2

v1,v2 = P
v′1
v1 · P

v′2
v2 , (2.262)

where P
v′1
v1 is given by (2.203), and the dependent physical quantities are the ones associated to the first

molecular particle, AB. The analogous follows for P
v′2
v2 . This approximation allows a reduction in the

number of rate coefficients that need be computed, as will be later shown.

2.7.6 The case of V-D processes

The FHO theory can be used to build a model for dissociation processes, like the one developed by

Macheret and Adamovich [57]. Dissociation happens when the molecular particle achieve sufficiently

high vibrational energy levels. But practicability imposes the need of defining a threshold for which it

may occur. According to the Macheret and Adamovich, dissociation can be assumed to occur if the energy

associated to the final vibrational level is equal or higher than the potential well De. The vibrational

levels above or at the dissociation limit are called quasi-bound levels, and can be obtained through the

solution of the Schrödinger equation. Let vD be the vibrational quantum number associated to a lowest

quasi-bound level. The probability of a molecular particle, initially in the v-th vibrational level, to

dissociate after a collision with an atomic or molecular particle is then

PDv =
∑
v′≥vD

P v
′

v , (2.263)

being P v
′

v given by (2.203). Note that there was no attempt to discriminate the second collision partner

(i.e. the question of being an atomic or a molecular particle), since a decoupling of the V-V-T transition

probabilities into two V-T probabilities was assumed. This model has one major drawback: the number

of quasi-bound levels involved in the sum in (2.263) is completely arbitrary. One way to overcome this

problem is through adjustment, i.e. by choosing this number so that the resultant numerical results are

in accordance with experimental data (or more precise theoretical data if the former isn’t available).

2.7.7 Computation of the vibrational excitation/de-excitation and dissociation

rate coefficients

Vibrational excitation/de-excitation and dissociation rate coefficients can be defined in a similar way as

the ones associated to chemical reactions that result from binary collisions. In fact, the processes can be
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expressed by a chemical equation with the form of (2.75), as already shown by (2.161), (2.162), (2.163),

(2.164a), (2.164b), (2.164c).

The rate of change of the amount concentration of a process product and the associated rate coefficient

are given by expressions similar to (2.77) and (2.78), respectively. For example, the rate of change of the

amount concentration of molecular particles AB(v′1) due to collisions between AB(v1) with CD(v2), in

which v′2 may represent a quasi-bound level (hence meaning a dissociation of CD) but not v′1, is according

to (2.77) (
d [AB(v′1)]

dt

)v′1,v′2
v1,v2

=
(
ν′AB(v′1) − νAB(v′1)

)
k
v′1,v

′
2

v1,v2 [AB(v1)][CD(v2)] . (2.264)

It can be shown that ν′AB(v′1) − νAB(v′1) = 1 − δv1,v′1
+ δAB,CD ·

(
δv′2,v′1 − δv2,v′1

)
, being δ the Kronecker

delta. The respective rate coefficient is then from (2.78):

k
v′1,v

′
2

v1,v2 =

� ∞
0

σ
v′1,v

′
2

v1,v2 (v0) f(v0) dv0 . (2.265)

The process cross-section, σ
v′1,v

′
2

v1,v2 (v0), corresponds to the collisional cross-section, σ(v0), multiplied by

the probability of process occurrence in the collision, P
v′1,v

′
2

v1,v2 (v0), i.e. σ
v′1,v

′
2

v1,v2 (v0) = σ(v0) · P v
′
1,v
′
2

v1,v2 (v0). It’s

necessary to define a proper distribution function f(v0) that accounts the restrictive assumptions of the

FHO model, more specifically the collinearity of the collisions. Therefore, it may not be right to define v0

in f(v0) as the real relative speed of the collision, i.e. the norm of the relative velocity, say v. Adamovich

et al. [21], defined the relative speed of collision as the projection of the relative velocity in the line

that links the two collision partners centres, v0 = v cosψ, being ψ the angle between the relative velocity

vector ~v, and the line of the centres. On the other hand, because the system is assumed to be in heavy

particle translational self-equilibrium, the distribution function f(v0) = f(v0, Ttrh
) can be shown to be

f(v0, Ttrh
) =

4

1 + δAB(v1),CD(v2)

√
µ

2πkBTtrh

v0e
− µv2

0
2kBTtrh , (2.266)

being δAB(v1),CD(v2) = δAB,CD ·δv1,v2
. By substituting (2.266) and the relation for the process cross-section

in (2.265), one can obtain

k
v′1,v

′
2

v1,v2 (Ttrh
) =

1

1 + δAB,CD · δv1,v2

√
8kBTtrh

πµ

kBTtrh

µ

� ∞
0

σ(v0)P
v′1,v

′
2

v1,v2 (v0) v0e
− µv2

0
2kBTtrh dv0 . (2.267)

One comment should be made about the uncoupling approximation of the transition probabilities for

the case of V-V-T processes, given by equation (2.262). This approximation allows one to compute a rate

coefficient associated to an excitation/de-excitation of a molecular particle, say v1 → v′1, that accounts

all the possible excitation/de-excitation transitions as well as dissociation of the other molecular particle,

v2 → v′2 (including the v′2 quasi-bound levels, meaning dissociation of CD). Let k
v′1
v1 (Ttrh

) be this rate

coefficient. To show the enunciated proposition, one can start by first noticing that the rate of change of
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the amount concentration of molecular particles AB(v′1) due to the transition v1, v2 → v′1, v
′
2 is given by

(
d [AB(v′1)]

dt

)v′1,v′2
v1,v2

=
(
ν′AB(v′1) − νAB(v′1)

)
k
v′1,v

′
2

v1,v2 (Ttrh
) [AB(v1)][CD(v2)] . (2.268)

And the rate of change of the amount concentration of molecular particles AB(v′1) due to all transitions

v1, v2 → v′1, v
′
2, with v1 and v′1 fixed, is given by a sum in v2 and v′2 (including the v′2 quasi-bound levels)

of the contributions (2.268), i.e.

(
d [AB(v′1)]

dt

)v′1
v1

=
∑
v2,v′2

(
d [AB(v′1)]

dt

)v′1,v′2
v1,v2

=
∑
v2,v′2

(
ν′AB(v′1) − νAB(v′1)

)
k
v′1,v

′
2

v1,v2 (Ttrh
)[AB(v1)] [CD(v2)] .

(2.269)

Both the quantities ν′AB(v′1)− νAB(v′1) = 1− δv1,v′1
+ δAB,CD ·

(
δv′2,v′1 − δv2,v′1

)
and k

v′1,v
′
2

v1,v2 (Ttrh
), that appear

in equation (2.269), depend on Kronecker deltas involving the vibrational quantum numbers v2 and v′2,

more precisely δAB,CD · δv′2,v′1 , δAB,CD · δv2,v′1
and δAB,CD · δv2,v1 . If the species AB and CD were different,

these Kronecker deltas would be disregarded (since in such case δAB,CD = 0). If the species were equal,

the combinations {v1, v2, v
′
1, v
′
2} for which any of the Kronecker deltas that involve v2 and v′2 correspond

to unity would be very few compared to the combinations for which they are null. And, if the rate

coefficients associated to the former cases aren’t much greater than the rate coefficients for the latter

cases, one can approximate equation (2.269) by another disregarding such Kronecker deltas. By taking

into account this approximation, the uncoupling relation (2.262), the definition of the rate coefficient

(2.265), and the definition of the process cross-section, σ
v′1,v

′
2

v1,v2 (v0), one can write

∑
v2,v′2

k
v′1,v

′
2

v1,v2 (Ttrh
) [CD(v2)] =

� ∞
0

σ(v0)P
v′1
v1 (v0)

∑
v2

[CD(v2)]
∑
v′2

P
v′2
v2 (v0)

︸ ︷︷ ︸
=1, by definition

 f(v0, Ttrh
) dv0 ⇔

⇔
∑
v2,v′2

k
v′1,v

′
2

v1,v2 (Ttrh
) [CD(v2)] =

� ∞
0

σ(v0)P
v′1
v1 (v0)f(v0, Ttrh

) dv0︸ ︷︷ ︸
:=k

v′1
v1

(Ttrh
)

∑
v2

[CD(v2)]︸ ︷︷ ︸
:=[CD]

= k
v′1
v1 (Ttrh

) [CD] , (2.270)

where k
v′1
v1 (Ttrh

) is the wanted rate: k
v′1
v1 (Ttrh

) =
�∞

0
σ(v0)P

v′1
v1 (v0)f(v0, Ttrh

) dv0. By substituting (2.270)

in (2.269) one can obtain an expression with a familiar form,

(
d [AB(v′1)]

dt

)v′1
v1

=
(
1− δv1,v′1

)
k
v′1
v1 (Ttrh

) [AB(v1)][CD] . (2.271)

Let’s now consider the case of dissociation of a molecular particle independently of the fate of the

second colliding molecular particle. The variation of the amount concentration of molecular particles

AB(v1) due to dissociation caused by collisions between AB(v1) with CD(v2) in which v′2 may represent
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a quasi-bound level (hence meaning a dissociation of CD) is given by

(
d [AB(v1)]

dt

)D,v′2
v1,v2

=
(
ν′AB(v1) − νAB(v1)

)
k
D,v′2
v1,v2(Ttrh

) [AB(v1)][CD(v2)] . (2.272)

And similarly to what was done for the case of V-V-T processes, one has

(
d [AB(v1)]

dt

)D
v1

=
∑
v2,v′2

(
d [AB(v1)]

dt

)D,v′2
v1,v2

=
∑
v2,v′2

(
ν′AB(v1) − νAB(v1)

)
k
D,v′2
v1,v2(Ttrh

) [AB(v1)][CD(v2)] .

(2.273)

Both quantities
(
ν′AB(v1) − νAB(v1)

)
= δAB,CD

(
δv′2,v1

− δv2,v1

)
−1 and k

D,v′2
v1,v2 depend on Kronecker deltas

involving the vibrational quantum numbers v2 and v′2, more precisely δAB,CD · δv′2,v1
, δAB,CD · δv2,v1

and

δAB,CD · δv2,v1 . And by disregarding these Kronecker deltas (for the same reasons as before) one gets

(
d [AB(v1)]

dt

)D
v1

= −kDv1
(Ttrh

) [AB(v1)][CD] , (2.274)

being kDv1
(Ttrh

) =
�∞

0
σ(v0)PDv1

(v0)f(v0, Ttrh
) dv0 the wanted rate.

2.7.8 Corrections

There are four corrections that may be applied to the FHO model regarding: collisions between molecular

particles of different species, anharmonicity of the molecular particles, conservation of energy, and non-

collinearity of the collisions.

• About collisions between molecular particles of different species: according to Adamovich et al.

[21], it can be taken into account by substituting ρ by

ρ↔ ξ

sinh (ξ)
ρ , (2.275)

being ξ = 2 |ω1−ω2|
αv0

. The result is still an approximation.

Note that the term “species” employed all through this section doesn’t mean the same as chemical

species, but the combination of chemical species and electronic level, since the vibrational level of

the species is defined in respect of some electronic level, due to the coupling of the vibrational and

electronic modes. For instance, particles AB and CD that are of the same chemical chemical species

but are at different electronic levels are considered to be of different species here;

• About the anharmonicity of the molecular particles: real molecular particles aren’t exactly harmonic

oscillators, and therefore, their energy levels may be different from the ones given by equation

(A.4). To correct this, the angular frequency ω of a molecular particle may be substituted by an

effective angular frequency, so that the absolute value of the difference between the final and initial

vibrational energies of the molecular particle is given by the same formula as for the harmonic

oscillator case [58]. And because the formula has an indeterminate form when the initial and final

vibrational energies are equal, an work around should be performed: for such cases the angular
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frequency is substituted by the effective one regarding the transition to the next upper vibrational

level. Therefore, the correction can be expressed mathematically through

ω =


1
~

∣∣∣Ev′−Evv′−v

∣∣∣ , if v′ 6= v ,

1
~ |Ev+1 − Ev| , if v′ = v ,

(2.276)

where Ev is the real vibrational energy associated to the quantum number v, being all the quantities

associated to one molecular particle. Note that there’s an effective angular frequency for each one

of the molecular particles that participate in the collision;

• About energy conservation (mentioned before): because the classical dynamics equation for the

relative trajectory of the particles was derived under the assumption of negligible energy transfer

between the vibrational and translational modes, the law of energy conservation is violated if indeed

the transfer happens. If the transfer happens, the initial and final relative speed of the particles

would be different, i.e. vi 6= vf . The speed vf can be obtaining through an energy balance. To

overcome this problem of violation of the law of energy conservation energy, Billing [59] suggested

the substitution of the initial relative speed of collision that is argument of the probability of

transition P (v0) by an arithmetic mean: v0 =
vi+vf

2 ;

• About noncollinear collisions: according to Adamovich et al. [19] to account the effect of noncollinear

collisions, two corrective factors, SV-T and SV-V, denominated by steric factors may be inserted

into the transition probabilities formulae by performing the substitutions

η0 ↔ SV-T η0 , (2.277) ρ↔ S
1
2

V-V ρ . (2.278)

The subscripts V-T and V-V in SV-T and SV-V, are associated to the process which they are

computed from. Adamovich et al. [19] obtained the SV-T factor by adjusting this parameter, so

that the obtained FHO transition probability P 0,0
1,0 at low v0 speeds matched the one obtained

through the semiclassical three-dimensional trajectory calculations performed by Billing and Fisher

[60]. The SV-V factor was in a similarly way obtained by adjustment of the transition probability

P 0,1
1,0 . As result, the values of SV-T = 4/9 and SV-V = 1/27 were obtained.

Note, that since the uncoupling of transition of probabilities was assumed, the first correction may be

disregarded in this work.

2.8 Heavy particle impact-vibronic transitions

2.8.1 Characterisation of heavy particle impact-vibronic transitions

Let’s consider a collision between a molecular particle and a heavy particle that induces a vibronic

transition of the former. The term “vibronic transition” was herein employed to emphasise the fact

that the transition is with respect to the electronic level of the molecular particle which necessarily also
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implies a transition in its vibrational level, since there’s a particular set of vibrational levels associated

to each electronic level (see section §2.1 for more details), although the change in the vibrational energy

may be negligible. The vibronic transition of the molecular particle may come with the cost of the

collision particle suffering a transition in its internal energy levels or even dissociation or ionisation. In

this work, only transitions of the collision partner in their electronic level, if it corresponds to an atomic

particle, or vibrational or vibronic level, if it corresponds to a molecular particle, were considered as a

possibility. These processes will be herein termed “VE-m-h processes” - “VE” represents the vibronic

transition of the molecular particle with possible outcome of the collision partner suffering an electronic,

vibrational or vibronic transition, “m” represents the molecular particle, and “h” represents the type of

collision partner: a heavy particle. If the vibronic transition of the molecular particle due to a collision

with a heavy particle occurs without excitation/de-excitation of the latter, then the process is said to be

“intramolecular” since it only affects the internal energy level of the molecular particle. In this case only

translational energy is exchanged between the collision partners. Conversely, if there’s an excitation/de-

excitation of the heavy particle, the process is said to be “intermolecular” since it affects the internal

energies of both collision partners. In this case, an exchange of internal energy beyond the translational

one may occur between the particles. A VE-m-h process can be depicted by

AB(e1, v1) + C(e2) AB(e′1, v
′
1) + C(e′2) ,

(2.279)

AB(e1, v1) + CD(e2, v2) AB(e′1, v
′
1) + CD(e′2, v

′
2) ,

(2.280)

being the employed notation the already familiar one considered for the FHO model in §2.7.

After performing an extensive search on the literature, no well based and simultaneously feasible

theoretical models were found for these processes, but very simplistic postulatory models or empirical

correlations which can only be shown to be valid for low temperatures (since almost all experiments

associated to these processes were done at low temperatures throughout History). However, well based

theoretical models were actually found for the case of electronic excitations/de-excitations of atomic

particles by collisions with another atomic particles: the Landau-Zener model and the Rosen-Zener-

Demkov model. One of the objectives of this thesis was to study the possibility of extending the

Landau-Zener and Rosen-Zener-Demkov models to the case of VE-m-h processes. But before that, it

is necessary to present here the original models so that the reader can be acquainted with them. Both

Landau-Zener and Rosen-Zener-Demkov models consider several crucial approximations, such as the

adiabatic approximation (or Born-Oppenheimer approximation), the semiclassical approximation and

the so-called two-states approximation. Therefore, the introduction of the Landau-Zener and Rosen-

Zener-Demkov models needs, in its turn, to be halted, since the above-mentioned approximation should

be firstly addressed.
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2.8.2 The adiabatic approximation

2.8.2.1 The case of a general isolated system of particles

Let’s consider an isolated system of particles that may comprise free electrons, atomic and molecular

particles. A set of nuclei and a set electrons can therefore be identified in the system. Let {~R} be the

set of nuclei coordinates and {~r} the set of electrons coordinates relatively to some fixed referential. The

Schrödinger equation for such system corresponds to

i~
∂Ψ

∂t
({~R}, {~r}, t) = Ĥ({~R}, {~r}) Ψ({~R}, {~r}, t) , (2.281)

being Ĥ({~R}, {~r}) the Hamiltonian operator, which is given by [61]

Ĥ({~R}, {~r}) =
∑
i

T̂i +
∑
α

T̂α +
∑
i, j>i

Vij(~Ri, ~Rj) +
∑

α, β>α

Vαβ(~rα, ~rβ) +
∑
i,α

Viα(~Ri, ~rα) + V̂s.o. . (2.282)

In the above relation, T̂i and T̂α are the kinetic energy operators of the i-th nucleus and α-th electron

T̂i = − ~2

2Mi
∇2
~Ri

, (2.283) T̂α = − ~2

2me
∇2
~rα

, (2.284)

respectively, where ∇2
~Ri

corresponds to the Laplacian operator taken with respect to the coordinates of

the ~Ri vector, and the analogous follows for ∇2
~rα

. The quantity Mi is the mass of the i-th nucleus. The

quantities Vij(~Ri, ~Rj), Vαβ(~rα, ~rβ) and Viα(~Ri, ~rα) are the potential energies associated to the Coulomb

electrostatic interactions between the i and j-th nuclei, between the α and β-th electrons, and between

the i-th nucleus and the α-th electron, i.e.

Vij(~Ri, ~Rj) =
ZiZje

2

4πε0

∥∥∥~Rj − ~Ri

∥∥∥ ,

(2.285)

Vαβ(~rα, ~rβ) =
e2

4πε0 ‖~rβ − ~rα‖
,

(2.286)

Viα(~Ri, ~rα) = − Zie
2

4πε0

∥∥∥~rα − ~Ri

∥∥∥ ,

(2.287)

respectively, where ε0 is the vacuum permittivity, e is the elementary charge (the proton charge, or

equivalently, the symmetric of the electron charge), and Zi is the number of protons in the i-th nucleus.

The quantity V̂s.o. is the so-called spin-orbit interaction operator which is usually significantly smaller

than the potential energies for the Coulomb electrostatic interactions [61]. By this reason, the operator

of the spin-orbit interaction was disregarded.

Because the Hamiltonian Ĥ({~R}, {~r}) doesn’t depend on the instant of time t, one can consider a

separation of variables and write Ψ({~R}, {~r}, t) = T (t)ψ({~R}, {~r}), being T (t) some function of time and

ψ({~R}, {~r}) some function of {~R} and {~r}. Equation (2.281) will then lead to two new equations:
∂T
∂t (t)

T (t)
= − i

~
E , (2.288a)

Ĥ({~R}, {~r})ψ({~R}, {~r}) = E ψ({~R}, {~r}) , (2.288b)

being E the separation constant, physically meaning the energy of the isolated system. By solving
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equation (2.288a), one can express the global wave function Ψ({~R}, {~r}, t) as

Ψ({~R}, {~r}, t) = ψ({~R}, {~r}) e− i
~Et . (2.289)

One of the principles in which the adiabatic approximation relies on is in the fact that the mass of

the electrons is so much smaller than the mass of the nuclei that the velocity of the former achieve much

greater values than the velocity of the latter, and therefore, one may describe the electronic motion by

assuming the nuclei to be at rest. In other words, one may consider the Hamiltonian for such motion to

be the one represented by (2.282), neglecting the kinetic energy operators for the nuclei, and assuming

fixed nuclei coordinates {~R}. The set of nuclei coordinates {~R} may be then regarded as parameters of

the resulting Hamiltonian, which has then the form

Ĥe({~R}, {~r}) =
∑
α

T̂α +
∑
i, j>i

Vij(~Ri, ~Rj) +
∑

α, β>α

Vαβ(~rα, ~rβ) +
∑
i,α

Viα(~Ri, ~rα) + V̂s.o. . (2.290)

This Hamiltonian will be for now on called “the electronic Hamiltonian operator”. The Schrödinger

equation for this hypothetical system can be expressed by

i~
∂Φ

∂t
({~R}, {~r}, t) = Ĥe({~R}, {~r}) Φ({~R}, {~r}, t) . (2.291)

The quantisation condition implies that there is a set of orthonormal (in respect of the set of variables

{~r}) electronic wave functions Φm({~R}, {~r}, t) representing the different electronic states, and since

the Hamiltonian Ĥe({~R}, {~r}) doesn’t depend on the instant of time t, one can consider a separation

of variables and write Φm({~R}, {~r}, t) = Tm(t)φm({~R}, {~r}), being Tm(t) some function of time and

φm({~R}, {~r}) some function of {~r} having the set {~R} as parameter. Similarly to what happened with

the global Schrödinger equation (2.281), the electronic Schrödinger equation (2.291) leads to two new

equations: 
∂Tm
∂t (t)

Tm(t)
= − i

~
Um({~R}) , (2.292a)

Ĥe({~R}, {~r})φm({~R}, {~r}) = Um({~R})φm({~R}, {~r}) , (2.292b)

being Um({~R}) the separation “constant” having the set {~R} as parameter. This quantity is referred as

the m-th adiabatic electronic term (which is an eigenenergy of the electronic system), and φm({~R}, {~r})

is the m-th adiabatic electronic function (which is an eigenfunction of the electronic system). Being {~R}

regarded as parameter, one should emphasise that there’s an equation (2.292a) and an equation (2.292b)

for each value of {~R}.

Since the functions φm({~R}, {~r}) constitute an orthonormal basis with respect to the set of variables

{~r}, one can use them to express the dependence on {~r} of the wave function ψ({~R}, {~r}) through an

expansion:

ψ({~R}, {~r}) =
∑
m

χm({~R})φm({~R}, {~r}) , (2.293)
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being χm({~R}) some functions of the set of variables {~R}. The global wave function will then become

Ψ({~R}, {~r}, t) =

[∑
m

χm({~R})φm({~R}, {~r})

]
e−

i
~Et . (2.294)

By substituting (2.293) in the time-independent Schrödinger equation (2.288b), multiplying the

equation by φ∗n({~R}, {~r}) and integrating it over the set of variables {~r}, one can obtain the result

[(∑
i

− ~2

2Mi
∇2
~Ri

)
+ Ĉnn + Un({~R})

]
χn({~R}) = Eχn({~R})−

[∑
m

Ĉnm χm({~R})

]
. (2.295)

where the orthonormality property of the adiabatic electronic functions, i.e.
�
φ∗m φn d{~r} = δmn, was

used. The operator Ĉnm corresponds to the so-called coupling operator with respect to the n-th and m-th

adiabatic electronic wave functions, being given by

Ĉnm =
∑
i

− ~2

2Mi

[�
φ∗n∇2

~Ri
φm d{~r}+ 2

(�
φ∗n ~∇~Ri

φm d{~r} · ~∇~Ri

)]
. (2.296)

If the adiabatic electronic terms Um are not too close to each other - another assumption of the

adiabatic approximation - then one can neglect the contribution of the operators Ĉnm [61, 62] and write

equation (2.295) as [(∑
i

− ~2

2Mi
∇2
~Ri

)
+ Un({~R})

]
χn({~R}) = Eχn({~R}) . (2.297)

Equation (2.297) represents a Schrödinger equation for the motion of nuclei under a potential energy

Un({~R}). Therefore, if the adiabatic approximation does hold, the adiabatic electronic terms correspond

to nuclear potential energy functions.

2.8.2.2 The case of an isolated diatomic molecular particle

Let’s now consider an isolated system composed by a diatomic molecular particle. To simplify even more

the problem let’s consider an inertial coordinate system with the origin coinciding with the centre of

mass of the diatomic molecular particle. Since the molecular particle is isolated, it isn’t subjected to

external forces, and therefore, its centre of mass doesn’t suffer any acceleration. There’s a set of nuclear

coordinates composed by two vectors, {~R} = {~R1,~R2}, representing the positions of the two nuclei, and a

set of electronic coordinates {~r}. Doing the same procedure as the one for the case of the general isolated

system, the time-independent Schrödinger equation for the isolated diatomic molecular particle can be

written in the form

[
− ~2

2M1
∇2
~R1
− ~2

2M2
∇2
~R2

+ Ĥe(~R1, ~R2, {~r})
]
ψ(~R1, ~R2, {~r}) = E′ ψ(~R1, ~R2, {~r}) , (2.298)

being the electronic Hamiltonian Ĥe(~R1, ~R2, {~r}) given by (2.290). The separation constant E′ is the

energy of the system relatively to its centre of mass. Transforming the local variables of the nuclei ~R1

and ~R2 into a combination of the centre of mass of the two nuclei ~̄R =
(
M1

~R1 +M2
~R2

)
/ (M1 +M2)
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and the difference between the two coordinates ~R = ~R2 − ~R1, equation (2.298) can be transformed into

[
− ~2

2M
∇2
~̄R
− ~2

2µ
∇2
~R

+ Ĥe( ~̄R, ~R, {~r})
]
ψ( ~̄R, ~R, {~r}) = E′ ψ( ~̄R, ~R, {~r}) , (2.299)

being M = M1 +M2 the mass of the two nuclei and µ = M1M2/ (M1 +M2) the reduced mass of the two

nuclei. The kinetic energy of the centre of mass of the nuclei can be shown to be significantly smaller than

the kinetic energy of the electrons, and therefore the operator − ~2

2M∇
2
~̄R

may be disregarded in equation

(2.299) [62]. Due to the much higher mass of the nuclei when in comparison with the one of the electrons,

it’s correct to approximate the centre of mass of the whole molecular particle by the centre mass of the

nuclei, making ~̄R ≈ ~0. One can therefore remove the ~̄R variable from the argument of the involved

functions. Additionally, by invoking the expansion relation (2.293), one may express (2.299) through

[
− ~2

2µ
∇2
~R

+ Ĥe(~R, {~r})
] ∑

m

χm(~R)φm(~R, {~r}) = E′
∑
m

χm(~R)φm(~R, {~r}) . (2.300)

By multiplying (2.300) by φ∗n(~R, {~r}), integrating it over {~r}, and by neglecting the resultant Ĉnm

operator with a form identical to (2.296), one may get:

[
− ~2

2µ
∇2
~R

+ Un(R)

]
χn(~R) = E′χn(~R) , (2.301)

where Un(R) is the n-th adiabatic electronic term which in a diatomic molecular particle only depends

on the norm R of the internuclear vector ~R [62]. By using spherical coordinates relatively to the inertial

frame - the radius R, the azimuthal angle ϕ, and the polar angle θ - one may write (2.301) as

{
− ~2

2µ

[
1

R2

∂

∂R

(
R2 ∂

∂R

)
− l̂2

R2

]
+ Un(R)

}
χn(R,ϕ, θ) = E′χn(R,ϕ, θ) , (2.302)

being l̂2 the so-called squared angular momentum operator [62], given by

l̂2 = −
[

1

sin2 θ

∂2

∂ϕ2
+

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)]
. (2.303)

Since the potential energy Un(R) only depends on the radius R, a separation of variables can be

considered, allowing the writing of χn(R,φ, θ) = Xn(R)Yn(ϕ, θ), being Xn(R) some function of R and

Yn(ϕ, θ) some function of ϕ and θ. Equation (2.302) can then be separated into two:
[
− ~2

2µ

1

R2

∂

∂R

(
R2 ∂

∂R

)
+ Un(R)

]
Xn(R) = λXn(R) , (2.304a)

~2

2µ

l̂2

R2
Yn(ϕ, θ) = ζ Yn(ϕ, θ) , (2.304b)

in which λ and ζ are the respective separation constants, making E′ = λ + ζ. It can be shown that the

eigenfunctions of (2.304b) correspond to Yn(ϕ, θ) = Yl,m(ϕ, θ), the so-called spherical harmonic functions,

and the eigenenergies are ζ = l (l + 1) [62]. The quantities l and m are respectively the so-called angular

momentum quantum number (or simply the rotational quantum number), with l = 0, 1, 2, ..., and the
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so-called quantum number for the z-component of the angular momentum, with m = −l, −l+1, ..., l−1, l.

The eigenfunctions Yl,m(ϕ, θ) are orthonormal, satisfying

� π

0

(� 2π

0

Y ∗l′,m′Yl,mdϕ

)
sin θ dθ = δll′ · δmm′ . (2.305)

Since Yl,m(ϕ, θ) constitute an orthonormal basis in respect of the ϕ and θ variables, one may express

the dependence of the wave function χn(R,φ, θ) on these variables through an expansion:

χn(R,φ, θ) =
∑
l′,m′

Xn,l′,m′(R)Yl′,m′(ϕ, θ) . (2.306)

By substituting (2.306) in (2.302), multiplying it by Y ∗l,m sin θ and integrating it in ϕ and θ, it’s possible

to obtain [
− ~2

2µ

1

R2

∂

∂R

(
R2 ∂

∂R

)
+ Un(R) +

~2

2µ

l(l + 1)

R2

]
Xn,l,m(R) = E′Xn,l,m(R) . (2.307)

And by making the change of variables xn,m,l(R) = RXn,m,l(R), equation (2.307) can be transformed

into the so-called radial Schrödinger equation:

[
− ~2

2µ
+ Un,l(R)

]
xn,l,m(R) = E′xn,l,m(R) , (2.308)

being Un,l(R) the centrifugally corrected potential energy given by

Un,l(R) = Un(R) +
~2

2µ

l(l + 1)

R2
(2.309)

The quantity ~2l(l + 1)/
(
2µR2

)
is commonly called the centrifugal energy.

2.8.3 The semiclassical approximation

The adiabatic approximation per se allows one to describe the motion of the nuclei if its electronic state

is indeed known. However, the electronic state of the system of particles may change when the adiabatic

electronic terms Um({~R}) get too close to each other [61]. To study the evolution of the system electronic

state, a simplifying approximation such as the semiclassical approximation is undoubtedly convenient.

A common assumption when dealing with both nuclei and electrons is to regard the movement of the

nuclei according to Classical Mechanics and the movement of the nuclei according to Quantum Mechanics

- a semiclassical approximation. Therefore, the set of nuclei coordinates {~R} is obtained through the

Newton’s second law, being now parametrised by the instant of time t, which allows it to be expressed

as {~R(t)}. The Schrödinger equation for the electronic system can be written in the same manner as

in (2.291), but with {~R} substituted by {~R(t)}, and the argument {~R} in the electronic wave function

Φ({~R}, {~r}, t) suppressed since {~R} now depends on t, and a t-dependence of the wave function already

appears in its argument:

i~
∂Φ

∂t
({~r}, t) = Ĥe({~R(t)}, {~r}) Φ({~r}, t) . (2.310)

And by invoking the quantisation condition, there is a set of orthonormal (in respect of the set of
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variables {~r}) wavefunctions Φm({~R(t)}, {~r}, t) which under the adiabatic approximation23 have the

form Φm({~R(t)}, {~r}, t) = Tm(t)φm({~R(t)}, {~r}). The substitution of Φ({~r}, t) = Φm({~R(t)}, {~r}, t) in

(2.310) results in two equations with the same format as (2.292a) and (2.292b):
∂Tm
∂t (t)

Tm(t)
= − i

~
Um({~R(t)}) , (2.311a)

Ĥe({~R(t)}, {~r})φm({~R(t)}, {~r}) = Um({~R(t)})φm({~R(t)}, {~r}) . (2.311b)

By solving (2.311a) one may write Φm({~R(t)}, {~r}, t) = φm({~R(t)}, {~r})e−
i
~
� t
−∞ Um({~R(t′)})dt′ . Since

Φm({~R(t)}, {~r}, t) constitute an orthonormal basis in respect of the set of variables {~r}, they can be used

to express the {~r}-dependence of the electronic wave function Φ({~r}, t) through an expansion:

Φ({~r}, t) =
∑
m

am(t)φm({~R(t)}, {~r})e−
i
~
� t
−∞ Um({~R(t′)})dt′ , (2.312)

being am(t) some functions of the instant of time t.

It is sometimes more convenient to express the expansion (2.312) through another orthonormal basis.

Such orthonormal basis is the so-called diabatic basis and can be obtained through the time-independent

Schrödinger equation associated to an hypothetical system with H0
e ({~R(t)}, {~r}) as Hamiltonian [61]:

Ĥ0
e ({~R(t)}, {~r})φ0

m({~R(t)}, {~r}) = U0
m({~R(t)})φ0

m({~R(t)}, {~r}) , (2.313)

being φ0
m({~R(t)}, {~r}) the so-called diabatic electronic functions that constitute the diabatic orthonormal

basis. Because these functions constitute a basis in respect of {~r}, they can be used to expressed the

adiabatic electronic functions ones through an expansion:

φn({~R(t)}, {~r}) =
∑
m

cnm({~R(t)})φ0
m({~R(t)}, {~r}) , (2.314)

being cnm({~R(t)}) some functions of {~R(t)}. By using the diabatic electronic functions the electronic

wave function may be expressed through

Φ({~r}, t) =
∑
m

bm(t)φ0
m({~R(t)}, {~r})e−

i
~
� t
−∞Hmm({~R(t′)})dt′ , (2.315)

being bm(t) some functions of the instant of time t, and Hmm =
� (
φ0
n

)∗
Ĥeφ

0
m d{~r}.

By substituting the expansion (2.312) in the electronic Schrödinger equation (2.310), multiplying it

by φ∗n and integrating it in {~r}, an expression for the variation in time of the coefficient an(t) is obtained:

ȧn(t) = −
∑
m6=n

(�
φ∗n
∂φm
∂t

d{~r}
)
e−

i
~
� t
−∞(Um−Un)dt′am(t) . (2.316)

A particular property of the adiabatic electronic functions φm was used in the derivation of (2.316):

23Under the adiabatic approximation one may consider Ĥe({~R(t)}, {~r}) with fixed {~R(t)} coordinates, making a separation

of variables of Φm in t and ({~R(t)}, {~r}) possible.
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because the spin-orbit interaction operator V̂s.o. was assumed to be negligible in the Hamiltonian Ĥe, it

can be shown that the eigenfunctions φn are real [61] (meaning that φ∗n = φn), and therefore one has

�
φ∗n
∂φm
∂t

d{~r} =
∂

∂t

(�
φ∗nφm d{~r}

)
︸ ︷︷ ︸

=δnm

−
�
∂φ∗n
∂t

φm d{~r}︸ ︷︷ ︸
=
�
φ∗m

∂φn
∂t d{~r}

⇔

⇔
�
φ∗n
∂φm
∂t

d{~r} = (δnm − 1)

�
φ∗m

∂φn
∂t

d{~r} =

0, if n = m ,

−
�
φ∗m

∂φn
∂t d{~r}, if n 6= m .

(2.317)

Equation (2.316) reveals that the evolution of each coefficient an does depend on the instantaneous

values of the others am. This coupling may induce a change of the electronic state of the system. It can

be shown that such change is more likely to occur in the regions of {~R(t)} where the adiabatic electronic

terms Um({~R(t)}) get closer to each other [61]. Note that one may write ∂φm/∂t =
∑
i

(
~̇Ri · ~∇~Ri

)
φm

due to the dependence of φm on ~R and the dependence of ~R on t. If spherical coordinates are considered

- Ri for the radius, ϕi for the azimuthal angle and θi the polar angle of ~Ri - one has then ∂φm/∂t =∑
i

(
Ṙi∂/∂Ri + ϕ̇i∂/∂ϕi + θ̇i∂/∂θi

)
φm.

Regarding the expansion (2.315), by substituting it in the electronic Schrödinger equation (2.310),

multiplying it by
(
φ0
n

)∗
, integrating it in {~r} and invoking the property (2.317) with respect to the φ0

n

functions, an expression for the variation in time of the coefficient bn(t) is obtained:

ḃn(t) = −
∑
m 6=n

(
i

~
Hnm +

� (
φ0
n

)∗ ∂φ0
m

∂t
d{~r}

)
e−

i
~
� t
−∞(Hmm−Hnn)dt′bm(t) . (2.318)

2.8.4 The two-states approximation

Let’s consider the case in which only two adiabatic electronic terms U1({~R(t)}) and U2({~R(t)}) are

significantly close to each other so that the possibility of a transition of the system electronic state

from one state to the other during the nuclei motion may be required to be taken into account. In

these circumstances, one may retain only the two terms associated to U1({~R(t)}) and U2({~R(t)}) in the

expansion (2.312), giving

Φ({~r}, t) = a1(t)φ1({~R(t)}, {~r})e−
i
~
� t
−∞ U1({~R(t′)})dt′ + a2(t)φ2({~R(t)}, {~r})e−

i
~
� t
−∞ U2({~R(t′)})dt′ .

(2.319)

Besides that, it will be assumed that two diabatic electronic functions φ0
1({~R(t)}, {~r}) and φ0

2({~R(t)}, {~r})

are enough to describe the expansion (2.315), giving

Φ({~r}, t) = b1(t)φ0
1({~R(t)}, {~r})e−

i
~
� t
−∞H11({~R(t′)})dt′ + b2(t)φ0

2({~R(t)}, {~r})e−
i
~
� t
−∞H22({~R(t′)})dt′ ,

(2.320)
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and that a relation between the adiabatic electronic functions φm({~R(t)}, {~r}) and the diabatic electronic

functions φ0
m({~R(t)}, {~r}) of the of form of (2.314) is still valid, giving

{
φ1({~R(t)}, {~r}) = c11({~R(t)})φ0

1({~R(t)}, {~r}) + c12({~R(t)})φ0
2({~R(t)}, {~r}) , (2.321a)

φ2({~R(t)}, {~r}) = c21({~R(t)})φ0
1({~R(t)}, {~r}) + c22({~R(t)})φ0

2({~R(t)}, {~r}) . (2.321b)

The two relations (2.321a) and (2.321b) can be expressed through a matrix representation:φ1

φ2

︸ ︷︷ ︸
:={φ}

=

c11 c12

c21 c22


︸ ︷︷ ︸

:=[C]

φ0
1

φ0
2

︸ ︷︷ ︸
:={φ0}

. (2.322)

Because both adiabatic electronic functions and diabatic electronic functions are orthonormal with

respect to themselves, it can be shown that matrix C is unitary, i.e. its inverse is equal to its conjugate

transpose: [C]−1 = [C]†. With this property taken into account, one can also show that [C]T is the

matrix that diagonalises the so-called Hamiltonian matrix written under the {φ0} basis, [H], producing

the Hamiltonian matrix written under the {φ} basis, [U ]:

U1 0

0 U2


︸ ︷︷ ︸

:=[U ]

=


c11 c12

c21 c22

T

−1

︸ ︷︷ ︸
:=([C]T)−1

H11 H12

H21 H22


︸ ︷︷ ︸

:=[H]

c11 c12

c21 c22

T

︸ ︷︷ ︸
:=[C]T

. (2.323)

Because Hamiltonian operators are hermitian [62], their matrix representation and the respective

conjugate transpose are equal: [H] = [H]†. That means that the diagonal elements H11 and H22 are real

and the off-diagonal elements H11 and H22 are the conjugate of each other: H21 = H∗12. Also, because the

spin-orbit interaction V̂s.o. of the Hamiltonian operators was disregarded, all elements of the [H] matrix

are real, and therefore H21 = H12 [61].

Equation (2.323) tells that the adiabatic electronic terms U1 and U2 are the eigenvalues of the [H]

matrix, meaning that


U1 =

1

2
(H11 +H22) +

1

2

√
(H11 −H22)

2
+ 4H2

12 , (2.324a)

U1 =
1

2
(H11 +H22)− 1

2

√
(H11 −H22)

2
+ 4H2

12 . (2.324b)

On the other hand, equation (2.323) together with the fact that C is a unitary matrix tells that (c11, c12)
T

and (c21, c22)
T

are the normalised eigenvectors of [H], resulting in

c11 c12

c21 c22

 =

 cos(χ) sin(χ)

− sin(χ) cos(χ)

 , (2.325)

with χ given by:

χ =
1

2
arctan

(
2H12

H11 −H22

)
. (2.326)
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In respect of the evolution in time of the coefficients a1(t) and a2(t) under the two-states approximation,

one may obtain from relation (2.316) constrained to the respective two terms the result


ȧ1(t) = −

(�
φ∗1
∂φ2

∂t
d{~r}

)
e−

i
~
� t
−∞(U2−U1)dt′a2(t) , (2.327a)

ȧ2(t) =

(�
φ∗1
∂φ2

∂t
d{~r}

)
e
i
~
� t
−∞(U2−U1)dt′a1(t) , (2.327b)

where the property (2.317) was used. Also, it’s possible to express the above relations through the

diabatic electronic functions instead of the adiabatic ones: by using the relation between the adiabatic and

diabatic electronic functions (2.322) and the results (2.325) and (2.326), one may write
�
φ∗1

∂φ2

∂t d{~r} =� (
φ0

1

)∗ ∂φ0
2

∂t d{~r} − χ̇.

In respect of the evolution in time of the coefficients b1(t) and b2(t) under the two-states approximation,

one may obtain in a similar way


ḃ1(t) =

(
−
� (

φ0
1

)∗ ∂φ0
2

∂t
d{~r} − i

~
H12

)
e−

i
~
� t
−∞(H22−H11)dt′b2(t) , (2.328a)

ḃ2(t) =

(� (
φ0

1

)∗ ∂φ0
2

∂t
d{~r} − i

~
H12

)
e
i
~
� t
−∞(H22−H11)dt′b1(t) . (2.328b)

2.8.5 The Landau-Zener model

Herein the Landau-Zener model which was independently derived by Landau [30] and Zener [31] in 1932

will be described.

Let’s consider the case of two atomic particles approaching each other from infinity. The two particles

will start to interact forming a quasi-molecular particle24, whose respective interaction nuclear potential

corresponds to the one of an equivalent molecular particle composed by the same two particles. Let this

interaction nuclear potential be Ul1,1(R) (the initial electronic wave function is assumed to be Φ({~r}, t) =

φ1(R(t), {~r})). Also, let’s assume that there’s another interaction nuclear potential Ul2,2(R), with a

dissociation limit higher than the first one but lower than the relative energy of the particles, and that

it is sufficiently closer to Ul1,1(R) to make plausible a transition between the two. If such transition

occurs, the departed atomic particles will be found in a higher excitation state than the their initial

one. Due to the law of conservation of the total angular momentum of the system, and due to the fact

that the electrons are highly ineffective in changing the angular momentum of the nuclei [2], the nuclei

total angular momentum is conserved in the collision. Therefore, the rotational quantum numbers of the

nuclei l1 and l2 are identical, i.e. l1 = l2 := l [62], and one may work with the non-centrifugally corrected

internuclear potentials U1(R) and U2(R) and the energy relatively to the centre of mass disregarding the

centrifugal energy E′′ = E′ − ~2l (l + 1) /
(
2µR2

)
. Two particular cases will be considered: one in which

the internuclear potential curves U1(R) and U2(R) being of identical symmetry get very close at the point

R = Rp departing very sharply in the vicinity of that point (see Figure 2.11) - this localised behaviour of

the potential curves is often called pseudo-crossing or avoided crossing [63] - and another in which the

24The system composed by the two atomic particles can’t be called a molecular particle since the energy relatively to
its centre of mass is higher than the dissociation limit associated to the interaction nuclear potential, meaning that after
reaching the turning point, if no change in the interaction nuclear potential curve occurs, the particles will depart from each
other without returning.
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internuclear potential curves U1(R) and U2(R) being of different symmetry cross each other at the point

R = Rc (see Figure 2.12).

Rp

U1(R)

U2(R)

H22(R)

H11(R)

10 = 2

10 = 1

20 = 1

20 = 2

E′′

R

Un

Figure 2.11: Representation of two electronic terms

U1(R) and U2(R) that perform an avoiding crossing

at R = Rp, as well as the diagonal elements of

the Hamiltonian matrix represented in the diabatic

basis H11 and H22.

Rc

U1(R) = H11(R)

U2(R) = H22(R)

20 = 2

10 = 1

10 = 1

20 = 2

E′′

R

Un

Figure 2.12: Representation of two electronic terms

U1(R) = H11(R) and U2(R) = H22(R) that cross

each other at R = Rc. The diabatic electronic

functions were chosen to coincide with the adiabatic

electronic functions at all points R.

Two electronic terms may only cross each other if they are of a different symmetry [62]. One may

check if two electronic terms of a diatomic molecular particle are indeed asymmetric just by analysing

their term symbols. A term symbol has the form

2S+1Λ̂
(+/−)
(u/g) ,

where 2S+1 is the so-called multiplicity of the term (being S the quantum number for the total electronic

spin of the molecular particle), Λ̂ is a capital Greek letter that represents the quantum number for the

projection of the total electronic orbital angular momentum vector on the internuclear axis Λ (for example,

for Λ = 0, 1, 2 one has Λ̂ = Σ, Π, ∆). The subscripted letter (u/g) represents the parity of the term: u

if odd or g if even. The superscripted signal (+/−) only occurs if Λ̂ = Σ, and may correspond to + or

−. For example, the term symbol associated to the ground state of the nitrogen molecule corresponds to

1Σ+
g . Two electronic terms are said to be of different symmetry if they have a different Λ̂ and a different

multiplicity or parity, or the same Λ̂ with Λ̂ = Σ, but a different sign [62].

2.8.5.1 The case of a pseudo-crossing

Let’s consider the first case, in which the electronic terms perform a pseudo-crossing. The region in the

vicinity of the pseudo-crossing point Rp is the one in which the electronic terms get the closest from each

other, and therefore, it is also the region where transitions are more probable to occur - this region will

be referred to from now on as the “transition region”. In this transition region each adiabatic electronic
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function depends strongly on both diabatic electronic functions due to the proximity in the values of the

two sets of functions. At the left of this region, the diabatic electronic function φ0
1(~R, {~r}) tends to the

adiabatic electronic function φ2(~R, {~r}) and, similarly, φ0
2(~R, {~r}) tends to φ1(~R, {~r}). Conversely, at the

right, the diabatic electronic function φ0
1(~R, {~r}) tends to the adiabatic electronic function φ1(~R, {~r})

and φ0
2(~R, {~r}) tends to φ2(~R, {~r}), as shown by Figure 2.11. The motion of the two atomic particles

can be divided into two parts: the approaching motion (before reaching the turning point), and the

departing motion (after reaching the turning point). Let’s start by studying the first part of the motion,

attributing the value t = −∞ to the instant before entering the transition region, t = 0 to the instant

at which the pseudo-crossing point Rp is reached, and t = +∞ to the instant after leaving the transition

region. Because the atomic particles are found with an electronic wave function Φ({~r}, t) = φ1(~R(t), {~r})

before reaching the transition region, one has

Φ({~r},−∞) = φ1(~R(−∞), {~r}) = φ0
1(~R(−∞), {~r}) , (2.329)

and therefore, from relation (2.315), one also has

{
b1(−∞) = 1 , (2.330a)

b2(−∞) = 0 . (2.330b)

These are the initial conditions for the differential equations (2.328a) and (2.328b) that determine the

evolution of the coefficients b1(t) and b2(t) in time. It will be assumed that the transition region is

so small that in that part of the trajectory the elements of the Hamiltonian matrix written under the

diabatic basis almost don’t change. The elements H11 and H22 may be expressed through a first order

Taylor expansion around R = Rp, and H12 may be assumed to be constant [31], i.e.



H11(R) ≈ H11(Rp) +
∂H11

∂R
(Rp)︸ ︷︷ ︸

:=F1

(R−Rp) = H11(Rp) + F1 (R−Rp) , (2.331a)

H22(R) ≈ H22(Rp) +
∂H22

∂R
(Rp)︸ ︷︷ ︸

:=F2

(R−Rp) = H22(Rp) + F2 (R−Rp) , (2.331b)

H12(R) ≈ H12(Rp) := a . (2.331c)

For the same reasons, the relative speed of the particles in the transition region is assumed to be constant,

and therefore, Ṙ(t) ≈ Ṙ(0) := −v, meaning that one may express R(t) through a first order Taylor

expansion around t = 0:

R(t) ≈ Rp − vt . (2.332)

The difference between H22(R(t)) and H11(R(t)) can be obtained through subtraction of (2.331a)

from (2.331b). And by knowing that the equality H11(Rp) = H22(Rp) holds - the elements H11 and H22

intersect at R = Rp (see Figure 2.11) - and using the relation (2.332), it’s possible to show that

H22(R(t))−H11(R(t)) = −∆F vt , (2.333)
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where ∆F = F2−F1, the difference between the values of the slopes of H22(R) and H11(R) curves in the

transition region. Additionally,
� (
φ0

1

)∗ ∂φ0
2

∂t d{~r} is assumed to be negligible when in comparison with

H12 [61].

With all these assumptions taken into account, equations (2.328a) and (2.328b) for the evolution in

time of the coefficients b1(t) and b2(t), respectively, may be expressed through


ḃ1(t) = −ia

~
e
i∆Fv

~

(
t2

2 +∞
)
b2(t) , (2.334a)

ḃ2(t) = −ia
~
e
−i∆Fv

~

(
t2

2 +∞
)
b1(t) . (2.334b)

By differentiating (2.334a) and applying the results (2.334a) and (2.334b) in it, one can obtain a second-

order differential equation:

b̈1(t)− i∆Fv
~

tḃ1(t) +
a2

~2
b1(t) = 0 . (2.335)

And by performing further manipulations of (2.335) it’s possible to express it through a Weber equation

[31], which by imposing the initial conditions (2.330a) and (2.330b) allows one to obtain the coefficient

values after the transition region, b1(+∞) and b2(+∞). Due to the already mentioned behaviour of the

adiabatic and diabatic electronic functions outside of the transition region, the probability of transition of

the system from φ1 to φ2 in the approaching motion of the nuclei, i.e. P1,2, is equivalent to the probability

on non-transition from φ0
1, P10,10 . And according to the Born’s rule one has P10,10 = |b1(+∞)|2, ultimately

giving [31]

P1,2 = P10,10 = e−
2πa2

~v|∆F | . (2.336)

By following a similar procedure, it’s also possible to show that P2,1 = P20,20 = P1,2 = P10,10 .

Regarding the departing motion of the particles, the same result (2.336) as well as the above-mentioned

one hold if the interference caused by the transition from an electronic term to the other in the two motions

is sufficiently small to be neglected [61]. By taking such assumption, the probability of transition of the

system from φ1 to φ2 in a collision between the atomic particles, let it be P̄1,2, is given by the probability

of transition from φ1 to φ2 in the approaching motion and non-transition in the the departing motion,

i.e. P1,2 · P2,2 = P1,2 (1− P1,2), plus the probability of non-transition in the approaching motion and

transition from φ1 to φ2 in the departing motion, i.e. P1,1 · P1,2 = (1− P1,2)P1,2:

P̄1,2 = P1,2 (1− P1,2) + (1− P1,2)P1,2 = 2P1,2 (1− P1,2)⇔

⇔ P̄1,2 = 2e−
2πa2

~v|∆F |

(
1− e−

2πa2

~v|∆F |

)
. (2.337)

This result is the so-called Landau-Zener formula [61].

2.8.5.2 The case of a crossing

Let’s now consider the case in which the electronic terms U1(R) and U2(R) cross each other at R = Rc

as depicted by Figure 2.12. The diabatic electronic functions φ0
1 and φ0

2 are chosen to coincide with the

adiabatic electronic functions φ1 and φ2, respectively, implying that H11(R) = U1(R), H22(R) = U2(R)
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and H12(R) = 0 for all R. The approximations (2.331a), (2.331b) and (2.332) with Rp substituted by

Rc are considered, and because the condition H12(R) = 0 holds, one should now regard the contribution

of
� (
φ0

1

)∗ ∂φ0
2

∂t d{~r} for the equations of evolution in time of the coefficients b1(t) and b2(t), (2.328a) and

(2.328b), respectively. These are therefore transformed into


ḃ1(t) = −

(� (
φ0

1

)∗ ∂φ0
2

∂t
d{~r}

)
e
i∆Fv

~

(
t2

2 +∞
)
b2(t) , (2.338a)

ḃ2(t) =

(� (
φ0

1

)∗ ∂φ0
2

∂t
d{~r}

)
e
−i∆Fv

~

(
t2

2 +∞
)
b1(t) . (2.338b)

Let’s also consider that the system is initially with an electronic wave function Φ({~r}, t) = φ1(~R(t), {~r}),

meaning that the initial conditions of the problem in the approaching motion are the same as the ones

considered for the pseudo-crossing case, which are expressed by (2.330a) and (2.330b).

Similarly to what was done for the pseudo-crossing case, the two differential equations (2.338a) and

(2.338b) can be transformed into a second-order different equation:

b̈1(t)− i (−∆F ) v

~
tḃ1(t) +

(
~
� (
φ0

1

)∗ ∂φ0
2

∂t d{~r}
)2

~2
b1(t) = 0 . (2.339)

By comparing (2.339) with (2.335), one can immediately find that the solution for P10,10 is the

same one as for the pseudo-crossing case (2.336) with ∆F substituted by −∆F and a substituted by

~
� (
φ0

1

)∗ ∂φ0
2

∂t d{~r} giving

P1,1 = P10,10 = e−
2π~

(
�
(φ0

1)
∗ ∂φ0

2
∂t

d{~r}
)2

v|∆F | , (2.340)

It is also possible to show that P2,2 = P20,20 = P1,1.

The probability of transition of the system from φ1 to φ2 in a collision between the atomic particles

P̄1,2, is given by the probability of transition from φ1 to φ2 in the approaching motion and non-transition

in the the departing motion, i.e. P1,2 ·P2,2 = (1− P1,1) ·P2,2, plus the probability of non-transition in the

approaching motion and transition from φ1 to φ2 in the departing motion, i.e. P1,1 ·P1,2 = P1,1 (1− P1,1):

P̄1,2 = (1− P1,1) · P2,2 + P1,1 (1− P1,1) = 2P1,1 (1− P1,1)⇔

⇔ P̄1,2 = 2e−
2π~

(
�
(φ0

1)
∗ ∂φ0

2
∂t

d{~r}
)2

v|∆F |

1− e−
2π~

(
�
(φ0

1)
∗ ∂φ0

2
∂t

d{~r}
)2

v|∆F |

 . (2.341)

2.8.6 The Rosen-Zener-Demkov model

Herein the Rosen-Zener-Demkov model will be described. Let’s consider the case of two atomic particles

approaching each other from infinity, colliding, and then departing. The electronic wave function of the

system is initially Φ({~r}, t) = φ1(~R(t), {~r}). The electronic term U1(R) is the initial non-centrifugally

corrected interaction potential between the two nuclei. Another electronic term, let it be called U2(R),

gets very close to U1(R) for sufficiently large R values, such that their asymptotes have a small separation

∆ as depicted by Figure 2.13. It is in this region that electronic transitions may occur. The dissociation
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limit of U2(R) is considered to be higher than the dissociation limit of U1(R), but lower than the relative

energy (disregarding the centrifugal energy) of the colliding atomic particles E′′.

U1(R)

U2(R)

H11(R)

H22(R)

∆

E′′

R

Un

Figure 2.13: Representation of two electronic terms U1(R) and U2(R) that get very close to each other

for sufficiently large R values, and the diagonal elements of the Hamiltonian matrix represented in the

diabatic basis H11(R) and H22(R) which coincide with the asymptotic values of U1(R) and U2(R) for

those large R values.

Demkov [33] described an electronic transition in a system constituted by two colliding atomic particles

as the one mentioned above. The mathematical structure of the problem was found to be the same as

the one previously obtained by Rosen and Zener [32], although these two authors studied a completely

different phenomena - the physics of the Stern-Gerlach experiment. The two different contributions justify

the presence of the three authors’ names in the model’s designation. Demkov assumed that H11(R) and

H22(R) are constant in the transition region, and H12(R) has an exponential decaying form, i.e.

H11(R) ≈ E0 −
∆

2
, (2.342) H22(R) ≈ E0 +

∆

2
, (2.343) H12(R) ≈ Ae−αR , (2.344)

where E0 is the arithmetic mean of the asymptotic values of U1(R) and U2(R), i.e. E0 = [U1(+∞) + U2(+∞)] /2,

and A and α are some positive constants. Relation (2.344) expresses the way that the diabatic electronic

functions φ0
1(R) and φ0

2(R) tend to φ1(R) and φ2(R), respectively, as R increases. In the limit R→ +∞,

one has φ0
1(R) = φ0

1(R) and φ0
2(R) = φ2(R), meaning that H12(R) = 0 (as supported by relation (2.344)),

due to the fact that the adiabatic electronic functions are orthonormal eigenfunctions of the Hamiltonian

operator Ĥ. It is of particular interest to obtain the dependence of R on time, so that the whole problem

can be solved through the already mentioned semiclassical approach. Therefore, an equation for the

classical motion of the nuclei involving the elements of the Hamiltonian represented in the diabatic basis

needs to be obtained. It can be easily shown that if one considers an expansion for the ψ({~R}, {~r})

function expressed through the diabatic basis,

ψ({~R}, {~r}) =
∑
m

χ0
m({~R})φ0

m({~R}, {~r}) , (2.345)
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instead of the adiabatic basis in the Schrödinger equation (2.299), and following the procedure done in

section §2.8.2.2 as well as applying the two-states approximation, two coupled Schrödinger equations for

the nuclei motion can be obtained:
[
− ~2

2µ
+H11(R)

]
x0

1,l,m(R) = E′′l,mx
0
1,l,m(R)−H12(R)x0

2,l,m , (2.346a)[
− ~2

2µ
+H22(R)

]
x0

2,l,m(R) = E′′l,mx
0
2,l,m(R)−H12(R)x0

1,l,m , (2.346b)

being x0
n,l,m(R) with n = 1, 2 some wave functions which are related to χ0

n({~R}) in the same way as

the wave functions xn,l,m(R) in the Schrödinger equation (2.308) are related to χn({~R}) (see section

§2.8.2.2). The energy E′′l,m = E′ − ~2l(l + 1)/
(
2µR2

)
corresponds to the relative energy of the colliding

atomic particles disregarding the rotational contribution. The indices l and m in x0
n,l,m(R) and E′′l,m

represent the two quantum numbers associated to the rotation of the quasi-molecular particle. They will

be omitted henceforth since it is known that the total angular momentum of the nuclei is conserved in

the collision, meaning that nuclei rotation doesn’t need to be dealt with.

Since the electronic terms U1(R) and U2(R) are permanently close to each other from infinity to a

sufficiently high R value, the nuclei will pass most of their time in this infinite region in the approaching

and departing motions. The physical phenomena that occurs near the turning point may be disregarded

and the elements of the Hamiltonian matrix represented in the diabatic basis may be approximated by

the ones given by (2.342), (2.343) and (2.344) at all instants of time t, allowing one to transform equations

(2.346a) and (2.346b) into


[
− ~2

2µ

∂2

∂R2
+ E0 −

∆

2

]
x0

1(R) = E′′x0
1(R)−Ae−αRx0

2 , (2.347a)[
− ~2

2µ

∂2

∂R2
+ E0 +

∆

2

]
x0

2(R) = E′′x0
2(R)−Ae−αRx0

1 . (2.347b)

By multiplying (2.347a) and (2.347a) by 1/
√

2 and summing them, it’s possible to obtain

[
− ~2

2µ

∂2

∂R2
+Ae−αR

]
1√
2

[
x0

1(R) + x0
2(R)

]
= (E′′ − E0)

1√
2

[
x0

1(R) + x0
2(R)

]
+

∆

2

1√
2

[
x0

2(R)− x0
1(R)

]
.

(2.348)

In near resonance, i.e. if ∆ ≈ 0 holds, the last left term in (2.348) may be neglected, and the equation

may be transformed into [
− ~2

2µ

∂2

∂R2
+Ae−αR

]
x0(R) = E′′′x0(R) , (2.349)

with x0(R) = 1/
√

2
[
x0

1(R) + x0
2(R)

]
and E′′′ = E′′ − E0. The classical counterpart of equation (2.349)

corresponds to
1

2
µṘ2 +Ae−αR = E′′′ . (2.350)

And by differentiating (2.351) with respect to time the classical equation that governs the relative radial

motion of the nuclei can be finally obtained:

µR̈ = αAe−αR , (2.351)
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which has the same form as (2.175), and therefore its solution is given according to (2.176) by

R(t) =
2

α
ln

[
cosh

(√
A

2µ
αt

)]
. (2.352)

It’s important to mention that the result (2.352) assumes that the classical turning point occurs at

t = 0. By applying the initial condition Ṙ(−∞) = −v, being v the initial relative radial speed of the

colliding atomic particles, one may find that

A =
1

2
µv2 , (2.353)

and (2.352) may be transformed into

R(t) =
2

α
ln
(

cosh
(αv

2
t
))

. (2.354)

Solution (2.354) corresponds to the relative radial trajectory of the nuclei that needs to be inserted

into (2.344), which by taking into account (2.353), ultimately gives

H12(t) =
1
2µv

2

cosh2
(
αv
2 t
) =

µv2

cosh
(
αv
2 t
)

+ 1
≈ µv2

cosh
(
αv
2 t
) , (2.355)

where in the last step the previous assumption that only the transition region matters for the problem

was taken. The transition region is accessed for instants of time t such that |t| � 1 (note that the turning

point occurs at t = 0), implying that cosh
(
αv
2 t
)
� 1 [64].

To determine the probability of an electronic transition due to the described collision, one needs to

solve the equations for the evolution in time of the coefficients b1(t) and b2(t), given by (2.328a) and

(2.328b) respectively. It will be assumed that
� (
φ0

1

)∗ ∂φ0
2

∂t d{~r} is negligible when in comparison with

H12(t). By substituting (2.342), (2.343) and (2.355) in the evolution equations (2.328a) and (2.328b),

one may write


ḃ1(t) = −i µv2

~ cosh
(
αv
2 t
)e−i∆

~ (t+∞)b2(t) , (2.356a)

ḃ2(t) = −i µv2

~ cosh
(
αv
2 t
)ei∆

~ (t+∞)b1(t) . (2.356b)

These two equations have the same mathematical structure as the ones treated by Rosen and Zener [32].

By differentiating (2.356a) with respect to time, and inserting the relations (2.356a) and (2.356b) in the

result, it’s possible to obtain a second-order differential equation:

b̈1(t) +

[
αv

2
tanh

(αv
2
t
)

+ i
∆

~

]
ḃ1(t) +

[
µv2

~2 cosh
(
αv
2 t
)]2

b1(t) = 0 . (2.357)

The differential equation (2.357), can then be tranformed into a hypergeometrical differential equation

through a change of variables [32]. By taking account the initial conditions (2.330a) and (2.330b), a
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solution for this differential equation b1(t) may be obtained. By invoking the Born’s rule, the probability

of transition from the electronic wave function Φ({~r}, t) = φ1(~R(t), {~r}) at t = −∞ to Φ({~r}, t) =

φ2(~R(t), {~r}) at t = +∞ in a collision can then be shown to be [32, 65]

P̄1,2 =
sin2

(
πµv
~α
)

cosh2
(
π∆

2~αv
) . (2.358)

Although no mathematical demonstration will be given (for compactness reasons), it can be shown that

the probability of transition from the electronic wave function Φ({~r}, t) = φ1(~R(t), {~r}) to Φ({~r}, t) =

φ2(~R(t), {~r}) in a single approaching or departing motion corresponds to P1,2, such that [66]

1

cosh2
(
π∆

2~αv
) = 4P1,2 (1− P1,2)⇔

P1,2 =
1

1 + e
π∆
~αv

. (2.359)

2.8.7 A study of the possibility of extension of the Landau-Zener and Rosen-

Zener-Demkov models to the case of VE-m-h processes

Let’s consider a collision between a molecular particle and a heavy particle. The presence of the

heavy particle would perturb the internuclear potential associated to the molecular particle. The nuclei

of the molecular particle would then be subjected to an internuclear potential curve which changes

parametrically with the position of the heavy particle. If another potential curve is sufficiently close to

the current one for some particular internuclear distance values, a vibronic transition may occur [61].

Vibration of the molecular particle means that the nuclei may match the particular internuclear distance

values several times during the collision, and therefore, successive vibronic transitions may happen. If

the coupling is due to a crossing or an avoided crossing of the potential curves, then the Landau-Zener

model may be applied. It’s worthy to mention that unperturbed electronic terms which are of different

symmetry due to different parities are transformed into terms of same symmetry when perturbed, since

the presence of the collision partner would destroy the parity symmetry of the electronic terms [67]. That

means that if a crossing of the respective unperturbed internuclear potential curves occurs, this will be

transformed into a pseudo-crossing, implying a strong coupling between the two terms. One example of

such transformation is the one that occurs for the electronic terms A3Σ+
u and B3Πg of molecular nitrogen

N2 (see Figure (B.3)). The unperturbed potential curves associated to A3Σ+
u and B3Πg would be regarded

as crossing diabatic terms, and the respective perturbed ones would be regarded as adiabatic terms that

perform an avoiding crossing.

The Rosen-Zener-Demkov model can’t be applied in any circumstance since the coupling described

by this model only occurs for internuclear distance values associated to the dissociation of the molecular

particle.

It’s important to note that if the collision partner also corresponds to a molecular particle and there’s

an internuclear potential curve which is close enough to the current one, then it is also necessary to take

into account the possibility of this particle suffering a vibronic transition in the collision.
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One way of determining the probability of heavy particle-impact vibronic transition is by solving

the classical equations of motion of the nuclei and applying the Landau-Zener model at the internuclear

distances associated to the crossing or pseudo-crossing of the potential curves - the so-called Trajectory

Surface Hopping Approach (TSHA) [68]. However, this approach requires the knowledge of the perturbation

induced by the collision partner on the potential curves. No data for the parameters that define this

perturbation were found in the literature for the case of the heavy particle-impact vibronic transition

of N2 and N +
2 . An overall lack of such data is indeed acknowledged by the scientific community, as

underlined by Capitelli et al. [69], who say “[...] it is practically impossible to carry out reliable theoretical

calculations of the corresponding transition probabilities owing to the lack of accurate information on the

structure and intersections of the colliding particles’ electronic terms”.

There has been a recent attempt, done by Kirillov [70, 71], to account both Landau-Zener and Rosen-

Zener-Demkov models through a general analytic expression using experimental results to calibrate the

values of the involved parameters. However, not only the derivation of the analytic expression is somewhat

puzzling, but the approach per se lacks physical coherency, since Kirillov applied both models assuming

that the respective original formulae are directly valid for vibronic transitions of colliding molecular and

heavy particles beyond electronic transitions of colliding atomic particles. The relative speed between

the nuclei v which appears in expressions (2.336), (2.340) and (2.359) should be the one associated to the

nuclei of the same molecular particle, due to the fact that the considered vibronic transitions are the ones

between electronic terms of the this molecular particle. Kirillov erroneously regarded v as the relative

speed of the collision partners, and used the above-mentioned expressions to obtain rate coefficients

considering a distribution of relative speeds f(v, Ttrh
).

Curiously, the expression proposed by Kirillov for the average process cross section σp,av resembles

some well-known semi-empiric relations for VE-m-h transitions. The Kirillov expression [70] written

under the nomenclature presented by the chemical equations (2.279) and (2.280) corresponds to

σp,av(Ttrh
) =

σel (Ttrh
, |∆E|) FC1 e

− |∆E|
2kBTtrh , if M = C(e2) ,

σel (Ttrh
, |∆E|) FC1 FC2 e

− |∆E|
2kBTtrh , if M = CD(e2, v2) ,

(2.360)

where σel is the so-called intrinsic electronic cross section [36], being associated to the initial and final

electronic levels of the collision partners e1, e2, e′1 and e′2. In the case of the Kirillov approach, σel

corresponds to the average cross section obtained from the application of the Landau-Zener or the Rosen-

Zener-Demkov models. The quantities FC1 and FC2 are the so-called Franck-Condon factors [36] which

are associated to the overlapping between the vibrational wave functions of the initial and final vibronic

levels of the molecular particle AB, i.e. (e1, v1) and (e′1, v
′
1), and of the initial and final vibronic levels

of the collision partner CD, i.e. (e2, v2) and (e′2, v
′
2), respectively. Finally, ∆E is the energy defect, i.e.

the difference between the initial and final internal energies of the collision partners. Since the transition

of the molecular particle AB is vibronic, and the transition of the collision partner is electronic if it
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corresponds to an atomic particle, or vibronic if it is a molecular particle, ∆E is given by

∆E =

(Te1v1 + Te2)−
(
Te′1v′1 + Te′2

)
, if M = C(e2) ,

(Te1v1
+ Te2v2

)−
(
Te′1v′1 + Te′2v′2

)
, if M = CD(e2, v2) .

(2.361)

Relation (2.360) for the case M = C(e2) differs just slightly from a most common model originally

postulated by Katayama et al. [36]:

σp,av (Ttrh
) = σel FC1 e

− |∆E|
kBTtrh . (2.362)

The difference is on the factor of 1/2 that appears in the argument of the exponential function in

(2.360) but not in the argument of the exponential function in (2.362). These particular exponential

functions express a type of “exponential gap law”: they tell that the average process cross section would

decrease with the absolute value of the energy defect ∆E, and increase with the temperature Ttrh
.

Since relation (2.362) is a simplistic postulatory model it may lack some physical coherence. Conclusions

reached by several researchers rose concern and doubt about its application. Bachmann et al. reported

that the results of his works [34, 35] had no obvious correlation with the Franck-Condon factors, and that

their use would be questionable since factors associated to the overlap of wave functions for the whole

collision system should be regarded instead of Franck-Condon factors associated to isolated molecular

particles. Bachmann et al. also added that in some works, such as the one of Bondybey et al. [72],

the ones of and Katayama et al. [36–38] and the one of Dentamaro et al. [73], the dependence on the

Franck-Condon factors is in qualitative agreement with the observations, but for others, such as the one

of Jihua et al. [74], no correlation with the Franck-Condon factors was reported. In the latter, the authors

referred that their results were “clearly inconsistent” with relation (2.362). Also, Piper [75] reported that,

according to his results, the model fails to predict the energy level distributions of the species involved

in the various studied energy transfer processes even qualitatively. Bachmann et al. [34, 35] considered

the possibility, that for a constant temperature Tref, the average cross section may be expressed by a

exponential gap law of the form

σp,av = σ0 e
− |∆E|E0 , (2.363)

being σ0 a characteristic cross section and E0 a characteristic energy. If the VE-m-h process is resonant,

i.e. if ∆E = 0 does hold, then one would have σp,av = σ0, and therefore, σ0 can be interpreted as the

average cross section value for the case of energy resonance. The results of Bachmann et al. [34] agree

considerable well with the relation (2.363). However, a more detailed work [35] showed some evidences

of the behaviour of the average cross sections for VE-m-h endothermic processes departing from the one

associated to the exothermic VE-m-h processes, being the latter favoured over the former.

The exponential function which appears in (2.362) expressing the respective exponential gap law has

been found to be incorrect. In a work of Katayama et al. [37] a decrease of the average process cross

section with a decrease of the temperature was observed when the inverse was expected. Katayama et

al. [39] said that the regarded exponential factor is characteristic of a repulsive interaction and that an
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attractive interaction would be more appropriate. They then suggested a substitution of the symmetric

of the energy defect absolute value, −|∆E|, in the argument of the exponential function by the well depth

of the interaction potential, ε. Such substitution is complacent with the results of the works of Parmenter

et al. [76, 77].

By taking this analysis into account, it was decided to employ in this work an expression for VE-m-

h average cross sections with the vibronic dependence suggested by Bachmann et al. [34, 35] and the

thermal dependence suggested by Katayama et al. [39]:

σp,av (Ttrh
) = σ′0 e

− |∆E|E0
+ ε
kBTtrh , (2.364)

being σ′0 = σ0e
− ε
kBTref (implying that at Ttrh

= Tref one has σp,av given by (2.363), i.e. σp,av = σ0 e
− |∆E|E0 )

and ε the well depth of the potential energy curve associated to interaction between the collision partners.

And from (2.84), the respective rate coefficient is given by

kf (Ttrh
) =

σ′0 e
− |∆E|E0

1 + δAB(e1,v1),M

√
8kBTtrh

πµ
e

ε
kBTtrh . (2.365)

which may be conveniently expressed through a modified Arrhenius function (2.88).

2.9 A vibrational redistribution procedure

Let’s consider some important process involving the vibrational energy mode, which isn’t reasonably well

understood, yet, its rate coefficient can be measured for some particular vibrational quantum number or

for the overall contribution of the full set of vibrational quantum numbers. In order to apply these rate

coefficients on vibronic-specific state-to-state simulations it’s firstly necessary to obtain vibronic-specific

ones from them. Being proper theoretical models unavailable, it’s necessary to rely on some general semi-

empirical rules which may or may not describe reasonably well the vibrational dependence. In this section

an approach to compute a full set of vibronic-specific rate coefficients from an overall rate coefficient or

from a single vibronic-specific rate coefficient is described. Such approach is based on the vibrational

redistribution procedure (VRP) considered by Julien Annaloro in his PhD thesis [18].

2.9.1 VRP on the final vibrational quantum number, from an overall rate

coefficient

Let’s consider a vibronic-specific process described by the chemical equation

· · · X(e′, v′) + · · · , (2.366)

where the ellipses represent reactants and the other products. Vibronic-specific rate coefficients of the

form kv
′
(Tc) are to be computed from an overall rate coefficient k(Tc) being the latter with respect to
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the electronic-specific counterpart process of (2.366), i.e.:

· · · X(e′) + · · · . (2.367)

Note that Tc corresponds to the controlling temperature of the process. By invoking the arguments

perpetrated on §2.7.7, one may show that the two types of rate coefficients are related to each other

through

k(Tc) =
∑
v′

kv
′
(Tc) . (2.368)

Now, let’s take the assumption that both rate coefficients may be described by modified Arrhenius

functions (2.88):

 k(Tc) = ATc
ne
− Ea
kBTc , (2.369a)

kv
′
(Tc) = Av

′
(Tc)Tc

nv
′

e
− Ev

′
a

kBTc . (2.369b)

being the pre-exponential factor of the vibronic-specific rateAv
′
allowed to be dependent on the controlling

temperature Tc (hence the presence of the respective symbol on its argument). The parameters A, n and

Ea of the overall rate coefficient are all known. Annaloro [18] assumes that the power on the temperature

of the vibronic-specific rate is the same as the one of the overall rate:

nv
′

= n . (2.370)

And the activation energy of vibronic-specific rate is defined as the difference between the internal energy

of the products and the internal energy of the reactants, if non-negative, or as zero, if negative. One may

express this in terms of the previously introduced energy defect25 ∆E as

Ev
′

a = −∆Ev
′
·H(−∆Ev

′
), (2.371)

being H(−∆Ev
′
) the Heaviside function, which gives 0 if −∆Ev

′
< 0 and 1 if −∆Ev

′ ≥ 0. Regarding

the pre-exponential factor Av
′
(Tc), Annaloro assumed that it increases linearly with |∆Ev′ | if ∆Ev

′
< 0

or with the inverse of |∆Ev′ | if ∆Ev
′
> 0. The proportionality coefficients for each cases are defined

through a common coefficient, say B(Tc), and the minimum values of |∆Ev′ | associated to the respective

signals, |∆E−|min and |∆E+|min. The case |∆Ev′ | = 0 isn’t regarded, being assumed to not occur. One

has

Av
′
(Tc) = B(Tc)

[
|∆Ev′ |
|∆E−|min

H(−∆Ev
′
) +
|∆E+|min

|∆Ev′ |
H(∆Ev

′
)

]
. (2.372)

The common coefficient B(Tc) is determined from condition (2.368), which gives

B(Tc) =
Ae
− Ea
kBTc∑

v′

[
|∆Ev′ |
|∆E−|min

e
∆Ev

′
kBTc H(−∆Ev′) + |∆E+|min

|∆Ev′ | H(∆Ev′)

] . (2.373)

25The energy defect ∆E was defined as the difference between the internal energy of the reactants and the internal energy
of the products, precisely the symmetric of the difference of energies mentioned in the text.
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2.9.2 VRP on the final vibrational quantum number, from a single vibronic-

specific rate coefficient

Let’s consider the case in which solely a rate coefficient of (2.366) for a particular vibrational quantum

number v′ = v′ref is known, being given by a modified Arrhenius function:

kv
′
ref(Tc) = ATc

ne
− Ea
kBTc . (2.374)

By assuming that the vibronic-specific rate coefficients kv
′
(Tc) follow the law (2.369b), with nv

′
= n, Ev

′

a

given by (2.371), and Av
′
(Tc) by (2.372) one can easily show from (2.374) that

B(Tc) =
Ae
− Ea
kBTc

|∆Ev
′
ref |

|∆E−|min
e

∆E
v′
ref

kBTc H(−∆Ev
′
ref) + |∆E+|min

|∆Ev
′
ref |

H(∆Ev
′
ref)

. (2.375)

2.9.3 VRP on the initial vibrational quantum number, from a single vibronic-

specific rate coefficient

If one instead deals with a vibronic-specific process of the form

X(e, v) + · · · · · · , (2.376)

and knows the rate coefficient for a particular vibrational quantum number v = vref, it is possible the

obtain the rate coefficients for all the other if the model (2.369b) (constrained by (2.370) and (2.372))

with v′ simply substituted by v is regarded. The parameters are then the ones obtained in §2.9.2, also

with v′ substituted by v.
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Chapter 3

Implementation

3.1 Considered species and their energy levels

The considered species were the molecular nitrogen N2, molecular nitrogen ion N +
2 , atomic nitrogen N,

atomic nitrogen ion N+ and free electron e–.

The electronic energies of the molecular nitrogen N2 and molecular nitrogen ion N +
2 were taken

from the literature. The respective vibrational energies of each of the considered electronic levels, were

obtained using the Fourier Grid Hamiltonian method [78]. The required potential curves were generated

by implementation of the Rydberg [79, 80]–Klein [81]–Rees [82] method allied with extrapolation. To

familiarise the reader with such methods and the way that they were implemented in this work, a detailed

description is made in appendix B.

Electronic energies εel of the atomic nitrogen N and atomic nitrogen ion N+ can be obtained from

the National Institute of Standards and Technology (NIST) database [83]. The NIST database takes into

account the fine structure of the electronic levels. This fine structure comes into play when relativistic

effects which depend on the spin of the electrons of the particle are regarded [62]. When taking account

relativistic effects, electronic levels that ignored them should now be “split” into a distinct (though very

close) levels that differ in the value of the quantum number for the total angular momentum of the

electrons in the particle, J . The NIST database issues this set of split electronic levels. Due to the

small difference in the sensible energy of the split electronic levels, some studied collisional and radiative

processes that are found in the literature consider the non-split electronic levels instead of the split ones.

Therefore, the applicability of the compiled data for such processes in this work also requires the author

to make this assumption, and single representative levels for each set of split electronic levels need to

be obtained. Herein, the sensible energy of the representative electronic level associated to a set of split

electronic levels was defined as the mean sensible energy that a state belonging to that set may have. Let

the representative electronic level and the set be denoted by e and
{
e†
}

, respectively. Mathematically,

the definition of the sensible energy of the representative electronic level εe, is given by

εe :=
∑
e†

Pe†εe† =
∑
e†

ge†

ge
εe† , (3.1)
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being εe† the sensible energy of the e† electronic level that belongs to the set of split ones
{
e†
}

. The

quantity Pe† corresponds to the probability of a state of the set belonging to the electronic level e†. The

sum in the expression is made in all the electronic levels e† of the set. By taking the assumption that

all states of the set are equiprobable, this probability is simply given by the ratio between the number of

different states that the electronic level e† allows1 (ge†) and the number of different states that the set

allows2 (ge :=
∑
e† ge†). This operation will be denominated from now on as “lumping” of the electronic

levels.

All considered species and their energy levels are reported in Table (3.1).

Table 3.1: Considered species and respective energy levels. The interval that appears between parenthesis

immediately after the molecular term symbols of the electronic levels of N2 and N +
2 correspond to the set

of values of vibrational quantum numbers for which bound vibrational levels were computed.

Type Species Energy levels Reference

Molecule N2

X1Σ+
g ([0, 61]), A3Σ+

u ([0, 31]), B3Πg ([0, 32]), W3∆u ([0, 44]), B′3Σ−u ([0, 47]),

a′1Σ−u ([0, 57]), a1Πg ([0, 52]), w1∆u ([0, 49]), A′5Σ+
g ([0, 5]), C3Πu ([0, 4]),

b1Πu ([0, 28]), c3
1Πu ([0, 4]), c′4

1Σ+
u ([0, 8]), b′1Σ+

u ([0, 54]) and o3
1Πu ([0, 4])

This work

Molecular ion N +
2 X2Σ+

g ([0, 65]), A2Πu ([0, 66]), B2Σ+
u ([0, 38]), D2Πg ([0, 38]) and C2Σ+

u ([0, 13]) This work

Atom N 4Su, 2Du, 2Pu, 4P, 2P, ... (131 levels) (a) NIST[83]

Atomic ion N+ 3P, 1D, 1S, 5Su, 3Du, ... (81 levels) (a) NIST[83]

Free electron e– — —

a As a reminder to the reader: the electronic levels were obtained through a lumping procedure applied on the ones issued by

NIST.

3.2 Collisional processes

Forward rate constants kf for processes that involve collisions between particles were computed through

theoretical models (as is example of the Forced Harmonic Oscilator model), empirical correlations (as

is example of the exponential gap law), or by relying on process cross sections σp and average process

cross sections σp,av found in the literature. Also, whenever cross sections weren’t found but forward rate

constants kf were, the latter were taken and a curve fitting procedure was performed. All collisional

processes considered in this work are resultant from binary collisions (therefore involving only two

particles) being one of the collision partners necessarily a heavy species particle. The determination

of forward rate constants through the different methods will be described for some particular processes.

Section §3.2.1 illustrates the way that the Forced Harmonic Oscilator model was implemented on the

determination of forward rates kf for the vibrational transition and dissociation of N2 and N +
2 by

collisions with heavy particles. In sections 3.2.2 to 3.2.6, processes of vibronic transition of N2 by heavy

particle impact are studied, and average process sections σp,av are used to compute the respective forward

rate coefficients kf through empirical correlations. Section §3.2.7 describes the procedure involved in

1Which is the same as the degree of degeneracy of the electronic level e†.
2Which is the same as the degree of degeneracy of the representative electronic level e, under the assumption of

equiprobability of the set states.
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the computation of forward rates kf through process cross sections values σp with respect to the non-

dissociative ionisation of N2 by electron impact. Section §3.2.8 illustrates an extrapolation of forward rate

values kf evaluated at low free electron translational temperatures Ttre for the case of the dissociative

recombination of N +
2 with electrons. Section §3.2.9 describes the application of adapted Drawin formulae

to the case of electronic excitation and ionisation of N and N+ by electron impact. And section §3.2.10

presents the way that the formula obtained by Annaloro et al. [84] was regarded in this work to compute

rate coefficients for the electronic excitation and ionisation of N and N+ by heavy particle impact.

Table 3.2 makes a synopsis on the regarded collisional processes due to heavy particle impact. And

Table 3.3 makes a synopsis on the regarded collisional processes due to electron impact. The two tables

present the type of process, chemical equation, and reference from which data was taken to compute

the forward rate kf . If the chemical equation is expressed in a general form involving variables which

may represent different possible species, electronic, or vibrational levels, a description of those variables

is made in the column “Remarks” of the table. Some processes reported in the literature which involve

the vibrational levels of N2

(
X1Σ+

g

)
consider a database for these energy levels that is different from the

one employed in this work. Therefore, to make such results applicable, it was determined to linearly (or

bi-linearly if two vibrational levels are involved) interpolate the issued rates in respect of the vibrational

energies if the issued energies are comprised to the in-work database, or to linearly (or bi-linearly)

extrapolate if they aren’t. The application of this procedure will be identified by the acronym ADV

(from “Adaption in respect of the Database for the Vibrational energy levels”) in the respective entry

of the “Remarks” column. By implementing the vibrational redistribution procedure (VRP) described

in §2.9, it’s possible to compute rate coefficients for a full set of vibrational quantum numbers from the

knowledge of a rate coefficient for a particular vibrational quantum number or for the contribution of all

of them. This procedure will be identified by the acronym VRP in the “Remarks” column. A codename

for the type of process, taking into account only the initial and final states of the collision partners, was

defined to simplify the description of the process. It consists of three terms separated by hyphens. If the

process corresponds solely to a transition in the internal energy modes of the collision partners, the first

term of the codename will correspond to a set of capital letters each one representing the involved internal

energy modes (“V” from “vibrational” or/and “E” from “electronic”). Note that since every collisional

process may involve transitions in the translational energies of the collision partners the respective capital

letter “T” was disregarded. If the process corresponds to a bond breaking or/and forming of the internal

structure, the first term will be defined by a set of capital letters, each one representing a type of bond

breaking or forming (“I” from “ionisation”, “R” from “recombination”, “D” from “dissociation” or “A”

from “association”). The second and third terms correspond to labels of minuscule letters representing

the type of the collision partners (“h” from “heavy species”, “m” from “molecular particle” (neutral or

ionic), “a” from “atomic particle” (neutral or ionic), or “e” from “electron”). For example, the non-

dissociative ionisation of a nitrogen molecule by electron impact may be represented by the codename

I-m-e.
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Table 3.2: Collisional processes due to heavy particle impact for which forward rate constants were obtained. The

symbol after the reference in the column “Reference” represents the physical quantity which was extracted from

it: process cross section (if σp), average process cross section (if σp,av) or forward rate constant (if kf ).

Type Chemical equation Remarks Reference

V-m-h N2 (e, v) + M N2

(
e, v′

)
+ M

e ∈ {X,A,B,W,B′, a′, a,w,A′,C, b, c3, c
′
4, b
′, o3},

∀ v, ∀ v′ > v and M ∈ {N2,N
+
2 ,N,N

+} This work (a)

V-m-h N +
2 (e, v) + M N +

2

(
e, v′

)
+ M

e ∈ {X,A,B,D,C}, ∀ v, ∀ v′ > v

and M ∈ {N2,N
+
2 ,N,N

+} This work (a)

VE-m-a N2 (A, v) + N(4Su) N2

(
X, v′

)
+ N(2Pu) ∀ v, and ∀ v′ [85]-kf

VE-m-a N2 (A, v) + N(4Su) N2

(
B, v′

)
+ N(4Su) ∀ v, and ∀ v′ [35]-σp,av

VE-m-a N2 (W, v) + N(4Su) N2

(
B, v′

)
+ N(4Su) ∀ v, and ∀ v′ [35]-σp,av

VE-m-a N2

(
A′, 0

)
+ N(4Su) N2 (B, 10) + N(4Su) — [86]-σp,av

VE-m-m N2 (A, v1) + N2 (X, v2) N2

(
X, v′1

)
+ N2

(
X, v′2

)
∀ v1, ∀ v2, ∀ v′1 and ∀ v′2 [87]-kf

VE-m-m N2 (A, v1) + N2 (X, v2) N2

(
B, v′1

)
+ N2

(
X, v′2

)
∀ v1, ∀ v2, ∀ v′1 and ∀ v′2 [35]-σp,av

VE-m-m N2 (A, v1) + N2 (A, v2) N2

(
B, v′1

)
+ N2

(
X, v′2

)
∀ v1, ∀ v2, ∀ v′1 and ∀ v′2 [88]-kf

VE-m-m N2 (A, v1) + N2 (A, v2) N2

(
C, v′1

)
+ N2

(
X, v′2

)
∀ v1, ∀ v2, ∀ v′1 and ∀ v′2 [89]-kf

VE-m-m N2 (W, v1) + N2 (X, v2) N2

(
B, v′1

)
+ N2

(
X, v′2

)
∀ v1, ∀ v2, ∀ v′1 and ∀ v′2 [35]-σp,av

VE-m-m N2

(
A′, 0

)
+ N2 (X, 0) N2 (B, 10) + N2 (X, 0) — [86]-σp,av

E-a-h N (e) + M N
(
e′
)

+ M ∀e, ∀e′ > e and M ∈ {N,N2} [41]-kf

E-a-h N+ (e) + M N+
(
e′
)

+ M ∀e, ∀e′ > e and M ∈ {N,N2} [41]-kf

D-m-h N2 (e, v) + M N
(
e′1
)

+ N
(
e′2
)

+ M
e ∈ {X,A,B,W,B′, a′, a,w,A′,C, b, b′},

∀ v and M ∈ {N2,N
+
2 ,N,N

+} This work (a)

D-m-h N +
2 (e, v) + M N

(
e′1
)

+ N+
(
e′2
)

+ M
e ∈ {X,A,B,D,C},

∀ v and M ∈ {N2,N
+
2 ,N,N

+} This work (a)

I-a-h N (e) + M N+
(
3P
)

+ M + e– ∀e and M ∈ {N,N2} [41]-kf

IR-m-a N2 (X, v) + N+(3P) N +
2

(
X, v′

)
+ N(4Su) VRP on v and v′ from case v = 0 and

∑
v′ [90]-σp

a Note that although the respective chemical equation doesn’t show any possible transition in the vibrational level (or even dissociation) of

the second collision partner (for the case of this one being molecular), such consideration is implicit. The chemical equation is written in a

way that illustrates the probabilities uncoupling assumption that was described in the section §2.7.7.
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Table 3.3: Collisional processes due to electron impact for which forward rate constants were obtained. The symbol

after the reference in the column “Reference” represents the physical quantity which was extracted from it: process

cross section (if σp), average process cross section (if σp,av) or forward rate constant (if kf ).

Type Chemical equation Remarks Reference

V-m-e N2

(
X1Σ+

g , v
)

+ e– N2

(
X1Σ+

g , v
′
)

+ e– ∀v and ∀ v′ > v, ADV [91]-σp (from [92])

VE-m-e N2 (X, v) + e– N2

(
e′, v′

)
+ e–

e′ ∈ {A,B,W,B′, a′, a,w,C},

VRP on v and v′ from case v = 0 and
∑
v′

[93]-σp

e′ ∈ {c3, o3},

VRP on v and v′ from case v = 0 and
∑
v′

[94]-σp

e′ ∈ {b, c′4, b
′},

VRP on v and v′ from case v = 0 and
∑
v′

[95]-σp

e′ = A′,

Assumption of same reference values as for e′ = A,

VRP on v and v′ from case v = 0 and
∑
v′

—

VE-m-e N +
2 (X, v) + e– N +

2

(
e′, v′

)
+ e–

e′ = B,

v = 0 and v′ = 0,

Remainder of v and v′: VRP from case v = 0 and v′ = 0

[96]-σp

e′ ∈ {A,D,C},

Assumption of same reference values as for e′ = B,

v = 0 and v′ = 0,

Remainder of v and v′: VRP from case v = 0 and v′ = 0

—

E-a-e N (e) + e– N
(
e′
)

+ e–
(e, e′) ∈ {(4Su,

2Du), (4Su,
2Pu), (2Du,

2Pu)} [97]-σp

Remainder of (e, e′), with e′ > e [98]-kf

E-a-e N+ (e) + e– N+
(
e′
)

+ e– ∀e and ∀e′ > e [98]-kf

D-m-e N2

(
X1Σ+

g , v
)

+ e– N
(
e′1
)

+ N
(
e′2
)

+ e–
∀ v, (e′1, e

′
2) = (4Su,

4Su), ADV [91]-σp (from [92])

∀ v, (e′1, e
′
2) = (4Su,

2Du), ADV [99]-σp (from [92])

DR-m-e N +
2

(
X2Σ+

g , v
)

+ e– N
(
e′1
)

+ N
(
e′2
)

v ∈ {0, 2} and

(e′1, e
′
2) ∈ {(4Su,

2Du), (4Su,
2Pu), (2Du,

2Du)}

[100]-kf

v ∈ {1, 3, 4} and

(e′1, e
′
2) ∈ {(4Su,

2Du), (4Su,
2Pu), (2Du,

2Du), (2Du,
2Pu)}

Remainder of v with

(e′1, e
′
2) ∈ {(4Su,

2Du), (4Su,
2Pu), (2Du,

2Du), (2Du,
2Pu)}:

VRP from case v = 4

I-m-e N2

(
X1Σ+

g , v
)

+ e– N +
2

(
e′, v′

)
+ 2 e–

∀ v and e′ ∈ {X,A,B}, ADV,

VRP on v′ from case
∑
v′

[101]-σp (from [92])

I-a-e N (e) + e– N+
(
3P
)

+ 2 e–

e = 4Su [102]-σp

e ∈ {2Du,
2Pu} [103]-σp

Remainder of e [98]-kf
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3.2.1 Vibrational transition and dissociation of N2 and N +
2 by heavy particle

impact

By recalling the previously introduced theory that supports the Forced Harmonic Oscillator (FHO) model

(in section §2.7), one can compute rates for the vibrational transition and dissociation of molecular

particles by collision with heavy species. Since in this work the considered heavy species were the atomic

nitrogen N, atomic nitrogen ion N+, molecular nitrogen N2 and molecular nitrogen ion N +
2 , it’s necessary

to compute rates for seven different interactions: N2 - N, N2 - N+, N2 - N2, N2 - N +
2 , N +

2 - N, N +
2 -

N+ and N +
2 - N +

2 . Note that one needs to consider the electronic and vibrational levels of the collision

partners, and therefore, from each one of these species-specific interactions there is a fullset of vibronic-

specific interactions to be accounted for. To compute rates of vibrational transition and dissociation,

the knowledge of some parameters that describe the interactions is necessary. These parameters are:

collisional cross section σ, reciprocal characteristic length α, and potential well depth EM of the Morse

interaction potential given by (2.257). Regarding the Morse parameters α and EM, only values for the

interaction N2 - N2 were found in the literature, being the collision partners in the ground electronic level.

These were defined by Adamovich et al. [21], who also employed the same values for two other cases:

N2 - O2 and O2 - O2. It was then decided to extrapolate this assumption for all the Morse parameters

of the seven interactions, independently of the electronic levels of the collision partners. Regarding the

collisional cross section σ, only a value for the case N2 - N2 was obtained, being this value estimated

from another one found in the literature (Svehla’s technical report [54]). The raw value from which the

collisional cross section was obtained from, corresponds to the parameter d of the Lennard-Jones (12-6)

potential, called collision diameter, for the interaction N2 - N2. In the technical report it is assumed

that both collision partners are in the ground vibrational and electronic level. The estimation of the

collisional cross section will now be explained. The Lennard-Jones (12-6) potential, V ′LJ(r) is given by

the expression

V ′LJ(r) = 4ELJ

[(
d

r

)12

−
(
d

r

)6
]

, (3.2)

being ELJ the potential well depth, and r the internuclear distance. The collision diameter can be easily

interpreted and its designation justified when one compares the Lennard-Jones potential with a hard-

spheres potential3. Hard spheres can only interact by contact and in a total rigid way, which means

that the collision is instantaneous and an infinite repulsive force is applied in that single instant of the

collision (giving a finite momentum transfer). Let dAB be the distance between centres of hypothetical

collision partners A and B, as represented by Figure 2.5. The hard-spheres potential can be represented

by a constant finite value for r ≥ dAB, and an infinite value for r < dAB. Let the constant finite value

be zero. Note that the value of the interaction potential doesn’t matter, but the gradient, since it is

the symmetric of the gradient that has physical meaning (corresponding to the interaction force), and

3The hard-spheres potential is the interaction potential between two particles under the assumption of the billiard balls
model.
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therefore, a reference value can be arbitrated. The hard-spheres potential V ′HS is given by

V ′HS(r) =

∞, if r < dAB ,

0, if r ≥ dAB .

(3.3)

Figure 3.1 makes a comparison between the Lennard-Jones (12-6) potential for the interaction N2 - N2

provided by Svehla, and a hard-spheres potential with dAB = d.

3.5 4 4.5 5 5.5 6 6.5 7

−100

0

100

200

(re,−ELJ)

(d, 0)

V ′HS/kB

V ′LJ/kB

r
[�A]

V
′ /
k
B

[K
]

Figure 3.1: The Lennard-Jones (12-6) interaction potential divided by the Boltzmann constant, V ′LJ/kB ,

for the case N2 - N2, provided by Svehla [54], and a hard-spheres potential divided by the Boltzmann

constant, V ′HS/kB , with dAB = d.

The collision diameter parameter of the Lennard-Jones (12-6) potential corresponds to the r coordinate

of the intersection point of the short-range part with the r axis. For internuclear distances lower than this

value, the potential curve becomes very steep, meaning a strong repulsive force. Therefore, in the short-

range domain, one may approximate the Lennard-Jones (12-6) potential by a hard-spheres potential

with d = dAB. If one also neglects the long-range part of the Lennard-Jones (12-6) potential (which

is justifiable for high relative speeds of the particles) the collision diameter designation makes sense,

corresponding to the distance between the centres of the two hard spheres that represent the collision

partners, i.e. d = dAB. According to the definition of the collisional cross section for hard spheres given

in the section ??, one has σ = πd2
AB = πd2. And using particular notation for the N2 - N2 case, the

formula translates itself to σN2 - N2
= πd2

N2 - N2
, being dN2 - N2

the respective collision diameter. Svehla’s

technical report also provides a collision parameter value for the N - N case. This value in combination

with the one associated to the N2 - N2 case can be used to estimate the collisional cross section for the

N2 - N interaction. By recalling the billiard balls model again and invoking the approximation of the

Lennard-Jones potential by a hard-spheres potential, one has

σN2 - N = πd2
N2 - N = π (rN2

+ rN)
2

= π

(
dN2 - N2

2
+
dN - N

2

)2

⇔ (3.4)
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⇔ σN2 - N =
π

4
(dN2 - N2

+ dN - N)
2

, (3.5)

being rN2
and rN the radii of the hard-spheres representing the N2 and N species, respectively. Since

data for the interactions that involve the ions N+ or N +
2 wasn’t found in the literature, it was assumed

that the respective collisional cross sections values were the same as the ones that involve the counterpart

neutral species. Therefore, one has σN2−N+ = σN2 - N = σN +
2 - N = σN +

2 - N+ and σN2 - N +
2

= σN2 - N2
=

σN +
2 - N2

= σN +
2 - N +

2
. Note that this approximation is quite rough since a positive ion has one less

bounded electron than the respective counterpart neutral species, which influences the electromagnetic

force acting in the collision partner, and in its turn influences the collisional cross section value. Table

3.4 makes a synopsis of collisional cross sections σ and Morse parameters α and EM considered for the

seven different interactions.

Table 3.4: Collisional cross sections σ, and Morse parameters α and EM for the collisions m - a and m

- m, in which a ∈
{

N,N+
}

represents an atomic particle, and m ∈
{

N2,N
+
2

}
represents a molecular

particle.

Collision σ[Å
2
] α[Å

−1
] EM/kB [K]

m - a 39.547
4.0 200.0

m - m 45.317

Rate coefficients for vibrational transition kv
′

v (Ttrh
) and dissociation kDv (Ttrh

) of N2 and N +
2 in their

electronic levels, due to collisions with N2, N +
2 , N and N+, were computed. To illustrate one of those

results, Figures 3.2 and 3.3 depict the rate coefficients for vibrational transition of N2(X
1Σ+

g ) by collision

with N, at a heavy particle translational temperature Ttrh
= 20, 000 K.
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Figure 3.2: Surface plot of rate coefficient values for vibrational transition of N2(X
1Σ+

g ) by collision with

N, at a heavy particle translational temperature Ttrh
= 20, 000 K.
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Figure 3.3: Contour plot of rate coefficient values for vibrational transition of N2(X
1Σ+

g ) by collision with

N, at a heavy particle translational temperature Ttrh
= 20, 000 K.

It can be concluded that the vibrational transition process is more effective if the transition is between

two adjacent levels, and even more effective if the two adjacent levels are of low energy. For the case of

transitions between non-adjacent levels, it is observed that rate coefficient values for de-excitation are in

general greater than the ones for excitation. Excitation from the lowest energy levels to the highest ones,

are the less effective.

It’s of paramount importance to validate the computed rates of vibrational transition kv
′

v as well as the

rates of dissociation kDv , for all the considered interactions. Unfortunately, experimental results expressed

in the exact same form as these obtained numerically weren’t found in the literature. What was found

were experimental results for the dissociation of N2 in its ground electronic level e = X1Σ+
g by impact with

N and with N2, in thermal equilibrium conditions. Note that the numerical computation of dissociation

rates using the FHO model implies the assignment of a value for a free parameter that can’t be a priori

computed. That parameter is the number of quasi-bound levels for the sum involved in the dissociation

rate formula (2.263), as presented in section §2.7.6. Instead of the number of quasi-bound levels, one

can define a quantity corresponding to the difference between the upper bound value for the vibrational

energy of the quasi-bound levels4 Gv′u and the potential well De, i.e. GDev′u := Gv′u −De. Therefore, the

considered quasi-bound levels are the ones with a vibrational energy Gv′ higher than the potential well

depth De and lower or equal to the upper bound vibrational energy Gv′u , i.e. De < Gv′ ≤ Gv′u . Such

free parameter gives opportunity for calibration of the model by comparison with the aforementioned

experimental results, increasing the reliability on the numerical dissociation rates, and at the same, on

the numerical vibrational transition rates, since the former uses the later for its computation. However,

vibrational transition and dissociation rates of N2 in its ground electronic level, due to impact with N+

and N +
2 can’t be calibrated since there is no experimental data for them. And the same happens for the

vibrational transition and dissociation rates of N +
2 and the electronically excited N2, due to impact with

N, N2, N+ and N +
2 . In the former case, it was decided to set the differences between the upper bound

4The notation used for the upper bound vibrational energy is analogous to the one used for the vibrational energy
function Gv in appendix B.
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vibrational energy and the potential well for the interactions with N+ and N +
2 as the ones obtained from

calibration of the interactions N2(X
1Σ+

g ) - N and N2(X
1Σ+

g ) - N2, respectively. In the latter case, it was

decide to solely account the first quasi-bound level.

A numerical rate coefficient for thermal dissociation in respect of the interactions N2(X
1Σ+

g ) - N2 and

N2(X
1Σ+

g ) - N can be computed from the obtained vibronic-specific rate coefficients for the interactions

N2(X
1Σ+

g , v) - N2 and N2(X
1Σ+

g , v) - N, respectively. The reasoning presented in the paragraphs below

should be followed.

The rate coefficient for the dissociation of particles of the X species in the e1-th electronic level

and v1-th vibrational level due to collisions with particles of the M species in the e2-th electronic level,

corresponds to kDX(e1,v1) - M(e2), such that the variation of the amount concentration of the first particles

due to that process is given by (2.274):

(
d[X(e1, v1)]

dt

)D
X(e1,v1) - M(e2)

= −kDX(e1,v1) - M(e2)[X(e1, v1)][M(e2)] . (3.6)

Due to the assumption of uncoupling of the transition probabilities for the V-V-T processes (detailed in

section §2.7.5) one can show that the rate coefficient kDX(e1,v1) - M(e2) doesn’t depend on the electronic

level e2, and simply write kDX(e1,v1) - M(e2) = kDX(e1,v1) - M. The variation of the amount concentration

of the X species in the e1-th electronic level due to the above-mentioned dissociative process regardless

of the vibrational level v1 and electronic level e2 corresponds to a sum on all vibrational levels v1 and

electronic levels e2 of the vibronic-specific contributions given by (3.6):

(
d[X(e1)]

dt

)D
X(e1) - M

=
∑
v1,e2

(
d[X(e1, v1)]

dt

)D
X(e1,v1) - M(e2)

= −

{∑
v1

kDX(e1,v1) - M[X(e1, v1)]

}(∑
e2

[M(e2)]

)
︸ ︷︷ ︸

=[M]

⇔

⇔
(
d[X(e1)]

dt

)D
X(e1) - M

= −

{∑
v1

kDX(e1,v1) - M[X(e1, v1)]

}
[M] .

(3.7)

If the rotational constants don’t depend on the vibrational level, the rotational and vibrational energy

modes are decoupled from each other, and it can be easily proved from relations (2.13) and (2.11) that

the amount concentration of particles of the X species in the e1-th electronic level and v1-th vibrational

level at thermal equilibrium corresponds to

[X(e1, v1)](T ) = [X(e1)]
gX,vib,e1,v1

e
−
εX,vib,e1,v1

kBT

QX,vib,e1

, (3.8)

being [Xe1 ] the amount concentration of particles of the X species in the e1-th electronic level. The

degree of degeneracy of the vibrational level is according to (2.24b) gX,vib,e1,v1
= 1. By substituting (3.8)

in (3.7), one can identify the rate coefficient of thermal dissociation for the interaction X(e1) - M, i.e.
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kDX(e1) - M(T):

(
d[X(e1)]

dt

)D
X(e1) - M

(T ) = −

∑
v1

e
−
εX,vib,e1,v1

kBT

QX,vib,e1

kDX(e1,v1) - M

︸ ︷︷ ︸
:=kD

X(e1) - M
(T )

[X(e1)][M] ,

(3.9)

being kDX(e1) - M(T ) therefore given by

kDX(e1) - M(T ) =
∑
v1

e
−
εX,vib,e1,v1

kBT

QX,vib,e1

kDX(e1,v1) - M . (3.10)

The addressed experimentally obtained thermal dissociation rates are listed in Table 3.5.

Table 3.5: Coefficients A, n and Ea/kB of the modified Arrhenius function (2.88) for experimentally

obtained rates for the thermal dissociation of N2(X
1Σ+

g ) by collision with N and N2, as well as the

respective interval of temperatures T ∈ [Tmin, Tmax] in which they are valid.

Experiment Interaction A [cm3 ·K−η/(mol · s)] n Ea/kB [K] [Tmin, Tmax] [K]

Cary (1965) [104]
N2(X1Σ+

g ) - N 7.1× 1019 −1.0
113, 310 [6, 000; 10, 000]

N2(X1Σ+
g ) - N2 5.6× 1022 −1.7

Byron (1966) [105]
N2(X1Σ+

g ) - N 4.3× 1022 −1.5
113, 200 [6, 000; 9, 000]

N2(X1Σ+
g ) - N2 4.8× 1017 −0.5

Appleton et al. (1968) [106]
N2(X1Σ+

g ) - N 1.6× 1022 −1.6
113, 200 [8, 000; 15, 000]

N2(X1Σ+
g ) - N2 3.7× 1021 −1.6

Hanson and Baganoff (1972) [107]
N2(X1Σ+

g ) - N 2.2× 1026 −2.5
113, 000 [5, 700; 12, 000]

N2(X1Σ+
g ) - N2 3.9× 1033 −4.5

Kewley and Hornung (1974) [108]
N2(X1Σ+

g ) - N 8.5× 1025 −2.5
113, 200 [6, 000; 14, 000]

N2(X1Σ+
g ) - N2 2.3× 1029 −3.5

Park (1988) [109] (a)
N2(X1Σ+

g ) - N 3× 1022 −1.6
113, 200 [6, 000; 13, 000]

N2(X1Σ+
g ) - N2 7× 1021 −1.6

a Although the work done by Park is labelled here as an experiment, it is actually a theoretical study involving the other

experimental works.

All the experiments previous to the ones done by Hanson and Baganoff [107], and by Kewley and

Hornung [108] considered a test gas composed by molecular nitrogen and a diluted inert gas. Such mixture

was chosen instead of a pure molecular nitrogen gas, so that dissociation of nitrogen could occur from lower

shock speeds. As referred by Park [109]: “this was done because N2 has a large dissociation energy and

hence its dissociation requires a large shock speed, attainable only with a sophisticated facility, unless a

large concentration of argon is included”. Therefore, at first glance, one one can consider the experiments

of Hanson and Baganoff [107] and of Kewley and Hornung [108] to be more reliable than the ones of Cary

[104], Byron [105] and Appleton et al. [106]. The study performed by Park [109] wasn’t an experiment but

a reinterpretation of the previously obtained experimental results. Such reinterpretation accounted the

possibility of non-thermal equilibrium between the translational and vibrational modes of the particles,

i.e. Ttrh
6= Tvib, during the dissociation of N2. The results showed by the other authors assumed thermal

equilibrium, which may not be reasonable. It’s important to mention that the temperature in the modified

Arrhenius function (2.88) for the case of thermal dissociation rates of Park is actually an geometrically
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averaged temperature Ta =
√
Ttrh

Tvib. Anyway, in thermal equilibrium one has T = Ttrh
= Tvib, and

the averaged temperature match the single-temperature, i.e. Ta = T . Due to the thoroughness of Park,

his results are currently referred as the state-of-the-art. Jaffe et al. [110] wrote “ [...] dissociation rate

coefficients from the Park [Ttrh
- Tvib] hypersonic nonequilibrium chemistry model, which is currently

the de facto standard for aerothermodynamic modeling”. And Candler and Olejniczak [111] said “[t]he

results of Park’s two-temperature interpretation of the experimental data are now accepted as the most

widely accurate expressions for the equilibrium dissociation rates”. These statements were found to be

convincing enough to use the Park results for calibration of the ones obtained in this work.

The calibration of the numerical rate coefficients for thermal dissociation in respect of the interactions

N2(X
1Σ+

g ) - N2 and N2(X
1Σ+

g ) - N, i.e. kD
N2(X1Σ+

g ) - N2
(T ) and kD

N2(X1Σ+
g ) - N

(T ), consisted in the minimisation

of the root mean square deviation (a cost function) between these and Park’s rate coefficients by sweeping

the difference between the upper bound value for the vibrational energy of the quasi-bound levels and

the potential well GDev′u . Let GDe,opt

v′u,N2(X1Σ+
g ) - N2

and GDe,opt

v′u,N2(X1Σ+
g ) - N

be the respective optimum values.

The root mean square deviations of kD
N2(X1Σ+

g ) - N2
(T ) and kD

N2(X1Σ+
g ) - N

(T ) relatively to the Park’s rate

coefficients are defined as

∆N2(X1Σ+
g ) - N2

(GDev′u ) =

√√√√∑n

[
kD

N2(X1Σ+
g ) - N2

(Tn)− kD,(Park)

N2(X1Σ+
g ) - N2

(Tn)
]2

N
, (3.11)

∆N2(X1Σ+
g ) - N(GDev′u ) =

√√√√∑n

[
kD

N2(X1Σ+
g ) - N

(Tn)− kD,(Park)

N2(X1Σ+
g ) - N

(Tn)
]2

N
, (3.12)

being k
D,(Park)

N2(X1Σ+
g ) - N2

(Tn) and k
D,(Park)

N2(X1Σ+
g ) - N

(Tn) the Park’s rate coefficients, Tn the n-th temperature value

at which the rate coefficients are evaluated, and N the number of temperature values for evaluation. Only

the experimentally valid range of temperatures was considered for the optimisation process.

The curves ∆N2(X1Σ+
g ) - N2

(GDev′u ) and ∆N2(X1Σ+
g ) - N(GDev′u ) obtained by the sweeping procedure are

represented in Figure 3.4.
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Figure 3.4: Curves of root mean squared deviation ∆N2(X1Σ+
g ) - N2

(GDev′u ) (at blue) and ∆N2(X1Σ+
g ) - N(GDev′u )

(at red), obtained by a sweeping procedure with GDev′u ∈ [0; 10, 000] “cm−1”, with an increment step of

100 “cm−1”.
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For the case of the interaction N2(X
1Σ+

g ) - N2, a minimum for the root mean squared deviation

was found, being the minimiser GDe,opt

v′u,N2(X1Σ+
g ) - N2

= 1, 100 “cm−1”. For the case of the interaction

N2(X
1Σ+

g ) - N, no minimum was found in the range GDev′u ∈ [0; 10, 000] “cm−1”. Only some of the

decreasing part of the full curve is supported by that domain. A sweeping procedure for the higher (GDev′u )

values would be required to obtain the minimum point. However, it was found that an increase of the

number of considered quasi-bound vibrational levels would not make a meaningful difference in the root

mean squared deviation value, due to the even lower probabilities of transition to the higher quasi-bound

vibrational levels. On the other hand, the higher the number of the considered quasi-bound vibrational

levels, the higher the the amount of computations for the evaluation of the rate coefficients, making a new

sweep not worth it. It was then decided to choose the optimum difference between the upper bound value

for the vibrational energy of the quasi-bound levels and the potential well for the N2(X
1Σ+

g ) - N case as

the the one that minimises the root mean squared deviation in the range GDev′u ∈ [0; 10, 000] “cm−1”, i.e.

GDe,opt

v′u,N2(X1Σ+
g ) - N

= 9, 900 “cm−1”.

Figures 3.5 and 3.6 show the calibrated rate coefficient curves and the experimental ones listed in

Table 3.5, for the cases N2(X
1Σ+

g ) - N2 and N2(X
1Σ+

g ) - N, respectively. These figures also show recent

numerical rate coefficient values individually obtained by Bender et al. [112], Macdonald et al. [113],

Esposito and Capitelli [114], and Jaffe et al. [115], using the Quasi-Classical Trajectory model (QCT),

which is considered to be more sophisticated than the FHO model. In the second subfigure of each figure,

the ratio between the FHO rate coefficient values and the ones obtained by Park [109], as well as the

ones obtained through the QCT model is depicted.
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Figure 3.5: Rate coefficient values for thermal dissociation of N2(X
1Σ+

g ) due to the interaction

N2(X
1Σ+

g ) - N2, and ratio between the FHO result and the one obtained by Park [109], as well as the

ones obtained by the QCT model (Bender et al. [112], and Macdonald et al. [113]). The thick part of

the lines for each of the experiments listed in Table 3.5, is associated to the respective experimentally

valid domains.
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Figure 3.6: Rate coefficient values for thermal dissociation of N2(X
1Σ+

g ) due to the interaction

N2(X
1Σ+

g ) - N, and ratio between the FHO result and the one obtained by Park [109], as well as the

ones obtained by the QCT model (Esposito and Capitelli [114], and Jaffe et al. [115]). The thick part of

the lines for each of the experiments listed in Table 3.5, are associated to the respective experimentally

valid domains.

From these two figures, it’s possible to observe some overall discrepancies between the experimental

results, either in offset and in trend. For both the interactions N2(X
1Σ+

g ) - N2 and N2(X
1Σ+

g ) - N, it’s

found an underestimation of the Park [109] results by the FHO model in the low to medium temperatures

region, and an overestimation in the high temperatures region. There’s a better agreeability between

the two results in the experimentally valid region for the former case (a maximum underestimation of

59.9% and overestimation of 8.9% in contrast with a maximum underestimation of 80.9% and minimum

underestimation of 36.1% for the latter case). This is expected since it was only in the former case

that the optimisation procedure was successful in the minimisation of the cost function. The FHO results

underestimate all the QCT results for the case of the interaction N2(X
1Σ+

g ) - N2, with maximum absolute

relative deviations of 44.3% and 56.5% from the values of Bender et al. [112] and Macdonald et al. [113],

respectively. For the case of the interaction N2(X
1Σ+

g ) - N, one finds that the FHO results underestimate

the QCT results at the lower temperatures and overestimate them at the higher ones, with maximum

absolute relative deviations of 46.2% and 37.9% from the values of Esposito and Capitelli [114] and Jaffe

et al. [115], respectively.

3.2.2 Vibronic transition of N2(A
3Σ+

u , v1) to N2(B
3Πg, v

′
1) by collision with

N2(X
1Σ+

g , v2) and N(4Su)

Herein the proposed VE-m-h model (2.365) will be implemented for the cases of vibronic transitions of

N2(A
3Σ+

u , v1) to N2(B
3Πg, v

′
1) by collisions of N2(A

3Σ+
u , v1) with N2(X

1Σ+
g , v2) and N(4Su). For that

purpose, the average process cross sections experimentally obtained by Bachmann et al. [35] were used.
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Bachmann et al. studied intramolecular VE-m-h processes of the form:

N2(A
3Σ+

u , v1) + M N2(B
3Πg, v

′
1) + M , (3.13)

being M the collision partner which may correspond to an atomic particle, M ∈ {He,Ne,Ar,Kr,Xe} :=

{Ma}, or to a molecular particle, M ∈ {H2,N2,NO} := {Mm} in its ground energy level. The authors,

however strongly believed that two intermolecular VE-m-h processes for the case M = N2 were found due

to their quasi-resonance [35]:

N2(A
3Σ+

u , 15) + N2(X
1Σ+

g , 0) N2(B
3Πg, 4) + N2(X

1Σ+
g , 1) , (3.14)

N2(A
3Σ+

u , 17) + N2(X
1Σ+

g , 0) N2(B
3Πg, 5) + N2(X

1Σ+
g , 1) . (3.15)

This consideration was also regarded in this work. It’s important to point out that the experiment was

done at room temperature Ttrh
= 300 K := Tref. Although the work of Bachmann et al. doesn’t provide

data for the case M = N, a model applied on the available results would allow one to infer values for such

case. The final objective would be to obtain rate coefficients through the law (2.365) for the VE-m-h

processes represented by the chemical equations

N2(A
3Σ+

u , v1) + N2(X
1Σ+

g , v2) N2(B
3Πg, v

′
1) + N2(X

1Σ+
g , v

′
2), ∀ v1, v

′
1, v2, and v′2 , (3.16)

N2(A
3Σ+

u , v1) + N(4Su) N2(B
3Πg, v

′
1) + N(4Su), ∀ v1 and v′1 . (3.17)

By fitting the exponential gap law curve (2.363) to the set of points constituted by energy defect

absolute values |∆E| as abscissas, and average process cross section values σp,av as ordinates, it’s possible

to obtain characteristic cross sections σ0 and energies E0 for each collisional partner. The resultant

exponential gap law curves are depicted by Figures 3.7 and 3.8 for the case of atomic and molecular

collision partners, respectively.
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[Å

2
] Ne Ar Kr Xe

0 0.1
10−1

100

101

σ
p
,a

v
/σ

fi
t
p
,a

v

0 0.1 0 0.1 0 0.1 0 0.1

|∆E| [eV]

Figure 3.7: Upper plots: data of Bachmann et al. [35] and fitted curves (2.363) for the dependence of

the average process cross sections σp,av on the absolute value of the energy defects |∆E|, regarding the

atomic collision partners He, Ne, Ar, Kr and Xe. Lower plots: values for the ratios between the data and

the fitted curves. Intramolecular exothermic processes: ; intramolecular endothermic processes: .
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Figure 3.8: Upper plots: data of Bachmann et al. [35] and fitted curves (2.363) for the dependence

of the average process cross sections σp,av on the absolute value of the energy defects |∆E|, regarding

the molecular collision partners H2, NO and N2. Lower plots: values for the ratios between the data

and the fitted curves. Intramolecular exothermic processes: ; Intramolecular endothermic processes: ;

intermolecular exothermic processes: ; intermolecular endothermic processes: .

Bachmann et al. refer that the data associated to the endothermic processes appears to follow a law

which is distinct from the one associated to the exothermic processes. However, the number of points

associated to the endothermic processes is not reasonable enough to properly build a different model

for them. It was then decided in this work to fit the data altogether, since obtaining rate coefficients

for both exothermic and endothermic processes is of capital importance. In general, the fitted curves

underestimate the rate coefficients for the exothermic processes and overestimate the rate coefficients for

the endothermic ones. The ratio between the data average process cross sections and the fit ones is as

low as 0.1 and as high as 4.7.

By analysing the obtained values for the characteristic cross sections σ0 and energies E0 associated to

processes involving the atomic collision partners, it was found that these quantities increase exponentially

with the hard-sphere diameter dM of the latter. It was then decided to obtain the values of σ0 and E0

for the processes involving the collision partner M = N by fitting exponential curves to the data (dM, σ0)

and (dM, E0), respectively. The values for the hard-sphere diameters dM were taken from the work of

Svehla [54]. The results are depicted by Figure 3.9, which additionally reveal that the data (dM, σ0) and

(dM, E0) for the processes involving molecular particles seems to not follow any evident law (though the

number of only three data points for each plot is too small to make a proper judgement). The data σ0

and E0 values deviate from the fit ones in an interval between −34.6% and 9.7%, and between −2.6% and

2.7%, respectively, thus showing a much greater agreeability on the latter quantity than on the former.

The computation of the respective rate coefficients through expression (2.365) requires the knowledge

of the potential well depths for the interactions between N2 and the collision partners M, i.e. ε := εN2 - M.

For that purpose, values of potential well depths associated to Lennard-Jones (12-6) interactions between

collision partners of the same species εM - M := ELJ,M - M were extracted from the work of Svehla [54].

The quantities ε were then assumed to be equal to the geometric mean of εN2 - N2
and εM - M, i.e.

ε =
√
εN2 - N2

· εM - M, as suggested by Parmenter et al. [76, 77]. The mass of the collision partners

mM which are needed for the computation of the reduced masses µ = mN2
·mM/(mN2

+mM) present in
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expression (2.365) were taken from the work of Meija et al. [116].
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Figure 3.9: Upper plots: exponential curves fitted to the data (dM, σ0) (at left) and (dM, E0) (at right)

for the processes involving the atomic collision partners. Lower plots: relative deviations of the data,

δ = (σ0 − σ0,fit) /σ0,fit (at left) and δ = (E0 − E0,fit) /E0,fit (at right). Atomic collision partners: ;

molecular collision partners: ; nitrogen atom N: .

The chemical equation (3.16) represents a large number of different kinetic processes, each one

associated to particular set of values of vibrational quantum numbers v1, v′1, v2 and v′2. Since accounting

all of these kinetic processes would require too much computational resources for the incoming CFD

simulations, it was decided to regard only the most significant ones. The accounted kinetic processes of

(3.16) were the ones for which the ratio between the rate coefficient k
v′1,v

′
2

v1,v2 given by (2.365) and the specific

collisional frequency Z given by (2.86) in the limit of the high temperatures (since this will correspond

to the simulated regime) was higher or equal to an arbitrated factor of 2× 10−2, i.e

lim
Ttrh
→+∞

k
v′1,v

′
2

v1,v2

Z
=
σ0

σ
e
−
(

ε
kBTref

+
|∆E|
E0

)
≥ 2× 10−2 ,

being σ = πd2
N2

, the respective collisional cross section. This reduces the number of regarded processes

from the unbearable 4, 059, 264 to the reasonably manageable 7, 436.

A synopsis on the relevant obtained data is issued by Table 3.6.

Table 3.6: Hard-sphere diameters dM, collisional cross sections σ, interaction

potential well depths εM - M and ε, particle masses mM, reduced masses µ,

characteristic cross sections σ0 and characteristic energies E0 associated to the

collision partners N and N2.

M [-] dM [Å] σ [Å2] εM - M [kB ·K] ε [kB ·K] mM [u] µ [u] σ0 [Å2] E0 [eV]

N 3.298 39.547 71.400 71.400 14.007 9.338 1.594 0.054

N2 3.798 45.317 71.400 71.400 28.014 14.007 1.380 0.064
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3.2.3 Vibronic transition of N2(W
3∆u, v1) to N2(B

3Πg, v
′
1) by collision with

N2(X
1Σ+

g , v2) and N(4Su)

In this section, and in similarity to the previous one, the proposed VE-m-h model (2.365) will be

implemented for the cases of vibronic transitions of N2(W
3∆u, v1) to N2(B

3Πg, v
′
1) by collisions of

N2(W
3∆u, v1) with N2(X

1Σ+
g , v2) and N(4Su). These are described by the chemical equations

N2(W
3∆u, v1) + N2(X

1Σ+
g , v2) N2(B

3Πg, v
′
1) + N2(X

1Σ+
g , v

′
2), ∀ v1, v

′
1, v2, and v′2 , (3.18)

and

N2(W
3∆u, v1) + N(4Su) N2(B

3Πg, v
′
1) + N(4Su), ∀ v1 and v′1 , (3.19)

respectively. Bachmann et al. [34, 35] obtained characteristic cross sections σ0 and characteristic energies

E0 for the intramolecular endothermic and exothermic vibronic processes regarding atomic collisional

partners M ∈ {He,Ne,Ar,Kr,Xe} := {Ma} and molecular collisional partners M ∈ {H2,N2,NO} :=

{Mm} in their ground energy level, by fitting the exponential gap law curve (2.363) to the set of points

constituted by energy defect absolute values |∆E| as abscissas, and experimentally obtained average

process cross sections σp,av as ordinates.

Since no data is available for the case M = N, it was decided to make a study about the dependence

of the average process cross section on the atomic collision partner - in a similar way to what was done

in §3.2.2 - and from it obtain the respective data. It was found that the characteristic cross section σ0

varies exponentially with the hard-sphere diameter dM of the atomic collision partners. However, the

same can’t be said about the characteristic energy E0, conversely to the result which was obtained in

§3.2.2. Figure 3.10 presents exponential curves fitted to the data (dM, σ0) and (dM, E0) of the atomic

collision partners, showing deviations between −8.5% and 6.2% with respect to the former, and between

−44.8% and 83.6% with respect to the latter.
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Figure 3.10: Upper plots: exponential curves fitted to the data (dM, σ0) (at left) and (dM, E0) (at right)

for the processes involving the atomic collision partners. Lower plots: relative deviations of the data,

δ = (σ0 − σ0,fit) /σ0,fit (at left) and δ = (E0 − E0,fit) /E0,fit (at right). Atomic collision partners: ;

molecular collision partners: ; nitrogen atom N: .
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Values of σ0 = 2.921 Å
2

and E0 = 0.200 eV were obtained for the case M = N. And values of

σ0 = 7.400 Å
2

and E0 = 0.081 eV were obtained for the case M = N2.

The accounted kinetic processes of (3.18) were the ones for which the ratio between the rate coefficient

k
v′1,v

′
2

v1,v2 given by (2.365) and the specific collisional frequency Z given by (2.86) in the limit of the high

temperatures was higher or equal to an arbitrated factor of 1.2× 10−1. This allowed a reduction on the

number of regarded processes from 1, 682, 816 to 5, 720.

3.2.4 Vibronic transition of N2(A
3Σ+

u , v1) to N2(B
3Πg, v

′
1) and N2(C

3Πu, v
′
1), by

collision with N2(A
3Σ+

u , v2), which, in its turn, transits to N2(X
1Σ+

g , v
′
2)

A nitrogen molecule in the A3Σ+
u electronic level may transit to B3Πg and to C3Πu by colliding with

another nitrogen molecule also in the A3Σ+
u electronic level. Piper [88, 89] studied such processes

considering the simultaneous transition of the collision partner to the ground electronic level, i.e

N2(A
3Σ+

u , v1) + N2(A
3Σ+

u , v2) N2(B
3Πg, v

′
1) + N2(X

1Σ+
g , v

′
2) , (3.20)

and

N2(A
3Σ+

u , v1) + N2(A
3Σ+

u , v2) N2(C
3Πu, v

′
1) + N2(X

1Σ+
g , v

′
2) . (3.21)

Piper issues rate coefficients values for (3.20) and (3.21) at room temperature Ttrh
= 300 K := T ref,

which are specific to the vibrational levels v1, v2 and v′1 but not to v′2, i.e. k
v′1
v1,v2(Tref) := k

v′1,ref
v1,v2 . Since

rate coefficients for the full set of vibrational levels v1, v2, v′1 and v′2 and temperatures Ttrh
are wanted,

the model (2.365) was considered, allowing one to express a relationship between the non v′2-specific rate

coefficient k
v′1,ref
v1,v2 =

∑
v′2
k
v′1,v

′
2

v1,v2 (Tref) and the v′2-specific rate coefficients k
v′1,v

′
2

v1,v2 (Tref) through

k
v′1,ref
v1,v2 =

σ0

1 + δv1,v2

√
8kBTref

πµ

∑
v′2

e−

∣∣∣∣∣(∆E)
v′1,v
′
2

v1,v2

∣∣∣∣∣
E0

 . (3.22)

By fitting curve (3.22) to the data issued by Piper, values for the characteristic cross section σ0 and

characteristic energy E0 may be obtained. Figures 3.11 and 3.12 depict such fitted curves, with the

absolute value of the partial energy defect
∣∣∣(∆E)

v′1
v1

∣∣∣ in the asbcissas axes5. This partial energy defect

corresponds to the difference between the initial and final internal energies of solely the first collision

partner, i.e. (∆E)
v′1
v1

= Te1v1
− Te′1v′1 . Quantities σ0 = 0.132 Å

2
and E0 = 1.960 eV, and σ0 = 0.873 Å

2

and E0 = 1.071 eV, were obtained for processes (3.20) and (3.21), respectively. The fit points did however

depart significantly from the data points, in both value and behaviour. The ratio between the data rate

values and the fit rate values was as low as 0.3 and as high as 2.7.

5Since the issued rate coefficients k
v′1,ref
v1,v2 are not v′2-specific the energy defect (∆E)v

′
1,v
′
2

v1,v2
can’t be used to label the

process.
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Figure 3.11: Upper plot: points of the fitted curve (3.22) to the data ({(∆E)
v′1,v

′
2

v1,v2
}, kv

′
1
v1,v2) with the rate

coefficients k
v′1
v1,v2 issued by Piper [88] for process (3.20). Lower plot: values of ratios between the data

rate coefficients and the fit rate coefficients, r = k
v′1
v1,v2/k

v′1,fit
v1,v2 . The issued data is with respect to v1 = 0,

v2 = 0, v2 = 1, and v′1 ∈ [1, 11].
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Figure 3.12: Upper plot: points of the fitted curve (3.22) to the data ({(∆E)
v′1,v

′
2

v1,v2
}, kv

′
1
v1,v2) with the rate

coefficients k
v′1
v1,v2 issued by Piper [89] for process (3.21). Lower plot: values of ratios between the data

rate coefficients and the fit rate coefficients, r = k
v′1
v1,v2/k

v′1,fit
v1,v2 . The issued data is with respect to v1 = 0,

v2 = 0, v2 = 1, and v′1 ∈ [1, 11].

The rate coefficients k
v′1,v

′
2

v1,v2 (Ttrh
) may be then computed through the law (2.365) constrained to the

σ0 and E0 obtained values. Since the number of processes described by the chemical equations (3.20)

and (3.21) is too large, solely the ones for which the ratio between the rate coefficient and the specific

collisional frequency in the limit of the high temperatures was higher or equal to the arbitrated factors

2.28×10−3 and 1.3×10−2, respectively, were regarded. This procedure allowed a reduction of the number

of accounted processes from 2, 095, 104 to 6, 067 for the case of (3.20), and from 317, 440 to 8, 135 for the

case of (3.21).
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3.2.5 Vibronic transition of N2(A
3Σ+

u , v1) to N2(X
1Σ+

g , v
′
1) by collision with

N2(X
1Σ+

g , v2) and N(4Su), which, in its turn, transits to N(2Pu)

Let’s consider the vibronic transition of a nitrogen molecule in the A3Σ+
u electronic level to the ground

electronic level, by collision with a heavy particle:

N2(A
3Σ+

u , v) + M N2(X
1Σ+

g , v
′) + M . (3.23)

There is some data available in the literature that may be useful in this work. These correspond

to experimentally obtained values for the rate coefficient of the process (3.23) at room temperature

Ttrh
= 300 K := Tref concerning the particular cases

N2(A
3Σ+

u , v1) + N2(X
1Σ+

g , v2) N2(X
1Σ+

g , v
′
1) + N2(X

1Σ+
g , v

′
2) , (3.24)

and

N2(A
3Σ+

u , v1) + N(4Su) N2(X
1Σ+

g , v
′
1) + N(2Pu) , (3.25)

with v1 ∈ {0, 1} and v2 = 0.

Table 3.7 presents the values obtained in the works of Drewer and Pener [117], Vidaud et al. [118]

and Levron and Phelps [87], for the rate coefficient associated to process (3.24). Vidaud et al. didn’t

treat the vibrational levels N2(A
3Σ+

u , 0) and N2(A
3Σ+

u , 1) separately. Their issued rate coefficient value is

with respect to these two levels lumped together. The values issued by Levron and Phelps do agree with

the one of Vidaud et al. although not as much with the ones of Drewer and Pener. Also, since Vidaud

et al. supply a lumped rate coefficient instead of the vibrationally-specific ones of Levron and Phelps, it

was decided to regard the results of Levron and Phelps in this work.

Table 3.7: Experimentally obtained values for the rate coefficient of

process (3.24) with v1 ∈ {0, 1} and v2 = 0, at Ttrh
= 300 K, i.e.

kv1,0(Tref) := kref
v1,0.

kref
0,0[cm3/s] kref

1,0[cm3/s] Reference

3.7× 10−16 3.4× 10−16 Drewer and Pener [117]

4.5× 10−17 (a) Vidaud et al. [118]

2.6× 10−18 3.8× 10−17 Levron and Phelps [87]

a This value is with respect to N2(A3Σ+
u , 0) and N2(A3Σ+

u , 1) lumped

together.

The process (3.25) not only describes a vibronic transition of N2(A
3Σ+

u , v1) to N2(X
1Σ+

g , v
′
1) but

also an excitation of the collision partner, N(4Su) to N(2Pu). This latter excitation was assumed in

accordance with the discussions done by Meyer et al. [119] and Young and Dunn [120]. There was an

attempt, performed by Piper [85], to quantify the fraction of ground state nitrogen atoms which are

actually excited in the process. Such attempt wasn’t however successful, as Piper [121] later showed that

electronically excited nitrogen molecules different from N2(A
3Σ+

u ) were present in his experiment, and
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by being undetected and unaccounted leaded to wrong results. With only the evidence of Meyer et al.

and Young and Dunn available, it was decided to assume that excitation of N(4Su) to N(2Pu) always

occurred. Table 3.8 presents experimental values for the rate coefficient of process (3.25) obtained in the

works of Wray [122], Young and St. John [123], Meyer et al. [119], Dunn and Young [124], Vidaud et

al. [118], and Piper [85]. The results agree reasonably well with each other, being of the same order of

magnitude. It was decided to regard the most recent ones, the results of Piper, in this work.

Table 3.8: Experimentally obtained values for the rate coefficient of process

(3.25) with v1 ∈ {0, 1}, at Ttrh
= 300 K, i.e. kv1

(Tref) := kref
v1

.

kref
0 [cm3/s] kref

1 [cm3/s] Reference

5.4× 10−11 — Wray [122]

5× 10−11 — Young and St. John [123]

4.3× 10−11 — Meyer et al. [119]

4.8× 10−11 4.8× 10−11 Dunn and Young [124]

3.5× 10−11 (a) Vidaud et al. [118]

4.0× 10−11 4.0× 10−11 Piper [85]

a This value is with respect to N2(A3Σ+
u , 0) and N2(A3Σ+

u , 1) lumped together.

Values for the rate coefficient of the process (3.24) for all v1, v2, v′1 and v′2, and values for the rate

coefficient of the process (3.25) for all v1, and v′1, in the full set of heavy particle translational temperatures

Ttrh
, are wanted. It is then necessary to make an assumption regarding both vibrational and temperature

dependences of the rate coefficient, since the available data only concerns some few vibrational levels and

a room temperature. The VE-m-h model (2.365) may be regarded for that purpose. Let’s start by

analysing process (3.24). From (2.365), the respective rate coefficient is given by

k
v′1,v

′
2

v1,v2 (Ttrh
) = σ0 e

−

∣∣∣∣∣(∆E)
v′1,v
′
2

v1,v2

∣∣∣∣∣
E0

√
8kBTtrh

πµ
e
ε
kB

(
1

Ttrh
− 1
Tref

)
. (3.26)

The vibrational dependence of the rate coefficient is dictated by the characteristic energy E0. It was

decided to make the value of this variable to coincide with one of the obtained set for the analogous

processes studied in sections §3.2.2, §3.2.3 and §3.2.4. Since the process treated in §3.2.3 regards a single

vibronic transition of the collision partners from a higher electronic level to a lower electronic level in

similarity with this one and in dissimilarity with the transitions treated in §3.2.2 and §3.2.4, the E0

value obtained in §3.2.3 was the one chosen, i.e. the value for the vibronic transition of N2(W
3∆u, v1) to

N2(B
3Πg, v

′
1) by impact with N2(X

1Σ+
g , v2). The variable σ0, in its turn, can be computed using either

kref
0,0 or kref

1,0. Arbitrarily, it was decided to use kref
0,0 and then to quantify the discrepancy between kref

1,0

and the respective value obtained from the model. The rate coefficient for (3.24) with v1 = 0 and v2 = 0

regardless of the vibrational levels v′1 and v′2, at Ttrh
= Tref, is given by

kref
0,0 =

∑
v′1,v

′
2

k
v′1,v

′
2

0,0 (Tref) = σ0

√
8kBTref

πµ

∑
v′1,v

′
2

e−

∣∣∣∣∣(∆E)
v′1,v
′
2

0,0

∣∣∣∣∣
E0

 . (3.27)
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By solving (3.27) with respect to σ0, one may get

σ0 =
kref

0,0√
8kBTref

πµ

∑
v′1,v

′
2
e−

∣∣∣∣∣(∆E)
v′1,v
′
2

0,0

∣∣∣∣∣
E0


. (3.28)

And by inserting the result (3.28) into (3.26) a general expression for the rate coefficient of process (3.24)

may be obtained:

k
v′1,v

′
2

v1,v2 (Ttrh
) = kref

0,0

e−

∣∣∣∣∣(∆E)
v′1,v
′
2

v1,v2

∣∣∣∣∣
E0

∑
v′1,v

′
2
e−

∣∣∣∣∣(∆E)
v′1,v
′
2

0,0

∣∣∣∣∣
E0

√
Ttrh

Tref
e
ε
kB

(
1

Ttrh
− 1
Tref

)
. (3.29)

In similarity to what was done in section §3.2.3, it was decided to account only the kinetic processes

of (3.24) for which the ratio between the rate coefficient k
v′1,v

′
2

v1,v2 and the specific collisional frequency Z in

the limit of the high temperatures was higher or equal to an arbitrated factor of 3.3× 10−10, i.e:

lim
Ttrh
→+∞

k
v′1,v

′
2

v1,v2

Z
=

kref
0,0

σ
√

8kBTref

πµ

e−

∣∣∣∣∣(∆E)
v′1,v
′
2

v1,v2

∣∣∣∣∣
E0

∑
v′1,v

′
2
e−

∣∣∣∣∣(∆E)
v′1,v
′
2

0,0

∣∣∣∣∣
E0

e
− ε
kBTref ≥ 3.3× 10−10 .

This allows one to reduce the number of regarded processes from 7,626,496 to 7,355. A characteristic cross

section σ0 = 2.04 × 10−8 Å
2

was obtained. The ratio between the model obtained result k1,0(Tref) and

the experimental one kref
1,0 corresponds to k1,0(Tref)/k

ref
1,0 = 0.06, evidencing a significant underestimation

of this quantity by the model. This shows how crude the assumption on the vibrational dependency of

the rate coefficient may be. For the case of process (3.25), it can be shown that if model (2.365), the

result kref
0 and the value obtained E0 in section §3.2.3 for the vibronic transitions of N2(W

3∆u, v1) to

N2(B
3Πg, v

′
1) by N(4Su) are both regarded, the rate coefficient k

v′1
v1 of the process is given by

k
v′1
v1 (Ttrh

) = kref
0

e−

∣∣∣∣∣(∆E)
v′1
v1

∣∣∣∣∣
E0

∑
v′1
e−

∣∣∣∣∣(∆E)
v′1
0

∣∣∣∣∣
E0

√
Ttrh

Tref
e
ε
kB

(
1

Ttrh
− 1
Tref

)
. (3.30)

A characteristic cross section σ0 = 3.33 Å
2

was obtained. The relative deviation between the model

obtained result k1(Tref) and the experimental one kref
1 corresponds to 10.2%, evidencing an overestimation

of this quantity by the model.

3.2.6 Vibronic transition of N2(A
′5Σ+

g , v) to N2(B
3Πg, v

′) by collision with

N2(X
1Σ+

g , 0) and N(4Su)

According to the work of Ottinger et al. [86], there’s the possibility of occuring intramolecular vibronic

transitions from N2(A
′5Σ+

g , v, J) to N2(B
3Πg, v

′, J ′) by collisions with heavy particles through the so-
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called gateway mechanism [125–127]:

N2(A
′5Σ+

g , v, J) + M N2(B
3Πg, v

′, J ′) + M . (3.31)

The main route is the one associated to v = 0, J = 12, v′ = 10 and J ′ = 12. The authors issue

experimental values for average process cross sections σv
′,J′

p,av,v,J associated to this main route considering

atomic collision partners, M ∈ {He,Ne,Ar,Kr,Xe} := {Ma}, as well as molecular collision partners,

M ∈ {H2,N2,NO,O2} := {Mm} in their ground energy levels. The experiment was done at room

temperature Ttrh
= 300 K := Tref. In this very work, a vibronic-specific rate coefficient for the process

N2(A
′5Σ+

g , v) + M N2(B
3Πg, v

′) + M , (3.32)

with M ∈ {N, N2}, v = 0 and v′ = 10 instead of a rovibronic one for process (3.31) is wanted. The rate

coefficient for process (3.31) corresponds to kv
′,J′

v,J such that the variation on time of the concentration of

N2(A
′5Σ+

g , v, J) due to this same process is given by

(
d[N2(A

′5Σ+
g , v, J)]

dt

)v′,J′
v,J

= −kv
′,J′

v,J [N2(A
′5Σ+

g , v, J)][M] , (3.33)

and, similarly, the rate coefficient for process (3.32) corresponds to kv
′

v such that the variation on time

of the concentration of N2(A
′5Σ+

g , v) due to this same process is given by

(
d[N2(A

′5Σ+
g , v)]

dt

)v′
v

= −kv
′

v [N2(A
′5Σ+

g , v)][M] . (3.34)

Rate coefficients kv
′

v and kv
′,J′

v,J are related to each other since from to the definition of(
d[N2(A

′5Σ+
g , v)]/dt

)v′
v

one has

(
d[N2(A

′5Σ+
g , v)]

dt

)v′
v

=
∑
J,J ′

(
d[N2(A

′5Σ+
g , v, J)]

dt

)v′,J′
v,J

= −

∑
J,J ′

kv
′,J′

v,J

[N2(A
′5Σ+

g , v, J)]

[N2(A
′5Σ+

g , v)]


︸ ︷︷ ︸

:=kv′v

[N2(A
′5Σ+

g , v)][M] .

(3.35)

Therefore, rate coefficient kv
′

v is given by

kv
′

v =
∑
J,J ′

kv
′,J′

v,J

[N2(A
′5Σ+

g , v, J)]

[N2(A
′5Σ+

g , v)]
. (3.36)

Due to the fact that the population of the rotational levels N2(A
′5Σ+

g , v, J) follows the Boltzmann

distribution (2.29), and only the rotational quantum numbers J = 12 and J ′ = 12 contribute to the

gateway process (3.31) for v = 0 and v′ = 10 [86], the rate coefficient k10
0 , given by relation (3.36), is

reduced to

k10
0 = k10,12

0,12

gN2,rot,A′,0,12 · e
−
ε
N2,rot,A′,0,12

kBTref

QN2,rot,A′,0
. (3.37)
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From (2.84) and (3.37), the respective average process cross section σ10
p,av,0 is simply given by

σ10
p,av,0 = σ10,12

p,av,0,12

gN2,rot,A′,0,12 · e
−
ε
N2,rot,A′,0,12

kBTref

QN2,rot,A′,0
. (3.38)

The quantity QN2,rot,A′,0 corresponds to the rotational partition function for N2(A
′5Σ+

g , 0), which

according to its definition (2.18), is given by

QN2,rot,A′,0 =

Jmax∑
J=0

gN2,rot,A′,0,J · e
−
ε
N2,rot,A′,0,J
kBTref , (3.39)

being Jmax the maximum rotational quantum number that N2(A
′5Σ+

g ) may assume. For J > Jmax

the nuclei are subjected to a purely repulsive potential, which makes them to depart from each other

resulting in the dissociation of the diatomic particle. Therefore, Jmax corresponds to the maximum

rotational quantum number J for which the effective internuclear potential, the so-called centrifugally

corrected potential VJ(r) = V (r) +~2J(J + 1)/(2µr2) being r the internuclear distance (see appendix B.2

for more details), remains with a well in its curve. For higher J values the well disappears, and the

curve is transformed into another with a slope which is non-positive throughout all of its extension. The

internuclear force, which corresponds to the symmetric value of the slope and has a positive conventional

signal in the direction of increasing internuclear distances, is in its turn transformed into a non-negative

quantity, imposing repulsiveness. One gets Jmax = 115, being the respective centrifugally corrected

potential curve VJmax
(r) represented in Figure 3.13.
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Figure 3.13: Centrifugally corrected potential curves VJ(r) for J = 0, 40, 80 and Jmax = 115 obtained

for N2(A
′5Σ+

g ).

The sensible rotational energy εN2,rot,A′,0,J is according to expression (2.21a)

εN2,rot,A′,0,J = BN2,rot,A′,0J(J + 1) , (3.40)

being BN2,rot,A′,0 the respective rotational energy function given by (B.8).

The rotational degree of degeneracy gN2,rot,A′,0,J can’t be computed through expression (2.21b) due

to the fact that N2 isn’t a heteronuclear diatomic particle but a homonuclear one. The rotational degree
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of degeneracy corresponds to a product between two contributions [128]: one due to the nuclear spin,

gnN2,rot,A′,0,J , and another due to the rotational quantum number, 2J + 1, i.e.

gN2,rot,A′,0,J = gnN2,rot,A′,0,J · (2J + 1) . (3.41)

The molecular term symbol 5Σ+
g associated to the A′ electronic level implies that the rotational levels

are symmetric for even J , and antisymmetric for odd J [128]. Additionally, it is known that the nitrogen

nuclei follow Bose-Einstein statistics. It can then be shown that the contribution of the nuclear spin to

the rotational degree of degeneracy of N2(A
′5Σ+

g , v, J) corresponds to [128]

gnN2,rot,A′,0,J =

(2I + 1)(I + 1), if J is even ,

(2I + 1)I, if J is odd ,

(3.42)

being I the so-called nuclei spin quantum number. For the case of the nitrogen nuclei one has I = 1 [128],

meaning that gnN2,rot,A′,0,J = 6 for even J and gnN2,rot,A′,0,J = 3 for odd J .

The values of vibronic-specific average process cross sections σ10
p,av,0 obtained through expression (3.38)

are presented in Table 3.9.

Table 3.9: Vibronic-specific average process cross sections σ10
p,av,0 computed through expression (3.38)

using the rovibronic-specific average process cross sections σ10,12
p,av,0,12 issued by Ottinger et al. [86].

M He Ne Ar Kr Xe H2 N2 NO O2

σ10
p,av,0[10−2Å

2
] 2.953 4.430 8.122 11.075 14.767 6.645 5.907 12.552 4.430

Since no data is available for the case M = N, it was decided to make a study about the dependence

of the average process cross section on the atomic collision partner - in a similar way to what was done in

§3.2.2 - and from it obtain the respective data. It was indeed found that the average process cross section

σ10
p,av,0 increased exponentially with the hard-sphere diameter dM of the atomic collision partners, although

the same can’t be said about the molecular collision partners. By fitting an exponential curve to the data

points (dM, σ
10
p,av,0) for the atomic collision partners, the value of the average process cross section for

M = N was obtained. The respective results are depicted by Figure 3.14. The data values for the average

process cross sections deviate from the fit ones from −8.6% to 10.6%. A value of σ10
p,av,0 = 6.863×10−2Å

2

was obtained for the case M = N.

The dependence of the average process cross section σ10
p,av,0 on the temperature was assumed to be

the one referred by Parmenter et al. [76, 77], and therefore, the respective forward rate coefficient may

be mathematically expressed by

k10
0 (Ttrh

) = σ′
10,ref
p,av,0

√
8kBTtrh

πµ
e

ε
kBTtrh , (3.43)

being σ′
10,ref
p,av,0 = σ10,ref

p,av,0 e
− ε
kBTref , where σ10,ref

p,av,0 is the average process cross section evaluated at the

reference temperature Tref of Ottinger et al. [86] - the object of study considered above, and ambiguously
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labelled as σ10
p,av,0. Note that relation (3.43) may be conveniently expressed through a modified Arrhenius

function.
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10−1

He

Ne
Ar

Kr Xe

NH2

O2

NO

N2

σ
1
0
p
,a

v
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Figure 3.14: Upper plot: exponential curve fitted to the data (dM, σ
10
p,av,0) for process (3.32)

involving solely the atomic collision partners. Lower plot: relative deviations of the data, δ =(
σ10

p,av,0 − σ
10,fit
p,av,0

)
/σ10,fit

p,av,0. Atomic collision partners: ; molecular collision partners: ; nitrogen atom

N: .

3.2.7 Non-dissociative ionisation of N2 by electron impact

Let’s now consider the process of non-dissociative ionisation of the nitrogen molecule N2 by electron

impact, which can be represented by the chemical equation

N2

(
X1Σ+

g , v
)

+ e– N +
2 (e′, v′) + 2 e– . (3.44)

Such chemical reaction has a major importance in hypersonic flows since it produces both a molecular

ion and an additional free electron from a molecule and a free electron. This additional free electron may

in its turn react in the same manner as the previous one, leading to a cascade of reactions. The work

of Laricchiuta el al. [101] supplies process cross sections values for (3.44) which can be accessed through

the Phys4Entry website [92]. The issued process cross sections are however summed in the electronic

levels of N +
2 , e′ ∈ {X2Σ+

g , A2Πu, B2Σ+
u } as well as in the vibrational levels v′ - let these cross sections

be denoted by σv(E), being E the relative translational energy of the collision partners. Also, the data

is restricted to E ∈ [0, 50] eV, and v ∈ [0, 40] from a database6 that regards a total of 47 vibrational

levels for N2

(
X1Σ+

g

)
. It’s worthy to say that Laricchiuta el al. [101] additionally issue values for the

process cross sections for each electronic level e′ of N +
2 for the case v = 0, i.e. σe

′

v (E) with v = 0. These

data allows one to compute electronically specific branching ratios BRe′

v (E) := σe
′

v (E)/σv(E) for the case

v = 0, which are by definition the ratios between the process cross sections for each electronic level e′,

σe
′

v (E), and the sum of all of these, σv(E). The respective results are depicted by Figure (3.15).

6The database for the vibrational levels of N2

(
X1Σ+

g

)
was directly sent from Dr. Laricchiuta to the author.
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Figure 3.15: Process cross sections σe
′

v (E) issued by Laricchiuta el al. [101] and computed branching

ratios BRe′

v (E) for the case v = 0, with e′ = X2Σ+
g , A2Πu and B2Σ+

u . The lines correspond to cubic spline

interpolated values. Note that branching ratios can’t be defined at energy points for which the full cross

section values are null.

In order to implement in this work the results of Laricchiuta el al., it was decided to assume that the

branching ratios BRe′

v (E) were the same regardless of the vibrational level v of N2, implying BRe′

v (E) =

BRe′

0 (E)∀ v, e′.

The computation of process rate coefficients ke
′

v (Ttre
) involves an improper integral (the upper limit

corresponds to infinity), as shown by equation (2.87) in which the distribution of relative speeds of

collision, f(v, Ttre), was considered to be the one in which v is the real relative speed of the colliding

particles. Because only finite discrete data points for the process cross section are available, the integration

in (2.87) can’t be performed in all its domain, and on the other hand, numerical methods are required

for its evaluation7. When regarding the upper limit of integration, one should first look to the integrand

function to know if it’s reasonable or not to approximate the improper integral by a proper one. To

make the analysis more convenient let’s write equation (2.87) in a way so that the integrand function

corresponds to a multiplication between the process cross section, σe
′

v , and a normalised distribution

function, say f̃ , instead of f which is indeed not normalised. One may obtain

ke
′

v (Ttre) =

√
8kBTtre

πme

� ∞
0

σe
′

v (u)f̃(u) du , (3.45)

where u is an adimensional variable given by u = E
kBTtre

. The normalised distribution function can be

shown to be f̃(u) = f̃
(

E
kBTtre

)
= E

kBTtre
e
− E
kBTtre . This function goes to zero when E

kBTtre
goes to infinity.

And because the variable of dependence is the ratio between E and kBTtre
, one can say that the higher the

temperature Ttre , the higher the energy E needed to attain the same small f̃ value. Let’s now introduce a

new convenient variable: Emax, corresponding to the relative kinetic energy value above which there’s no

process cross section data available. One can say that if σe
′

v (u) is a well behaved function (not increasing

too much) and Emax is sufficiently large, the contribution of the interval E ∈ ]Emax, +∞[ for the integral

will be negligible when in comparison with the one associated to the adjunct interval E ∈ [0, Emax]. In

7The employed numerical method was the composite trapezoidal rule.

130



such circumstances it would be right to set Emax as the upper limit of the integral.

Figure 3.16 depicts the way that the normalised distribution function f̃ varies with the relative

kinetic energy E, for different temperature values, Ttre
= 20, 000; 40, 000; ...; 100, 000 K. Other significant

details are present in the figure: the dotted vertical lines correspond to the relative kinetic energy values

E = Ec(Ttre), that if considered as the one in the upper limit of the integration of the normalised

distribution function with respect to the variable u, the respective integral would give the value 0.99. Or

in mathematical symbolism, Ec(Ttre
) = usup kBTtre

:
� usup

0
f̃(u) du = 0.99. These may be interpreted

as the cutoff energy values that allows a fulfilment of 99% of the normalised distribution function, for

each of the given temperatures. The number 0.99 was chosen by being a number sufficiently near the

ideal value: 1. The black solid vertical line in the figure corresponds to the maximum data energy value,

Emax = 50 eV. And the associated label, F = 97.945 %, corresponds to the percentage of fulfilment of

the distribution function for the temperature Ttre
= 100, 000 K by the data energy values. This F value

is high, and it is for sure higher for the other temperatures (as said above in other words, the lower the

temperature, the higher the percentage of fulfilment of the distribution function, when fixing the energy

value in the upper limit of integration).
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Figure 3.16: Dependence of the normalised distribution function f̃ (E, Ttre
), on the relative kinetic energy

of collision E, for different temperature values: Ttre
= 20, 000; 40, 000; ...; 100, 000 K. The vertical dotted

lines correspond to the cutoff energies associated to a 99 % fulfilment of the distribution function, at the

temperature values. The black solid vertical line corresponds to the maximum data energy value Emax.

The high F value indicates that the rates ke
′

v (Ttre
) can be computed with Emax as the

upper limit of integration in equation (3.45), for any temperature Ttre ≤ 100, 000 K. If such

didn’t happened then extrapolation of the rates for the higher temperatures values may be more

appropriate than not accounting important contributions of the integral. To have even more

confidence about this decision, one can extrapolate the given cross sections to a higher maximum

energy Eextra
max > Emax and compute its contribution to the integral

� Eextra
max

0
σe
′

v (E)f̃(E, Ttre) dE =� Emax

0
σe
′

v (E)f̃(E, Ttre) dE +
� Eextra

max

Emax
σe
′,extra
v (E)f̃(E, Ttre) dE, being σe

′,extra
v (E) the extrapolated cross

section function. If Iextra :=
� Eextra

max

Emax
σe
′,extra
v (E)f̃(E, Ttre

) dE is negligible when in comparision with

Idata :=
� Emax

0
σe
′

v (E)f̃(E, Ttre
) dE, then the decision to neglect the former is supported. Although
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relying in an analysis that involves extrapolation is risky, it is sometimes the only way to obtain results.

Figure 3.17 depicts the case of a linear extrapolation of σe
′

v (E) with v = 0 and e′ =X, showing the two

contributions of the integral, Idata and Iextra, with Ttre = 100, 000 K. Because in this case Iextra is one

order of magnitude lower than Idata, the former may be assumed to be negligible. It was then decided to

set Emax as the upper limit of integration in the rates computation formula, for all v and e′.
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Figure 3.17: A study of the contribution of the data cross section values σe
′

v (E) and the extrapolated

ones σe
′,extra
v (E) to the integral involved in the rates computation formula. The solid curves with squares

were generated with the given data and the dashdotted curves were generated with the extrapolated

data. The area of the patterned region bellow the
(
σ · f̃

)
curve corresponds to the computed integral.

The case depicted here considers v = 0, e′ =X and Ttre = 100, 000 K.

Figure 3.18 shows the fitted reaction rate curves ke
′,fit
v (Ttre

) with the shape of the nine parameters

function (2.89), as well as the relative fitting error δe
′

v (Ttre), for v = 0, 10, 20, 30, 40 and e′ =X. The

relative fitting error is defined as δe
′

v (Ttre) :=
[
ke
′,fit
v (Ttre)− ke′v (Ttre)

]
/ke

′

v (Ttre). The figure shows that

the rate coefficients increase with the vibrational quantum number v. Also, the absolute value of the

relative error is less than 2%, indicating a good agreement between the fitted curves and the data points.
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Figure 3.18: Fitted reaction rate curves ke
′,fit
v (Ttre), and relative fitting error δe

′

v (Ttre), for v =

0, 10, 20, 30, 40 and e′ = X2Σ+
g .
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Note that since the rate coefficients ke
′,fit
v (Ttre

) are actually summed on the vibrational level v′ of N +
2 ,

and vibrational-specific rate coefficients were wanted, a vibrational redistribution (VRP) was performed

on them.

3.2.8 Dissociative recombination of N+
2

Dissociative recombination (DR) of molecular nitrogen ions N +
2 can be represented by the chemical

equation

N +
2

(
X2Σ+

g , v
)

+ e– N (e′1) + N (e′2) , (3.46)

being e′1 and e′2 the electronic levels of the produced nitrogen atoms. The reverse of this chemical reaction,

i.e. associative ionisation, has a major importance in hypersonic flows since it is one of a few that produce

the first free electrons and ions in the matter, transforming the gas into a plasma.

It’s important to mention that the chemical equation (3.46) actually solely describes the reactants

and final products of a complex reaction, comprising two, three or even four consecutive steps [129]. The

two steps process which is termed direct dissociative recombination has the form

N +
2

(
X2Σ+

g , v
)

+ e– N2 (e′D, v
′
D) N (e′1) + N (e′2) . (3.47)

In this process, the molecular nitrogen ion N +
2 captures the electron e– (hence the designation

“recombination”), forming an excited neutral nitrogen molecule N2 in the electronic level e′D and

vibrational level v′D, which posteriorly dissociates (hence the designation “dissociative”) producing two

nitrogen atoms in the electronic levels e′1 and e′2. The three steps process, by the name of indirect

dissociative recombination, is expressed by the chemical equation

N +
2

(
X2Σ+

g , v
)

+ e– N2 (e′R, v
′
R) N2 (e′D, v

′
D) N (e′1) + N (e′2) . (3.48)

In this process, the transformation of the reactants into the neutral nitrogen molecule in the dissociative

state N2(e
′
D, v

′
D) is indirect. The recombined neutral nitrogen molecule N2(e

′
R, v

′
R) is in a different

electronic state called Rydberg state, which then transits to the dissociative state. In the four steps process,

the transition corresponds to an indirect second-order mechanism: the recombined neutral nitrogen

molecule is in a non-Rydberg state N2(e
′, v′), which transits to a Rydberg state N2(e

′
R, v

′
R), and in its

turn transits to the dissociative state N2(e
′
D, v

′
D). The respective chemical equation has the form

N +
2

(
X2Σ+

g , v
)

+ e– N2 (e′, v′) N2 (e′R, v
′
R) N2 (e′D, v

′
D) N (e′1) + N (e′2) . (3.49)

The objective of this section is to assemble rate coefficients k
e′1,e

′
2

v (Ttre
), each one corresponding to the

sum of all of the three possible contributions referred above, in which the molecular nitrogen ion N +
2 is

in the vibrational level v, and the dissociation products are in the electronic levels e′1 and e′2.

The considered data was the one computed by Guberman [100] which is limited to the ground

electronic level of the nitrogen molecular ion N +
2 , to the initial vibrational quantum numbers v =
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0, 1, 2, 3, and 4 and to a range of free electrons translational temperatures of Ttre
∈ [100; 3, 000] K.

The considered electronic levels of the dissociative nitrogen molecule N2 were e′D = 21Σ+
g , b′1Σ+

u , 23Σ+
u ,

21Πu, 31Πu, b1Πu, 23Πu, 33Πu, 43Πu and C3Πu. The electronic levels e′1 and e′2 for the dissociation

products of N2 in each dissociative state are listed in Table 3.10.

Table 3.10: Electronic levels e′1 and e′2 of the dissociation products of the nitrogen molecule N2 in each

considered electronic level e′D, according to Guberman [100, 130, 131].

e′D 21Σ+
g b′1Σ+

u 23Σ+
u 21Πu 31Πu b1Πu 23Πu 33Πu 43Πu C3Πu

e′1
2Du

2Du
4Su

2Du
2Du

2Du
4Su

4Su
2Du

2Du

e′2
2Du

2Pu
2Du

2Du
2Pu

2Du
2Du

2Pu
2Du

2Du

Guberman issues values for the rate coefficients k
e′D
v (Ttre

), i.e. the sum of the contributions (3.47),

(3.48), (3.49) for which the molecular nitrogen ion N +
2 is in the vibrational level v, and the molecular

nitrogen N2 in the dissociative state is in the electronic level e′D. It can be easily shown that the

rate coefficients k
e′1,e

′
2

v (Ttre
) correspond to the sum of all rate coefficients k

e′D
v (Ttre

) whose respective

electronic levels of the dissociation products associated to the dissociative route e′D correspond to

e′1 and e′2: k
e′1,e

′
2

v (Ttre
) =

∑
e′D
k
e′D
v (Ttre

). In this very work, Guberman’s computed rate coefficients

k
e′D
v (Ttre) were fitted in the domain Ttre ∈ [300; 3, 000] K, and the rate coefficients k

e′1,e
′
2

v (Ttre) were then

computed by taking into account the respective contributions. These rate coefficients, in their turn, were

fitted, being depicted by Figures 3.19, 3.20, 3.21, 3.22 and 3.23, for v = 0, 1, 2, 3 and 4, respectively.

Modified Arrhenius functions (2.88) were chosen as fitted curves due to their higher stability in the

domain not supported by the fitted data (note that in this studied case the non-supported domain

Ttre
∈ [3, 000; 100, 000] K is much bigger than the supported domain Ttre

∈ [300; 3, 000] K). However,

this decision comes with the drawback of an increase in the values of the relative fitting errors, whose

highest absolute value was found to be 16%.

The rate coefficients for the remainder of the vibrational quantum numbers v, i.e. v = 0 and v = 2

with (e′1, e
′
2) = (2Du,

2Pu), and v > 4 with (e′1, e
′
2) ∈ {(4Su,

2Du), (4Su,
2Pu), (2Du,

2Du), (2Du,
2Pu)}, were

obtained through a vibrational redistribution procedure based on the rate coefficients for the case v = 4.
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Figure 3.19: Data rate coefficients k
e′1,e

′
2

v (Ttre
) (thicker lines in the first plot), fitted rate coefficients

k
e′1,e

′
2,fit

v (Ttre) (thinner lines in the first plot) and relative fitting errors δ
e′1,e

′
2

v (Ttre) (second plot) for v = 0

and (e′1, e
′
2) ∈ {(4Su,

2Du), (4Su,
2Pu), (2Du,

2Du)}.
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Figure 3.20: Data rate coefficients k
e′1,e

′
2

v (Ttre
) (thicker lines in the first plot), fitted rate coefficients

k
e′1,e

′
2,fit

v (Ttre) (thinner lines in the first plot) and relative fitting errors δ
e′1,e

′
2

v (Ttre) (second plot) for v = 1

and (e′1, e
′
2) ∈ {(4Su,

2Du), (4Su,
2Pu), (2Du,

2Du), (2Du,
2Pu)}.
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Figure 3.21: Data rate coefficients k
e′1,e

′
2

v (Ttre) (thicker lines in the first plot), fitted rate coefficients

k
e′1,e

′
2,fit

v (Ttre) (thinner lines in the first plot) and relative fitting errors δ
e′1,e

′
2

v (Ttre) (second plot) for v = 2

and (e′1, e
′
2) ∈ {(4Su,

2Du), (4Su,
2Pu), (2Du,

2Du)}.
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Figure 3.22: Data rate coefficients k
e′1,e

′
2

v (Ttre) (thicker lines in the first plot), fitted rate coefficients

k
e′1,e

′
2,fit

v (Ttre
) (thinner lines in the first plot) and relative fitting errors δ

e′1,e
′
2

v (Ttre
) (second plot) for v = 3

and (e′1, e
′
2) ∈ {(4Su,

2Du), (4Su,
2Pu), (2Du,

2Du), (2Du,
2Pu)}.
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Figure 3.23: Data rate coefficients k
e′1,e

′
2

v (Ttre
) (thicker lines in the first plot), fitted rate coefficients

k
e′1,e

′
2,fit

v (Ttre) (thinner lines in the first plot) and relative fitting errors δ
e′1,e

′
2

v (Ttre) (second plot) for v = 4

and (e′1, e
′
2) ∈ {(4Su,

2Du), (4Su,
2Pu), (2Du,

2Du), (2Du,
2Pu)}.

3.2.9 Electronic excitation and ionisation of N and N+ by electron impact

Rate coefficients for the electronic excitation and ionisation of N and N+ by electron impact should be

obtained through the most accurate data that are currently available, in similarity to the other processes.

Therefore, experimental data and results obtained through validated theoretical computations should be

preferred to the more simpler semi-empirical correlations. The author considered the theoretical values

obtained by Berrington et al. [97] for the process cross sections associated to the excitation of N
(

4Su

)
to N

(
2Du

)
and N

(
2Pu

)
, as well as the excitation of N

(
2Du

)
to N

(
2Pu

)
. The experimental values for the

process cross sections obtained by Brook et al. [102] were considered for the ionisation of N
(

4Su

)
, and

the numerical values for the process cross sections computed by Wang et al. [103] were regarded for

the ionisation of N
(

2Du

)
and N

(
2Pu

)
. Since no experimental or accurate theoretical data were found

for the other electronic levels of N, it was necessary to rely on empirical correlations to complete the

database. And the same applied for the case electronic excitation of N+ for all of its electronic levels.

Rate coefficients for the excitation and for the ionisation of an atomic particle by electron impact can
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be computed through the well-known empirical correlations originally obtained by Drawin [132, 133]. In

this work, the Drawin expressions adapted by Panesi et al. [98] were preferred due to their simplicity.

The rate coefficient for the electronic excitation of an atomic particle from the e-th electronic level to the

e′-th electronic level may then be computed through

ke
′

e (Ttre) =

4πa2
0α
√

8kBTtre

πme

(
Ry

kBTtre

)2

I1(ae
′

e ), if le′ 6= le ,

4πa2
0α
√

8kBTtre

πme

(
ae
′

e

)2

I2(ae
′

e ), if le′ = le ,

(3.50)

where a0 is the Bohr radius, α = 0.05 is a parameter, Ry is the Rydberg unit of energy, le and le′ are the

orbital quantum numbers of the most energetic electrons in the e and e′ electronic levels of the atomic

particle, and ae
′

e = (εe′ − εe) / (kBTtre
) is a reduced difference between the final sensible electronic energy

εe′ and the initial one εe. The quantities I1(ae
′

e ) and I2(ae
′

e ) are two functions of ae
′

e given by

I1(ae
′

e ) = 0.63255
(
ae
′

e

)−1.6454

e−a
e′
e , (3.51) I2(ae

′

e ) = 0.23933
(
ae
′

e

)−1.4933

e−a
e′
e . (3.52)

Also, the rate coefficient for the ionisation of an atomic particle from the e-th electronic may be

computed through the expression

k+
e (Ttre) = 4πa2

0α
+

√
8kBTtre

πme

(
Ry

kBTtre

)2

I1(a+
e ) , (3.53)

being α+ = 1 a parameter, and a+
e = (ε+ − εe) / (kBTtre

) a reduced difference between the ionisation

energy of the atomic particle from its electronic ground level ε+ and the initial electronic energy εe.

One useful property of relations (3.50) and (3.53) is the fact that they can be expressed through a

modified Arrhenius function (2.88).

3.2.10 Electronic excitation and ionisation of N and N+ by heavy particle

impact

Due to an overall lack of experimental data for the electronic excitation and ionisation of N and N+

by heavy particle impact at heavy particle translation temperatures Ttrh
higher than the room one, it

was decided to rely on semi-empirical formulae to compute the respective rate coefficients. The relation

obtained by Annaloro et al. [84] was regarded:

kf (Ttrh
) = ασ0

(
∆E

kBTtrh

)β√
8kBTtrh

πµ
e
− ∆E
kBTtrh , (3.54)

being ∆E the energy defect, i.e. ∆E = εe′ − εe for the case of electronic excitation and ∆E = ε+ − εe
for the case of ionisation. The variables e, e′, εe, εe′ and ε+ have the same meaning has the ones

declared in previous section §3.2.9. The quantities α = 0.39534 and β = 0.3546 correspond to two

convenient parameters, σ0 = 10−20 m2 a characteristic cross section, and µ the reduced mass of the

collision partners. The collision partners of N and N+ were considered to be N and N2 in similarity to the
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work of Annaloro et al. [84]. Formula (3.54) is an approximation which is based on a suggestion of Park

[134], that tells that the process cross section σp depends on the relative kinetic energy of the collision

partner E through σp(E) = σ0 ln(E/∆E)/(E/∆E). This suggestion is in its turn based on the empirical

correlation established by Lotz [135] for the ionisation of atomic particles by impact with free electrons

in the limit E � ∆E.

3.3 Radiative processes

3.3.1 Spontaneous emission of the molecular species, N2 and N +
2

Level-specific Einstein coefficients for spontaneous emission Ae
′,v′

e,v of N2 and N +
2 were directly extracted

from the literature or were computed through a theoretical expression involving the so-called sums of the

electronic-vibrational transition moments
(∑

R2
e

)e′,v′
e,v

[136], being these also taken from the literature.

Such expression corresponds to [137]

Ae
′,v′

e,v =
16π3

3ε0c3h

(
νe
′,v′

e,v

)3
(∑

R2
e

)e′,v′
e,v

(2− δ0,Λ) (2S + 1)
, (3.55)

where νe
′,v′

e,v is the frequency of a photon whose energy equals the gap between the initial and final levels,

Λ is the initial quantum number for the projection of the total electronic orbital angular momentum

vector on the internuclear axis, and S is the initial total spin quantum number as described in §2.8.5.

Table 3.11 assembles all the accounted spontaneous emission processes for the molecular species,

listing the name of the electronic system8, the initial and final electronic levels (e and e′, respectively),

the maximum initial and final vibrational quantum numbers (vmax and v′max, respectively), as well as the

reference from which the data were taken from.

8The term electronic system is attributed to the set constituted by the initial and the final electronic levels of the particle
in the radiative process.
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Table 3.11: Molecular spontaneous emission processes for which Einstein coefficients were obtained. The

symbol after the reference in the column “Reference” represents the quantity which was extracted from it:

Einstein coefficient (if A) or sum of the electronic-vibrational transition moments (if
∑
R2
e).

Species Electronic system e - e′ (vmax, v
′
max) Reference

N2

Vegard-Kaplan A3Σ+
u - X1Σ+

g (21, 21) [138] - A (from [139])

First positive B3Πg - A3Σ+
u (21, 21) [136] - A

Wu-Benesch W3∆u - B3Πg (21, 17) [138] - A (from [139])

IR afterglow B′3Σ−u - B3Πg (21, 21) [138] - A (from [139])

Lyman-Birge-Hopfield a1Πg - X1Σ+
g (21, 21) [138] - A (from [139])

Second positive C3Πu - B3Πg (4, 21) [136] - A

Birge-Hopfield I b1Πu - X1Σ+
g (24, 60) [140] (a) -

∑
R2
e

Worley-Jenkins c3
1Πu - X1Σ+

g (11, 60) [140] (a) -
∑
R2
e

Carroll-Yoshino c′4
1Σ+

g - X1Σ+
g (11, 60) [140] (a) -

∑
R2
e

Birge-Hopfield II b′1Σ+
u - X1Σ+

g (46, 60) [140] (a) -
∑
R2
e

Worley o3
1Πu - X1Σ+

g (21, 60) [140] (a) -
∑
R2
e

N +
2

Meinel A2Πu - X2Σ+
g (27, 27) [138] - A (from [139])

First negative B2Σ+
u - X2Σ+

g (12, 21) [136] - A

Second negative C2Σ+
u - X2Σ+

g (6, 27) [138] - A (from [139])

a The data were directly sent by Heiko Liebhart to the IPFN group.

3.3.2 Spontaneous emission of the atomic species, N and N+

For the case of the considered atomic species (N and N+), level-specific Einstein coefficients for

spontaneous emission Ae
††

s,e† were extracted from the NIST database [83]. These coefficients are in respect

of electronic levels that take into account the fine structure. Since this work considers representative

electronic levels computed from the ones with fine structure, it’s necessary to compute Einstein coefficients

in respect of these representative electronic levels as well. Let’s assign the symbol Ae
′

s,e and the name

“representative level-specific Einstein coefficient for spontaneous emission” to the resultant Einstein

coefficient. The rate of change of the amount concentration of s-th species particles in the representative

level e (being this associated to the set of split ones {e†}) due to spontaneous emission from that level

to the representative level e′ (being this associated to the set of split ones {e††}) is given by the sum of

the rates of change of the amount concentrations of s-th species particles in all the split levels e† due to

spontaneous emission from those levels to all the split levels e††, i.e.

(
dns,e
dt

)e’,se

s,e

=
∑
e†, e††

(
dns,e†

dt

)e††,se
s,e†

, (3.56)
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which according to (2.93), gives

(
dns,e
dt

)e′,se
s,e

= −
∑
e†, e††

Ae
††

s,e†ns,e† . (3.57)

By making the assumption that all states in the set {e†} are equiprobable, one gets ns,e† = (gs,e†/gs,e)ns,e,

being gs,e† the the degree of degeneracy of the split electronic level e† and gs,e =
∑
e† gs,e† the degree of

degeneracy of the representative electronic level e. Equation (3.57) is then transformed into

(
dns,e
dt

)e′,se
s,e

= −

 ∑
e†, e††

gs,e†

gs,e
Ae
††

s,e†

ns,e , (3.58)

Thus, the representative level-specific Einstein coefficient for spontaneous emission is given by

Ae
′

s,e =
∑
e†, e††

gs,e†

gs,e
Ae
††

s,e† . (3.59)

A synopsis on all of the considered atomic spontaneous emission processes is presented in Table 3.12.

Table 3.12: Atomic spontaneous emission processes for which Einstein coefficients were computed.

Species Number of processes Reference

N 279 (a) NIST[83]

N+ 276 (a) NIST[83]

a As a reminder to the reader: representative Einstein coefficients were computed considering the

lumping procedure performed on the split electronic levels.

3.3.3 The line-shape factor

In this work, the line-shape factor φe
′,v′

λ,s,e,v is considered to be the result of four contributions: Doppler,

collisional, Stark, and resonance broadening. One may determine a line-shape factor for each isolated

contribution, i.e.
(
φe
′,v′

λ,s,e,v

)
D

,
(
φe
′,v′

λ,s,e,v

)
col

,
(
φe
′,v′

λ,s,e,v

)
S

and
(
φe
′,v′

λ,s,e,v

)
res

, and then compute the global

line-shape factor φe
′,v′

λ,s,e,v through a triple convolution [47]:

φe
′,v′

λ,s,e,v(~r, t, λ) =

� ∞
−∞

(
φe
′,v′

λ,s,e,v

)
D

(~r, t, λe
′,v′

s,e,v + λ′)

{� ∞
−∞

(
φe
′,v′

λ,s,e,v

)
col

(~r, t, λe
′,v′

s,e,v + λ′′)

[
� ∞
−∞

(
φe
′,v′

λ,s,e,v

)
S

(~r, t, λe
′,v′

s,e,v + λ′′′) ·
(
φe
′,v′

λ,s,e,v

)
res

(~r, t, λ− λ′ − λ′′ − λ′′′) dλ′′′
]
dλ′′

}
dλ′ . (3.60)

Let’s start by obtaining the line-shape factor for isolated Doppler broadening,
(
φe
′,v′

λ,s,e,v

)
D

. An observer

in a referential point which moves with the average speed of the s-th species particles, ~us, would identify a

photon frequency that may be different from the one observed by the s-th species particle that emitted it,

due to the relative motion between the two - this phenomenon is termed Doppler effect. For convenience,

let’s consider a reference frame whose origin coincides with the above-mentioned point and whose x axis
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has the direction from that point to the emitter. Let’s also consider that the radiative process corresponds

to a spontaneous emission. The photon frequency observed from the reference point, ν, is related to the

photon frequency observed from emitter, νe
′,v′

s,e,v, through ν = νe
′,v′

s,e,v(1− vx/c) [46], being vx the projection

of the relative velocity of the emitter on the x axis. Or, if wavelengths are instead regarded,

λ =
λe
′,v′

s,e,v

1− vx
c

. (3.61)

Since the velocity of the heavy particles follows a Maxwell-Boltzmann distribution with a temperature

Ttrh
, the number density of s-th species particles in the (e, v) vibronic level with a x-component relative

velocity vx ∈ [vx, vx + dvx], per unit of this quantity, is given by

dns,e,v
dvx

(~r, t, vx) = ns,e,v(~r, t)

√
ms

2πkBTtrh
(~r, t)

e
− msv

2
x

2kBTtrh
(~r,t) . (3.62)

Being the wavelength λ related to the x-component relative velocity vx through (3.61), one gets dvx/dλ =

c ·λe′,v′s,e,v/λ
2, and the number density per unit of wavelength of s-th species particles of the (e, v) vibronic

level, which if all spontaneously emitted would do it in wavelengths λ ∈ [λ, λ+ dλ], is

dns,e,v
dλ

(~r, t, λ) = ns,e,v(~r, t)
λe
′,v′

s,e,v

λ2

√
msc2

2πkBTtrh
(~r, t)

· e
− msc

2

2kBTtrh
(~r,t)

(
λ−λe

′,v′
s,e,v
λ

)2

. (3.63)

The contribution of the particular spontaneous emission to the emission coefficient corresponds to

(jλ)
e′,v′,se
s,e,v (~r, t, ϕ, θ, λ) =

hc

λ

Ae
′,v′

s,e,v

4π

dns,e,v
dλ

(~r, t, λ) =
hc

λ

Ae
′,v′

s,e,v

4π

λe′,v′s,e,v

λ2

√
msc2

2πkBTtrh
(~r, t)

· e
− msc

2

2kBTtrh
(~r,t)

(
λ−λe

′,v′
s,e,v
λ

)2
ns,e,v(~r, t) .

(3.64)

By comparing (3.64) with the respective term in the global emission coefficient given by (2.107), one may

immediately conclude that the line-shape factor for Doppler broadening is given by

(
φe
′,v′

λ,s,e,v

)
D

(~r, t, λ) =
λe
′,v′

s,e,v

λ2

√
msc2

2πkBTtrh
(~r, t)

· e
− msc

2

2kBTtrh
(~r,t)

(
λ−λe

′,v′
s,e,v
λ

)2

(3.65)

It can be shown that the same result holds for the case of induced emission and absorption. Also, it’s

important to refer here that the relation for the frequency-specific line-shape factor for Doppler broadening(
φe
′,v′

ν,s,e,v

)
D

= (λ2/c) ·
(
φe
′,v′

λ,s,e,v

)
D

has a well-known form as against the wavelength-specific counterpart:

(
φe
′,v′

ν,s,e,v

)
D

(~r, t, ν) =
1

νe
′,v′
s,e,v

√
msc2

2πkBTtrh
(~r, t)

· e
− msc

2

2kBTtrh

(
ν−νe

′,v′
s,e,v

ν
e′,v′
s,e,v

)2

(3.66)

Expression (3.66) corresponds to a Gaussian function G(ν, wG, ν0G) of half-width at half-maximum9

9The half-width at half-maximum of a symmetric function is defined as half of the difference between the two extreme
values of the abscissae at which the ordinates are equal to half of their maximum value.
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(
we
′,v′

ν,s,e,v

)
D

= νe
′,v′

s,e,v

√
[2 ln 2 kBTtrh

(~r, t)]/(msc2) := wG, centred at ν = νe
′,v′

s,e,v := ν0G [47]:

G(ν, wG, ν0G) =

√
ln 2√
π · wG

· e− ln 2
(
ν−ν0G
wG

)2

. (3.67)

This function is depicted in Figure 3.24. One may anyway always approximate the wavelength-specific

line-shape factor by a Gaussian function [47]. Relation (3.65) may be conveniently expressed through

(
φe
′,v′

λ,s,e,v

)
D

(~r, t, λ) =

√
ln 2

√
π ·

(
we
′,v′
ν,s,e,v

)
D
·
(
λe
′,v′
s,e,v

)2

c

· e

− ln 2

λe′,v′s,e,v
λ · λ−λe

′,v′
s,e,v(

w
e′,v′
ν,s,e,v

)
D
·
(
λ
e′,v′
s,e,v

)2

c


2

(
λ

λe
′,v′
s,e,v

)2 , (3.68)

which would correspond to a Gaussian function G(λ,
(
we
′,v′

λ,s,e,v

)
D
, λe

′,v′

s,e,v) of half-width at half-maximum(
we
′,v′

λ,s,e,v

)
D

=
(
we
′,v′

ν,s,e,v

)
D
·
(
λe
′,v′

s,e,v

)2

/c = λe
′,v′

s,e,v

√
[2 ln 2 kBTtrh

(~r, t)]/(msc2), centred at λ = λe
′,v′

s,e,v, if

the term (λ/λe
′,v′

s,e,v)
2 in the denominator and the term λe

′,v′

s,e,v/λ in the exponent of (3.68) corresponded

to 1. Such approximation may indeed be regarded if the condition [
(
we
′,v′

ν,s,e,v

)
D
·
(
λe
′,v′

s,e,v

)2

/c]/λe
′,v′

s,e,v =(
we
′,v′

ν,s,e,v

)
D
/νe

′,v′

s,e,v � 1 holds, i.e. if the half-width at half-maximum of the frequency-specific line-shape

factor is much lesser than its centre. It may be shown that this condition is always satisfied.

For the case of collisional broadening, the formula for the frequency-specific line-shape factor based

on the electron theory of Lorentz and referred by Penner [46], was considered:

(
φe
′,v′

ν,s,e,v

)
col

(~r, t, ν) =
1

π
Zopt,s,e,v+Zopt,s,e′,v′

2π

· 1

1 +

(
ν−νe

′,v′
s,e,v

Zopt,s,e,v+Z
opt,s,e′,v′

2π

)2 , (3.69)

being Zopt,s,e,v the optical collisional frequency per s-th species particle in (e, v) with the other particles:

Zopt,s,e,v =

 ∑
q∈{h},e′′,v′′

nq,e′′,v′′ · σq,e
′′,v′′

opt,s,e,v

1 + δq,e
′′,v′′

s,e,v

√
8kBTtrh

π µs,q

+ ne · σe
opt,s,e,v

√
8kBTtre

πme
. (3.70)

The sum in (3.70) is done in all the heavy species, their electronic levels and vibrational levels. The

quantity δq,e
′′,v′′

s,e,v is a Kronecker delta giving 1 if (s, e, v) = (q, e′′, v′′), and 0 if not. The quantity σq,e
′′,v′′

opt,s,e,v

corresponds to the optical collisional cross section for a collision between a particle of the s-th species in

(e, v) with a particle of the q-th species in (e′′, v′′). And the quantity σe
opt,s,e,v corresponds to σq,e

′′,v′′

opt,s,e,v for

the case of the q-th species being a free electron. Few are the reported values for these optical collisional

cross sections, and moreover, there’s one for each radiative transition. Penner [46] refers that, according

to the available data, such quantities have the same order of magnitude as the respective collisional cross

sections σq,e
′′,v′′

s,e,v . It was decided to consider the approximation σq,e
′′,v′′

opt,s,e,v ≈ σq,e
′′,v′′

s,e,v , and to use the data

of Svehla [54] to obtain the latter. No data were found for the case of collisions with free electrons, and

therefore, its contribution to the optical collisional frequency per particle was disregarded. Note that

Zopt,s,e′,v′ in (3.69) corresponds to the optical collisional frequency per particle of s-th species particles in
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(e′, v′) with the other particles. It is given by (3.70) with e and v substituted by e′ and v′, respectively.

It is worthy to mention that expression (3.69) corresponds to a Lorentzian function L(ν, wL, ν0L) of half-

width at half-maximum
(
we
′,v′

ν,s,e,v

)
col

= (Zopt,s,e,v + Zopt,s,e′,v′)/(2π) := wL, centred at ν = νe
′,v′

s,e,v := ν0L

[47], as depicted in Figure 3.24. The function is given by

L(ν, wL, ν0L) =
1

πwL
· 1

1 +
(
ν−ν0L

wL

)2 . (3.71)

For the case of Stark broadening, it was decided to consider in this work the approach of Johnston

[141], which solely accounts the contribution of free electrons. The associated frequency-specific line-

shape factor
(
φe
′v′

ν,s,e,v

)
S

is given by a Lorentzian function L(ν, wL, ν0L) of half-width at half-maximum(
we
′,v′

ν,s,e,v

)
S
, centred at ν = νe

′,v′

s,e,v. By expressing the frequency-specific line-shape factor through

(
φe
′v′

ν,s,e,v

)
S

(~r, t, ν) =
1

π
(
we
′,v′
ν,s,e,v

)
S

· 1

1 +

[
ν−νe

′,v′
s,e,v(

we
′,v′
ν,s,e,v

)
S

]2 , (3.72)

and noting that dν/dλ = −c/λ2, one may show that the wavelength-specific counterpart is given by

(
φe
′v′

λ,s,e,v

)
S

(~r, t, λ) =
c

λ2

(
φe
′v′

ν,s,e,v

)
S

(~r, t, ν) =
c

π
(
we
′,v′
ν,s,e,v

)
S

(
λe
′,v′
s,e,v

)2 ·
1(

λ

λe
′,v′
s,e,v

)2

+

[
c(

we
′,v′
ν,s,e,v

)
S
λe
′,v′
s,e,v

· λ−λ
e′,v′
s,e,v

λe
′,v′
s,e,v

]2 .

(3.73)

If the term (λ/λe
′,v′

s,e,v)
2 in the denominator of (3.73) corresponded to 1, the wavelength-specific line-shape

factor would also correspond to a Lorentzian function L(λ,wL, λ0L), being this of half-width at half-

maximum
(
we
′,v′

λ,s,e,v

)
S

= [(λe
′,v′

s,e,v)
2/c] ·

(
we
′,v′

ν,s,e,v

)
S

:= wL, centred at λ = λe
′,v′

s,e,v := λ0L. Such function may

be indeed regarded as an approximation for (3.73) if the half-width at half-maximum of the frequency-

specific line-shape factor is much lesser than its centre [47]. Johnston does consider this approximation,

expressing the wavelength-specific line-shape factor as

(
φe
′v′

λ,s,e,v

)
S

(~r, t, λ) =
1

π
(
we
′,v′

λ,s,e,v

)
S

· 1

1 +

[
λ−λe

′,v′
s,e,v(

we
′,v′
λ,s,e,v

)
S

]2 . (3.74)

The half-width at half-maximum regarded by Johnston has a form identical to the one of Park [142]:

(
we
′,v′

λ,s,e,v

)
S

=
(
we
′,v′

λ,s,e,v,ref

)
S

(
Ttre

Ttre,ref

)n
·
(

ne

ne,ref

)
, (3.75)

where
(
we
′,v′

λ,s,e,v,ref

)
S

is the half-width at half-maximum at a free electron translational temperature

Ttre = 10, 000 K := Ttre,ref and at a free electron number density ne = 1016 cm−3 := ne,ref. Park assumes

a dependence of the half-width at half-maximum on the free electron translational temperature which is

of the power type - this is expressed through the exponent n in (3.75). Moreover, relation (3.75) shows a

dependence of the half-width at half-maximum on the free electron number density which is linear, being
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this behaviour also mentioned by Griem in his work [143]. Park [142] solely treated the case of argon,

obtaining the exponent n = 0.33 by fitting the curve (3.75) to the values of half-width at half-maximum(
we
′,v′

λ,s,e,v

)
S

at ne = ne,ref for different Ttre , issued by Griem [143–145]. Johnston considers this exponent

value to be also acceptable for the case of the nitrogen and oxygen atoms. In this work, it was decided

to take such assumption one step further by regarding this same value for all the considered species.

Johnston then considers a model for the reference half-width at half-maximum of the form

(
we
′,v′

λ,s,e,v,ref

)
S

=
C ·
(
λe
′,v′

s,e,v

)2

(
ε+s − εs,e,v

)n , (3.76)

being ε+s the ionisation energy of the a s-th species particle from its ground level, and C and n correspond

to some constants. The values for the ionisation energies of all the species considered in this work were

taken from the literature, being listed in Table 3.13.

Table 3.13: Ionisation energies from the ground level of N, N+, N2 and N +
2 .

s ε+s [eV] Reference

N 14.534 Biémont et al. [146]

N+ 29.601 Biémont et al. [146]

N2 15.581 Trickl et al. [147]

N +
2 27.9 Bahati et al. [148]

Model (3.76) is a variant of the one considered by Cowley in its theoretical work [149]. Johnston

obtained C = 1.69× 1010 [(“cm−1”)2.623/cm2] · cm and n = 2.623 by fitting the curve (3.76) to the values

of
(
we
′,v′

λ,s,e,v,ref

)
S

for the nitrogen and oxygen atoms, issued by Griem [143] and by Wilson and Nicolet

[150]. And by regarding such result in this work, the wavelength and frequency-specific half-widths at

half-maxima for Stark broadening are ultimately given by

(
we
′,v′

λ,s,e,v

)
S

= 1.69× 1010

(
λe
′,v′
s,e,v

cm

)2

(
ε+s

“cm−1” −
εs,e,v

“cm−1”

)2.623

(
Ttre

10, 000 K

)0.33

·
( ne

1016 cm−3

)
cm , (3.77)

and (
we
′,v′

ν,s,e,v

)
S

=
5.066× 1020(

ε+s
“cm−1” −

εs,e,v
“cm−1”

)2.623

(
Ttre

10, 000 K

)0.33

·
( ne

1016 cm−3

)
Hz , (3.78)

respectively.

For the case of resonance broadening, the theory developed by Griem [145] was considered. The

frequency-specific line-shape factor corresponds to a Lorentzian function centred at ν = νe
′,v′

s,e,v. Griem

issues a very approximate estimate for the half-width at half-maximum of the angular frequency-specific

counterpart, which is given by

(
we
′,v′

ω,s,e,v

)
res

= 3π

√
gs,e′,v′

gs,e,v

e2 fe,vs,e′,v′

4πε0me ω
e′,v′
s,e,v

np . (3.79)
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In (3.79), ωe
′,v′

s,e,v = 2π νe
′,v′

s,e,v corresponds to the angular frequency of a photon with the same energy as the

gap between the initial and final levels, fe,vs,e′,v′ is the so-called absorption oscillator strength, and np is the

number density of perturbing particles. It was decided in this work to approximate the latter quantity

by the number density of particles in the lower level, i.e. np ≈ ns,e′,v′ , as Potter [151] and Johnston [141]

also did. It can be shown that the absorption oscillator strength fe,vs,e′,v′ and the Einstein coefficient for

spontaneous emission Ae
′,v′

s,e,v are related to each other through [145]

Ae
′,v′

s,e,v =
e2
(
ωe
′,v′

s,e,v

)2

2πε0mec3
gs,e′,v′

gs,e,v
fe,vs,e′,v′ . (3.80)

And since ω = 2πν, one has dω/dν = 2π, meaning that the frequency-specific line-shape factor(
φe
′,v′

ν,s,e,v

)
res

is related to the angular frequency-specific counterpart
(
φe
′,v′

ω,s,e,v

)
res

simply by
(
φe
′,v′

ν,s,e,v

)
res

=

2π
(
φe
′,v′

ω,s,e,v

)
res

. The half-width at half-maximum of the former is, in its turn, given by

(
we
′,v′

ν,s,e,v

)
res

=

(
we
′,v′

ω,s,e,v

)
res

2π
= 3π

√
gs,e,v
gs,e′,v′

c3Ae
′,v′

s,e,v

32π4
(
νe
′,v′
s,e,v

)3ns,e′,v′ . (3.81)

Being all the broadening mechanisms here described, it is now the time to obtain the global line-

shape factor defined by (3.60). By sticking to the assumption that the half-width at half-maximum of

the frequency-specific line-shape factor for each isolated line broadening mechanism is much lesser than

its centre, one gets

φe
′,v′

λ,s,e,v(~r, t, λ) =

� ∞
−∞

(
φe
′,v′

λ,s,e,v

)
D

(~r, t, λe
′,v′

s,e,v + λ′)

{� ∞
−∞

(
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′,v′

λ,s,e,v

)
col

(~r, t, λe
′,v′

s,e,v + λ′′)

[
� ∞
−∞

(
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′,v′

λ,s,e,v

)
S
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′,v′

s,e,v + λ′′′) ·
(
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λ,s,e,v

)
res

(~r, t, λ− λ′ − λ′′ − λ′′′) dλ′′′
]
dλ′′

}
dλ′ =

=

� ∞
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G(λe
′,v′

s,e,v + λ′,
(
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′,v′

λ,s,e,v

)
D
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′,v′

s,e,v)

{� ∞
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(
we
′,v′
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s,e,v)

[
� ∞
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}
dλ′ .

(3.82)

It can be shown that the convolution of two Lorentzian functions is also a Lorentzian function whose

half-width at half-maximum and centre are the sum of the respective ones associated to the former.

Therefore, (3.82) is transformed into

φe
′,v′

λ,s,e,v(~r, t, λ) =

� ∞
−∞

G(λe
′,v′

s,e,v + λ′,
(
we
′,v′

λ,s,e,v

)
D
, λe

′,v′

s,e,v) · L(λ− λ′,
(
we
′,v′

λ,s,e,v

)
col

+
(
we
′,v′

λ,s,e,v

)
S

+
(
we
′,v′

λ,s,e,v

)
res
, λe

′,v′

s,e,v) dλ
′ .

(3.83)

The improper integral that appears in (3.83) corresponds to a Voigt function of Gaussian and Lorentzian

half-widths at half-maxima wG =
(
we
′,v′

λ,s,e,v

)
D

and wL =
(
we
′,v′

λ,s,e,v

)
col

+
(
we
′,v′

λ,s,e,v

)
S
+
(
we
′,v′

λ,s,e,v

)
res

, centred
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at λ = λe
′,v′

s,e,v := λ0V [47]:

V (λ,wG, wL, λ0V ) =

� +∞

−∞
G(λ0V + λ′, wG, λ0V ) · L(λ− λ′, wL, λ0V ) dλ′ . (3.84)

This function is depicted in Figure 3.24.

L(λ,wL, λ0)

G(λ,wG, λ0)

V (λ,wG, wL, λ0)

wL

wG
wV

1
π·wL √

ln 2√
π·wG

λ− λ0

Figure 3.24: Gaussian function G(λ,wG, λ0G) and Lorentzian function L(λ,wL, λ0L) for illustrative half-

widths at half-maxima wG and wL = (1/2)wG, and equal centres λ0G = λ0L = λ0, as well as the resultant

Voigt function V (λ,wG, wL, λ0).

The integral in (3.84) is not analytically solvable, and therefore, one should consider a numerical

method such as the trapezoidal integral rule, or an empirical approximation such as the formula proposed

by Whiting [152] to account it. Although the former may give better results, it requires much more

computational resources than the latter. The empirical formula of Whiting was then chosen, which

according to his words, matches the exact function within 5 per cent at worst. The approximation

consists in a linear combination of both Lorentzian and Gaussian functions with the same half-widths at

half-maxima and centres as the resulting ones for the Voigt function, plus a corrective term:

V (λ,wG, wL, λ0V ) ≈ 1

2wV

[
1.065 + 0.447wLwV + 0.058

(
wL
wV

)2
]

(

1− wL
wV

)
e
− ln 2

(
λ−λ0V
wV

)2

+
wL
wV
· 1

1 +
(
λ−λ0V

wV

)2

+0.016

(
1− wL

wV

)
wL
wV

e−0.084
∣∣∣λ−λ0V

wV

∣∣∣2.25

− 10

10 + 0.210
∣∣∣λ−λ0V

wV

∣∣∣2.25


 . (3.85)

Although Whiting also issues a formula for the half-width at half-maximum of the Voigt function wV

with an accuracy of about 1 per cent, it was decided to consider here the one obtained by Olivero and

Longbothum [153], since it has an even higher accuracy, of about 0.01 per cent. Such formula is expressed

by

wV ≈ (wL + wG)

{
1− 0.18121

[
1−

(
wL − wG
wL + wG

)2
]
−
(

0.023665 e
0.6

wL−wG
wL+wG + 0.00418 e

−1.9
wL−wG
wL+wG

)
sin

(
π
wL − wG
wL + wG

)}
.

(3.86)
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One may ultimately write

φe
′,v′

λ,s,e,v(~r, t, λ) = V (λ,
(
we
′,v′

λ,s,e,v

)
D
,
(
we
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+
(
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λ,s,e,v
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+
(
we
′,v′

λ,s,e,v

)
res
, λe

′,v′

s,e,v) .

(3.87)

3.4 Simulations of post-shock flows generated by a shock tube

Herein a detailed description will be made with respect to the implementation of the zero and one-

dimensional vibronic-specific state-to-state models (introduced in §2.6.4 and §2.6.5, respectively) in

simulations of post-shock flows generated by a shock tube. The studied experiment corresponded to

the test 62 of the EAST shock tube done in 2018, being the respective results issued by Brandis and

Cruden [43]. For the case of the zero-dimensional model, the fluid flow governing equations to deal with

correspond to (2.148), (2.151) and (2.152), which are here rewritten for convenience:



dcs,e,v
dt

=
ω̇s,e,v
ρ

, ∀s, v and e , (3.88a)

dTtrh

dt
= −

Ω̇rad +
(∑

s Ω̇int
s,e

)
+
(∑

s∈{h} ω̇ses

)
+
[∑

s∈{h},e,v

(
ω̇s,e,v − cs,e,v

cs
ω̇s

)
εs,el-vib,e,v

ms

]
ρ
(∑

s∈{h} csCV,s,tr-rot

) ,(3.88b)

dTtre

dt
=

(∑
s Ω̇int

s,e

)
− ω̇eee

ρceCV,e
. (3.88c)

And for the case of the one-dimensional model, the fluid flow governing equations to deal with correspond

to (2.155), (2.156), (2.159) and (2.160), i.e.



dcs,e,v
dx

=
ω̇s,e,v
ρu

, ∀s, e and v , (3.89a)

(
ρu2

p
− 1

)
du

dx
+
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Ttrh

dTtrh
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Ttre
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ω̇sps
cs

+
ω̇epe

ce

 , (3.89b)

dTtrh

dx
+

(∑
s∈{h} cs

)
u∑

s∈{h} csCp,s,tr-rot
· du
dx

=

= −
Ω̇rad +

(∑
s Ω̇int

s,e

)
+
[∑

s∈{h} ω̇s
(
hs + 1

2u
2
)]

+
[∑

s∈{h},e,v

(
ω̇s,e,v − cs,e,v

cs
ω̇s

)
εs,el-vib,e,v

ms

]
ρu
(∑

s∈{h} csCp,s,tr-rot

) ,

(3.89c)

dTtre

dx
+

u

Cp,e

du

dx
=

(∑
s Ω̇int

s,e

)
− ω̇e

(
he + 1

2u
2
)

ρuceCp,e
. (3.89d)

The unknowns of the equations for the zero-dimensional model are cs,v,e (∀s, v and e), Ttrh
and Ttre .

And the unknowns of the equations for the one-dimensional model are all of these plus the x-component

of the flow velocity vector u. Note that in the case of the zero-dimensional model, the mixture mass

density ρ is an invariable and its value may be taken as the one attributed with respect to the initial

conditions. In the case of the one-dimensional model, ρ is given by equation (2.154).

Initial values need to be assigned to cs,v,e, Ttrh
, Ttre , u and ρ. These are associated to the conditions of
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the post-shock flow immediately downstream of the shock wave - which will be labelled here by the number

“2”. As already referred in chapter 1, there are no chemical neither non-chemical processes occurring

throughout the thickness of the shock wave - the mixture chemical composition and the distribution

of the particles in their internal energy levels stay the same - the mixture is said to be frozen while

passing through the shock wave. There is however an abrupt increase of the mean collisional frequency as

well as the mean relative collisional speed which leads to an almost instantaneous self-equilibration of the

translational energy mode of the heavy particles - a value for the heavy particle translational temperature

Ttrh,2 can be assigned, being higher than the one upstream of the shock wave. The excitation of the

rotational energy mode of the particles occurs almost as fast as the excitation of the translational energy

mode, and therefore, one may assign a heavy particle translational-rotational temperature Ttrh−rot,2 =

Ttrh,2 = Trot,2 instead of solely a heavy particle translational temperature Ttrh,2 immediately downstream

of the shock wave. From the conditions upstream of the shock wave - which will be labelled here by

the symbol “∞” - to the conditions immediately downstream of the shock, no vibrational and electronic

excitations of the particles occur, and the values of the vibrational and electronic temperatures in the

latter conditions may be setted equal to the ones in the former conditions, i.e. Tvib,2 = Tel,2 = Tvib,∞ =

Tel,∞ = T∞. Particular attention should be given to the free electron translational temperature Ttre
:

since the free electrons are much lighter than the heavy particles, the excitation of their translation

energy modes occurs in a different way, and it’s not certain that an equilibration between them may

immediately occur downstream of the shock wave. This topic is vaguely discussed on the literature,

and the author is left with no options but to follow the steps done in another works. It was decided to

consider the equality Ttre,2 = Ttrh,2, as also regarded by Kadochnikov and Arsentiev [154]. Note that

the equality is with respect to the conditions immediately downstream of the shock wave and not to the

conditions at the further downstream points. The low T∞ value (of 300 K) allows one to disregard the

contribution of the vibrational and electronic energy modes to the particles energy [1] throughout the

shock wave. This means that both mixture specific heat at constant volume CV and mixture specific heat

at constant pressure Cp, from the upstream to the immediately downstream conditions, only depend on

the translational and rotational energy modes of the particles. These are then given by

CV ≈ CV,trh−rot−tre
:=

(
∂etrh

∂Ttrh

)
V

+

(
∂erot

∂Trot

)
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≈0

es,rot + cs

(
∂es,rot

∂Trot

)
V︸ ︷︷ ︸

:=CV,s,rot

+

(
∂ce
∂Ttre

)
V︸ ︷︷ ︸

≈0

ee + ce

(
∂ee

∂Ttre

)
V︸ ︷︷ ︸
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=

=

 ∑
s∈{h}
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+ ceCV,e ⇔
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⇔ CV ≈

 ∑
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(3.90)

and
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(
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(
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=

=
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+ ceCp,e ⇔

⇔ Cp ≈
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s∈{h}

csCp,s,tr-rot

+ ceCp,e ,

(3.91)

respectively. The specific heats correspond to constants, implying that from the conditions upstream

of the shock wave to the conditions immediately downstream of it, the mixture is calorically perfect.

By further neglecting the transport phenomena and the external body forces forces in the fluid flow

throughout the shock wave, it’s possible to obtain the well-known Rankine-Hugoniot jump conditions,

which allows one to compute the conditions immediately downstream of the shock wave from the ones

upstream of it [3]. These relations can be easily derived by application of the mass, momentum and total

energy balance equations to a control volume that encompasses the shock wave (regarded as a simple

discontinuity) being fixed relatively to it. For the cases of the mass density ρ2, the x-component of the

flow velocity vector u2, the heavy particle translational-rotational temperature Ttrh,2 and the free electron

translational temperature Ttre,2, the respective Rankine-Hugoniot jump conditions give

ρ2 =
(γ + 1)M2

∞
(γ − 1)M2

∞ + 2
ρ∞ , (3.92) u2 =

(γ − 1)M2
∞ + 2

(γ + 1)M2
∞

u∞ , (3.93)

Ttrh,2 = Ttre,2 =

[
(γ − 1)M2

∞ + 2
] [

2γM2
∞ − (γ − 1)

]
(γ + 1)

2
M2
∞

T∞ , (3.94)

being γ = Cp/CV the ratio of specific heats. Since there’s no chemical processes neither vibrational and

electronic excitation of the particles occurring throughout the shock wave, the vibronic mass fractions

cs,v,e immediately downstream of the shock wave are the same as the ones upstream of it, and one can then

write cs,v,e,2 = cs,v,e,∞. Note that the fluid upstream of the shock wave is found in thermal equilibrium
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at a temperature T∞, and the distribution of the particles in their energy levels follow the law (2.13).

Brandis and Cruden used in their experiment a test gas which is constituted by pure molecular nitrogen

N2 at room temperature T∞ = 300 K and static pressure p∞ = 0.2 Torr. Different shock wave speeds10

us were tested. Since the test gas is initially at rest with respect to the shock tube, it traverses the shock

wave with the same speed as the shock wave that moves throughout the shock tube. The upstream flow

speed u∞ - defined in a referential fixed to the shock wave - corresponds then to the herein defined shock

wave speed us. The upstream Mach number M∞ is given by M∞ = u∞/a∞, being a∞ =
√
γRT∞ the

upstream speed of sound.

The numerical results obtained from the zero-dimensional simulations may be regarded as the ones

that would be obtained from an element of fluid which passes through the shock wave, being immediately

constrained to a transparent fixed-volume box, and removed from the flow. Conversely to the actual

element of fluid, this hypothetical element of fluid would not be subjected to transport phenomena - mass

diffusion, heat conduction and viscosity - mass density change, neither would receive radiative energy

from the complementary system. If the above-mention phenomena is found to be negligible, the numerical

results of the zero-dimensional simulation may be compared to the experimental one-dimensional results

by simply taking into account that the post-shock speed would be near constant, allowing one to write

u ≈ u2, being u2 the flow speed immediately downstream of the shock wave in a referential fixed to it.

The results of the zero-dimensional simulations depend on the amount of time elapsed after the passage

of the element of fluid through the shock wave, t, while the experimental results depend on the distance

travelled with respect to the shock wave, x. Being the speed of the post-shock flow nearly constant, one

gets x(t) = u2 · t, or equivalently, t(x) = x/u2. With this relation taken into account, it is possible to

express the numerical and experimental results through the same variable dependence, either on t or x.

The one-dimensional simulations take into account the effects of momentum transfer in the flow by

regarding a momentum balance equation, and therefore, the respective numerical results are expected to

agree better with the experimental results than the ones obtained from the zero-dimensional simulations.

Brandis and Cruden measured the post-shock specific radiative intensity Iλ associated to photons

propagating in a radial direction of the tube, say ~ey, at the furthest radial point of the plasma, y = D/2,

beingD = 10.16 cm the shock tube inner diameter [43]. Figure 3.25 depicts the geometry of the apparatus,

emphasising the regarded inertial frame of reference whose origin moves with the shock wave. The x-axis

is aligned with the shock tube axis, pointing downstream, the z-axis points upwards, and the y-axis makes

a direct dihedral with the other two. The ~ey direction is represented by the azimuthal angle ϕ = π/2 and

polar angle θ = π/2.

10Note that the herein defined shock wave speed corresponds to the speed of the shock wave with respect to the shock
tube.
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Figure 3.25: Upper view of a longitudinal cross-section of the shock tube, showing the measured radiative

field.

One may further describe the measured radiative intensity through the equation of radiative transfer

(2.136) for the direction ~es = ~ey, disregarding the time-variation term due to the fact that the flow is

approximately in a stationary regime when observed from a referential which moves with the shock wave:

∂Iλ
∂y

(x, y, 0,
π

2
,
π

2
, λ) = jλ(x, y, 0,

π

2
,
π

2
, λ)− kλ(x, y, 0,

π

2
,
π

2
, λ) · Iλ(x, y, 0,

π

2
,
π

2
, λ) . (3.95)

To avoid cumbersome notation the labels z = 0, ϕ = π/2, θ = π/2 will be suppressed in the upcoming

mathematical manipulations. Equation (3.95) may be simplified by performing the change of variable

u(x, y, λ) = Iλ(x, y, λ)e

� y
−D

2

kλ(x,y′,λ) dy′

. (3.96)

By integrating the resulting equation in y from y = −D/2 to y = D/2, and acknowledging that the specific

radiative intensity at y = −D/2 along the direction ~ey is actually negligible11, i.e. Iλ(x,−D2 , λ) ≈ 0, a

general solution is ultimately obtained:

Iλ(x,
D

2
, λ) =

� D
2

−D2
jλ(x, y′, λ)e

−
� D

2
y′ kλ(x,y′′,λ) dy′′

dy′ . (3.97)

Assuming that the emission and absorption coefficients don’t depend on y, the result (3.97) is transformed

into

Iλ(x,
D

2
, λ) =

jλ(x, λ)

kλ(x, λ)

[
1− e−kλ(x,λ)D

]
. (3.98)

Also, if the plasma is regarded as an optically thin medium, the absorption coefficient may be neglected

[3] and (3.98) is reduced to

Iλ(x,
D

2
, λ) = jλ(x, λ)D . (3.99)

11Note that Iλ(x,−D
2
, λ) is generated by the outer medium, being this at room temperature.
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By inserting (2.107) into (3.99) and further neglecting induced emission, one obtains

Iλ(x,
D

2
, λ) =

hcD

λ

[∑
se

Ae
′,v′

s,e,v

4π
φe
′,v′

s,e,v(λ)ns,e,v(x)

]
. (3.100)

If one instead considers the escape factor introduced in §2.6.4, and simultaneously assumes independence

of the involved plasma quantities on the y variable and neglects the induced emission, the solution of the

equation of radiative transfer (3.95) may be shown to be simply given by (3.100) with each term in the

sum multiplied by the respective escape factor, i.e.

Iλ(x,
D

2
, λ) =

hcD

λ

[∑
se

Λe
′,v′

s,e,v

Ae
′,v′

s,e,v

4π
φe
′,v′

s,e,v(λ)ns,e,v(x)

]
. (3.101)

To simplify even more the notation, the value y = D/2 in the argument of Iλ will be suppressed from

now on.

Brandis and Cruden used in their experiment four spectrometers, each one measuring the specific

radiative intensity for a particular interval of wavelengths. These intervals of wavelengths are labelled as

VUV - from vacuum ultra-violet radiation12 - “Blue”, “Red” and IR - from infra-red radiation. Among

the issued data (residing in the EAST test data website [156]) there are the instrumentally resolved

radiative intensities Î(x) and the instrumentally resolved non-equilibrium metrics Î ne
λ (λ) for each of

the 42 shots and the four wavelength intervals. The hat denotes instrumentally resolved quantities, in

contrast to the real quantities. The former are the ones that are actually obtained in the experiment, being

related to the latter through a transformation “applied” by the instruments. The instrumentally resolved

radiative intensity associated to the l-th wavelength interval, with l ∈ {VUV, “Blue”, “Red”, IR}, is

given by an integration of the instrumentally resolved specific radiative intensity Îλ(x, λ) with respect to

the wavelength λ from λ = λlmin to λ = λlmax:

Î l(x) =

� λlmax

λlmin

Îλ(x, λ) dλ . (3.102)

And the instrumentally resolved non-equilibrium metric associated to the l-th wavelength interval is given

by an integration of the instrumentally resolved specific radiative intensity Îλ(x, λ) with respect to the

position x from x = xlmin to x = xlmax - a region characterised by a strong thermodynamic non-equilibrium

- divided by the shock tube inner diameter D:

Îne,l
λ (λ) =

1

D

� xlmax

xlmin

Îλ(x, λ) dx . (3.103)

One should note here that it is not possible to know the exact position of the shock wave through

the spectra obtained in the shock tube experiments done by Brandis and Cruden for multiple reasons:

the shock wave isn’t a discontinuity and therefore it can’t be assigned to a point but to a region, the

onset of the radiative field is associated to an increase of the number of excited species (which occurs

12Such designation has its historical reasons: ultra-violet radiation of higher energy was found when Victor Schumann
placed his spectroscopy apparatus under vacuum instead of air (which absorbs it) [155].
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at some distance downstream of the shock wave), and each spectrometer captures the spectra with a

different reaction time [157]. The x axis that Brandis and Cruden work with doesn’t correspond to the

one depicted in Figure 3.25. The issued position values are actually with respect to a particular origin

for each shot and wavelength region which doesn’t coincide with the shock wave, and therefore they will

be denoted here as x̂ and termed “relative positions” to distinguish them from the previously introduced

ones, x, which are with respect to an origin that hypothetically coincides with the shock wave. The

relative position of the shock wave for some shot and the l-th wavelength region, say x̂lsw, was defined

in this work as the point where the instrumentally resolved radiative intensity starts to rise abruptly, as

also considered by Cruden in his work [157]. The position x is then given by x = x̂− x̂lsw.

In this work, only the benchmark data highlighted by Brandis and Cruden were regarded,

corresponding to a total of 56 sets of pairs of Î l(x) and Î ne,l
λ (λ) arrays values. The respective shot

number, upstream speed u∞, wavelength integration limits [λlmin, λ
l
max], and relative position integration

limits [x̂lmin, x̂
l
max] are presented by Table C.1. The estimates for the relative positions of the shock wave

x̂lsw obtained by the present author are issued in Table C.4

The instrumentally resolved specific radiative intensity Î lλ(x, λ) departs from the real one, I lλ(x, λ),

either spectrally and spatially. The non-ideality of the instrumental apparatus is such that the measured

specific radiative intensity Î lλ(x, λ) associated to some particular wavelength λ and position x is in fact

the result of a distribution of the real radiative intensity on intervals of wavelengths and positions around

the reference values. Or, mathematically

Îλ(x, λ) =

� ∞
−∞

φ̂spa(x′)

[� ∞
−∞

φ̂spe(λ′)Iλ(x− x′, λ− λ′) dλ′
]
dx′ , (3.104)

being φ̂spe(λ′) and φ̂spa(x′) the so-called instrument line-shape factor and spatial resolution function,

respectively. These are such that φ̂spa(x′)φ̂spe(λ′)Iλ(x − x′, λ − λ′) dλ′ dx′ gives the contribution of the

real specific radiative intensity associated to the wavelengths λ′ ∈ [λ − λ′, λ − (λ′ + dλ′)] and positions

x ∈ [x − x′, x − (x′ + dx′)] to the instrumentally resolved specific radiative intensity associated to the

wavelength λ and position x. The quantities λ′ and x′ are regarded as wavelength and position defects

with respect to the reference ones.

The instrument line-shape factor and the spatial resolution function are normalised, i.e., they both

satisfy

� +∞

−∞
φ̂spe(λ′) dλ′ = 1 , (3.105)

� +∞

−∞
φ̂spa(λ′) dλ′ = 1 . (3.106)

According to Brandis and Cruden, the instrument line-shape factor associated to the l-th wavelength

interval is given by

φ̂spe,l(λ′) =


√
V (λ′,wlG,w

l
L,0)

� +∞
−∞

√
V (λ′,wlG,w

l
L,0) dλ′

, if l ∈ {VUV, “Blue”},

G(λ′,wlG,0)+10r
l
L(λ′,wlL,0)

1+10rl
, if l ∈ {“Red”, IR},

(3.107)

whose involved physical quantities can’t be described in a single sentence. The first branch, which is
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valid for the VUV and “Blue” wavelength intervals, corresponds to a normalised13 square root of a Voigt

function V (λ′, wlG, w
l
L, 0), being the latter defined by (3.84).

The second branch of (3.107), which is valid for the “Red” and IR wavelength intervals, corresponds to

a normalised linear combination of both Gaussian and Lorentzian functions (G(λ′, wlG, 0) and L(λ′, wlL, 0),

which are defined by (3.67) and (3.71), respectively) being rl some constant associated to the l-th

wavelength interval. The values for wlG, wlL and rl which were obtained by Brandis and Cruden for

the benchmark shots considering the four wavelength intervals are presented by Table C.2.

Regarding the spatial resolution function φ̂spa(x′), it’s necessary to account three contributions: one

due to the used optics, another due to the spatial resolution of the used charge-coupled devices (CCDs)

- the “cameras” - and another due to the motion of the flow with respect to these CCDs [157]. For each

of three contributions there is a function to ascribe, such that the resultant spatial resolution function

φ̂spa(x′) corresponds to a double convolution of the form

φ̂spa(x′) =

� ∞
−∞

φ̂spa
opt(x

′′)

[� ∞
−∞

φ̂spa
cam(x′′′)φ̂spa

mot(x
′ − x′′ − x′′′) dx′′′

]
dx′′ . (3.108)

According to Brandis and Cruden, the optics function associated to the l-th wavelength interval φ̂spa,l
opt (x′′)

is given by

φ̂spa,l
opt (x′′) =

tri(x′′, dltri), if l ∈ {VUV, “Blue”, “Red”},

trap(x′′, dltrap,1, d
l
trap,2), if l = IR,

(3.109)

being tri(x′′, dltri) a normalised triangular function of base length dltri, and trap(x′′, dltrap,1, d
l
trap,2) a

normalised trapezoidal function of lower base length dltrap,1 and upper base length dltrap,2. These two

functions are expressed by

tri(x′′, dltri) =


2
dltri

(
1− 2 |x

′′|
dltri

)
, if |x′′| ≤ dltri

2 ,

0, if |x′′| > dltri
2 ,

(3.110)

and

trap(x′′, dltrap,1, d
l
trap,2) =


2

dltrap,1+dltrap,2
, if |x′′| ≤ dltrap,2

2 ,

2
dltrap,1+dltrap,2

· d
l
trap,1−2|x′′|

dltrap,1−dltrap,2
, if

dltrap,2

2 < |x′′| ≤ dltrap,1

2 ,

0, if |x′′| > dltrap,1

2 ,

(3.111)

respectively, being both represented in Figure 3.26. The camera function associated to the l-th wavelength

interval φ̂spa,l
cam (x′′) is in its turn given by

φ̂spa,l
cam (x′′) =


√
V (x′′,wlG,w

l
L,0)

� +∞
−∞

√
V (x′′,wlG,w

l
L,0) dλ′

, if l ∈ {VUV, “Blue”, “Red”},

G(x′′, wlG, 0), if l = IR.

(3.112)

13Hence the presence of the denominator.
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And the motion function associated to the l-th wavelength interval φ̂spa,l
mot (x′′) corresponds to

φ̂spa,l
mot (x′′) = rect(x′′, dlrect) , (3.113)

being rect(x′′, dlrect) a normalised rectangular function of base length dlrect:

rect(x′′, dlrect) =


1

dlrect
, if |x′′| ≤ dlrect

2 ,

0, if |x′′| > dlrect

2 ,

(3.114)

This function is depicted in Figure 3.26. Table C.3 presents the base widths dltri, d
l
trap,1, dltrap,2 and

dlrect, as well as the half-widths at half-maxima wlG and wlL for the spatial resolution function φ̂spa,l(x′′)

ascribed to the benchmark shots considering the four wavelength intervals.

tri(x′′, dltri)

trap(x′′, dltrap,1, d
l
trap,2)

rect(x′′, dlrect) 2
dltri

2
dltrap,1+dltrap,2

1
dlrect

x′′

Figure 3.26: Normalised triangular tri(x′′, dltri), trapezoidal trap(x′′, dltrap,1, d
l
trap,2) and rectangular

rect(x′′, dlrect) functions for illustrative base lengths dltri = dltrap,1 = dlrect = 1 and dltrap,2 = dltrap,1/2.

The validation of the models employed in this work requires a comparison of the numerically obtained

radiative intensities and non-equilibrium metrics with the experimentally obtained ones. For that purpose,

it’s necessary to impose on the former the same transformations “applied” by the instruments on the

latter.
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Chapter 4

Results

4.1 The test matrix

Brandis and Cruden [43] issue benchmark data for a total of 17 shock tube shots which may be used

for validation of the numerically obtained results. Due to compactness reasons, it was decided to regard

solely 3 of these 17 shots, more precisely, shots that spawned conditions of low, medium, and high speed

hypersonic flows. In this way, the dependence of the physical quantities on the free stream speed u∞ may

be accessed. Also, greater importance was given to shots whose results were considered to be of benchmark

quality in the four wavelength intervals (VUV, “Blue”, “Red”, and IR), allowing the validation to be

performed with respect to the whole spectrum. Under such criteria, the shots 40 (with u∞ = 6.88 m/s),

19 (with u∞ = 10.32 m/s), and 20 (with u∞ = 11.16 m/s) and were taken.

4.2 The analysis methodology

In the following sections, the numerical and experimental results are compared, and possible causes for

their discrepancies are enunciated. The tested standard database of kinetic processes corresponds to the

set constituted by the collisional processes reported in Table 3.2 and Table 3.3, and the radiative processes

reported in Table 3.11. The dependence of the results on different adjustable parameters of the simulations

was reported. To properly guide the reader over the extensive set of obtained results, it was decided to

treat simultaneously the three shots for each of the four wavelength intervals and to show side-by-side

the respective graphs for the two quantities that were measured in the experiments: the instrumentally

resolved radiative intensities Î l and non-equilibrium metrics Îne,l
λ , with l ∈ {VUV, “Blue”, “Red”, IR}.

Further comments on the behaviour of important physical quantities such as temperatures and mole

fractions, as well as on the evolution of the system to equilibrium are provided.
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4.3 Zero-dimensional simulations of post-shock flows generated

by a shock tube

4.3.1 The case of the VUV radiation

The instrumentally resolved radiative intensities ÎVUV(x) and non-equilibrium metrics Îne,VUV
λ (x)

obtained from the zero-dimensional simulations are depicted in Figure 4.1 and Figure 4.2, respectively.

The three graphs appearing in each figure are ordered by increasing free stream speed u∞ from top

to bottom - the top one is with respect to shot 40, the middle one to 19, and the bottom one to 20.

The solid coloured lines represent the numerically obtained contributions of the different systems of

spontaneous emission processes to the variables ÎVUV(x) and Îne,VUV
λ (x). The solid black lines represent

the numerically obtained overall quantities (i.e. the sums of the contributions). And the dotted black

lines represent the experimentally obtained overall quantities. The numerical values are quantified in the

left y-axis and the experimental ones in the right y-axis. These y-axes are scaled differently in order

to make the two sets of values visually comparable. In the case of ÎVUV, the scales are such that the

heights of the peaks match each other. And in the case of Îne,VUV
λ , the scales are such that there’s a

coincidence between the peaks associated to spontaneous emission of N at λ = 149 nm. The necessity of

using different scales unveils immediately a significant discrepancy: the numerically obtained values are

much lower than the experimental ones. In fact, the heights of the experimental ÎVUV peaks are 342,

63 and 71 times higher than the numerical ones for the low, medium and high speed shots, respectively.

And the heights of the experimental Îne,VUV
λ peaks at λ = 149 nm are 455, 641 and 1695 times higher

than the numerical ones.

Let’s now focus on the relative discrepancies, i.e. the discrepancies between the numerical and

experimental results as if they were scaled to the same order of magnitude. Figure 4.1 reveals that

the increase of ÎVUV from nil to peak maximum value and the decrease of ÎVUV from the peak maximum

value to nil are slower (the latter with a much greater significance) than the ones in the experiment,

for the case of the low speed shot. This seems to be due to a relative overestimation of the number

of spontaneous emissions of the type N +
2 (C − X), whose contribution to the overall radiative intensity

corresponds to a more flattened and delayed peak than the others. In fact, Figure (4.2) shows many

Îne,VUV
λ peaks of considerable heigh assigned to N +

2 (C − X) which were not actually observed in the

experiment. Although the two peaks that appear at λ = 156 nm and λ = 166 nm seem to overlap others

of N +
2 (C−X), this should be mere coincidence. The two peaks may be predicted if one considers atomic

carbon C - a contaminant species - in the database, as Cruden and Brandis [158] did. Furthermore,

according to Cruden and Brandis [158], the experimental peak at λ = 193 nm - which was not predicted

by the database used in this work - should also be due to C. The two most prominent peaks of the

experimental Îne,VUV
λ , appearing at λ = 149 nm and λ = 174 nm, are a result of spontaneous emission

of N, being these predicted by the current database. However, the respective features appearing in the

obtained numerical spectra stand out as much as the ones for N +
2 (C − X), showing another evidence of

a relative overestimation of the number of spontaneous emissions associated to the latter. Additionally,
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one finds the peak at λ = 149 nm to be higher than the peak at λ = 174 nm in the numerical spectra, but

lower in the experimental one. Such discrepancy may be due to the absorption of radiation associated to

the first peak being greater than the one associated to the second peak in the experiment. Meanwhile, in

the simulation, absorption was completely disregarded. The discrepancy may also be due to an improper

modelling of the rate coefficients which dictate the population of the nitrogen atoms that spontaneously

emit radiation at wavelengths λ = 149 nm and λ = 174 nm. One way of decreasing the height of the first

peak and increasing the height of the second in order to make the ratio between the two agreeable with

the experimental result, is by decreasing the rate of excitation of atomic nitrogen to the upper level of

the system associated to the former and increasing the one associated to the latter. However, for the

present case, the upper levels of the system associated to the two peaks are the same, corresponding to

the fifth level, say1 N(4). The first peak is a result of the transitions from the fifth level to the second

level, i.e. N(4− 1), and the second peak is a result of the transitions from the fifth level to the third one,

i.e. N(4 − 2). Therefore, changing the values of the rate coefficients for excitation would not make any

difference to the ratio between the heights of the peaks. One should, however, mention here that this

inability is in some part due to the lumping procedure performed on the energy levels of N. If split levels

were instead regarded, the first peak would actually correspond to a sum of three peaks with their centres

very close to each other, and the second peak would correspond to a sum of four peaks. The number of

upper energy levels associated to the respective spontaneous emission systems would be two instead of

one. By changing the values of the rate coefficients for excitation of the two split levels one could actually

obtain the right ratio of heights. Furthermore, it’s important to say that the reduction of the number of

peaks due to lumping procedure may also affect the numerical spectra obtained for the other wavelength

intervals, which, in its turn, may lead to unfair judgments on the structure of the database. Note that

this lumping procedure is however virtually unavoidable, since the most part of the processes reported in

the literature disregard the fine structure of the particles, and therefore, the application of the respective

rate coefficients requires the author to make the same consideration.

The experimental instrumentally resolved radiative intensity ÎVUV obtained for the case of the medium

speed shot has a peak proceeded by a plateau. The shape of the peak is well predicted by the numerical

model, but the plateau isn’t at all. A transition to nil occurs instead. And for the case of the high

speed shot, the experiment didn’t produce a sole peak, but a coalescence between a peak and a plateau

surpassing it. This feature wasn’t also predicted by the numerical model.

1The electronic levels of the atomic particles will be labelled here by integer numbers e = 0, 1, ...
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Figure 4.1: Numerical (solid lines) and experimental (dotted lines) instrumentally resolved radiative

intensities ÎVUV(x) obtained for the low, medium and high speed shots.
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Figure 4.2: Numerical (solid lines) and experimental (dotted lines) instrumentally resolved non-

equilibrium metrics Î ne,VUV
λ (x) obtained for the low, medium and high speed shots.
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4.3.2 The case of the “Blue” radiation

The obtained instrumentally resolved radiative intensities ÎBlue(x) and non-equilibrium metrics Îne,Blue
λ (x)

are depicted in Figure 4.3 and Figure 4.4, respectively. The main contributors to the overall quantities

are N2(C−B) and N +
2 (B−X). And the residual contributors correspond to N2(A−X) and N for the three

shots, and also N +
2 (A − X) for the low speed shot. Meanwhile, Cruden and Brandis [158] showed that

N2(C − B), N +
2 (B − X), N, and the contaminant species CN (cyanogen radical) are enough to describe

the experimentally obtained spectrum for the case of the medium speed shot.

As happened for the case of the VUV radiation, the instrumentally resolved radiative intensities and

non-equilibrium metrics are underestimated by 2 to 3 orders of magnitude. The scales of the y-axes

of the non-equilibrium metrics graphs are such that there’s a coincidence between the numerical and

experimental peaks associated to spontaneous emission of N +
2 (B−X) at λ = 391 nm. The heights of the

experimental ÎBlue peaks are 730, 68, and 45 times higher than the numerical ones for the low, medium

and high speed shots, respectively. And the heights of the experimental Îne,Blue
λ peaks at λ = 391 nm

are 636, 49 and 66 times higher than the numerical ones. The profile of the numerical radiative intensity

ÎBlue obtained in the low speed shot corresponds to a peak, similar to the experimental one. However,

the transitions from nil to the maximum and from the maximum to nil are slower in the former. In the

case of the medium and high speed shots, the shape of the peaks are remarkably well predicted, contrary

to the plateaus that proceed them: the numerical radiative intensities transit to nil instead of converging

to these plateaus. Such behaviour was also obtained in the case of the VUV radiation.

Sets of peaks appearing in the experimental non-equilibrium metrics Îne,Blue
λ may be discerned, being

these in some way predicted by the numerical model. However, the heights of the individual peaks

of each set don’t agree particularly well with the experimental ones, namely, the ones associated to

spontaneous emissions of the types N2(C, 0− B, 0) and N +
2 (B, 0−X, 0), at λ = 337 nm and λ = 391 nm,

respectively. These were undoubtedly overestimated, prevailing over the others. The discrepancies

between the numerical and experimental non-equilibrium metrics may in some part be due to the fact

that the regarded spontaneous emissions are vibronic-specific and not rovibronic. If rovibronic-specific

spontaneous emissions were instead considered, the peaks associated to the vibronic levels would be

divided into several others (each one associated to a rotational level) whose centres may be more or less

far from each other, depending on the energy of the rotational levels. The importance of the rotational

levels to the spectra should be accessed in the future.
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Figure 4.3: Numerical (solid lines) and experimental (dotted lines) instrumentally resolved radiative

intensities ÎBlue(x) obtained for the low, medium and high speed shots.
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Figure 4.4: Numerical (solid lines) and experimental (dotted lines) instrumentally resolved non-

equilibrium metrics Î ne,Blue
λ (x) obtained for the low, medium and high speed shots.
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4.3.3 The case of the “Red” radiation

Figures 4.5 and 4.6 depict the obtained instrumentally resolved radiative intensities ÎRed(x) and

non-equilibrium metrics Îne,Red
λ (x), respectively. The scales of the Îne,Red

λ graphs are such that the

experimental and numerical peaks at λ = 869 nm match each other. The experimental ÎRed peaks

are 144, 19, and 30 times higher than the numerical peaks for the low, medium and high speed shots,

respectively. And the experimental Îne,Red
λ peaks at λ = 869 nm are 167, 430 and 1305 higher than the

numerical ones. As happened for the case of the VUV radiation, in the low speed shot, the transition

of the numerical radiative intensity Îne,Red
λ from the peak maximum value to nil was significantly slower

than the experimental one. In the medium and high speed shots, plateaus proceeding peaks were obtained

from the experiment. These were not predicted by the numerical model.

There is strong evidence of a relative underestimation of spontaneous emissions of N, since the most

prominent peaks (such as the ones at λ = 649, 745, 821, 862 and 869 nm) of the experimental spectra,

which are due to N, are surpassed in the numerical spectra by the ones associated to N2(B − A). Also,

spontaneous emissions of the type N +
2 (A−X) should not be as relevant as they were found to be in the

numerical spectra. Cruden and Brandis [158] considered in this wavelength interval, for the case of the

medium speed shot, solely spontaneous emissions of the type N (the dominant ones), N2(B − A) and H

(atomic hydrogen was found to be a contaminant species).
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Figure 4.5: Numerical (solid lines) and experimental (dotted lines) instrumentally resolved radiative

intensities ÎRed(x) obtained for the low, medium and high speed shots.
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Figure 4.6: Numerical (solid lines) and experimental (dotted lines) instrumentally resolved non-

equilibrium metrics Î ne,Red
λ (x) obtained for the low, medium and high speed shots.

4.3.4 The case of the IR radiation

Figures 4.7 and 4.8 depict the obtained instrumentally resolved radiative intensities ÎIR(x) and non-

equilibrium metrics Îne,IR
λ (x), respectively. The scales of the Îne,IR

λ graphs are such that the experimental

and numerical peaks at λ = 940 nm match each other. Unsurprisingly, it was found that the numerical

model underestimated the radiative intensities and non-equilibrium metrics by 2 to 3 orders of magnitude,

as in the other cases. The experimental ÎIR peaks are 116, 105, and 352 times higher than the numerical

peaks for the low, medium and high speed shots, respectively. And the experimental Îne,IR
λ peaks at

λ = 940 nm are 274, 887 and 1784 higher than the numerical ones. In the case of the low speed shot, the

numerical ÎIR values rise and fall slightly less abruptly than the experimental values. And in the cases

of the medium and high speed shots, sole peaks can’t be discerned from the experiment but coalescences

between peaks and plateaus occurring above them. Again, such phenomena wasn’t predicted by the

numerical model.

The obtained non-equilibrium metrics show that spontaneous emissions of the type N2(B− A) seem

to be relatively overestimated, specially the ones at λ = 1047 nm - due to transitions from v = 0 to v′ = 0

- and λ = 1232 nm - due to transitions from v = 0 to v′ = 1 - which prevail over the others. Conversely,

the peaks associated to spontaneous emission of N (such as the ones at λ = 905 nm, λ = 940 nm,

λ = 1012 nm and λ = 1053 nm) seem to be relatively underestimated, since these predominate in the

experimental spectra but not in the numerical spectra.
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Figure 4.7: Numerical (solid lines) and experimental (dotted lines) instrumentally resolved radiative

intensities ÎIR(x) obtained for the low, medium and high speed shots.
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Figure 4.8: Numerical (solid lines) and experimental (dotted lines) instrumentally resolved non-

equilibrium metrics Î ne,IR
λ (x) obtained for the low, medium and high speed shots.
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4.4 Euler one-dimensional simulations of post-shock flows

generated by a shock tube

The values of the radiation variables obtained from the the Euler one-dimensional simulations are

presented by Figures 4.9 to 4.16. The peak values of the instrumentally resolved radiative intensities

are still significantly underestimated - by one to two order magnitudes. These peak values are greater

than the ones obtained from the zero-dimensional simulations: for the case of the low speed shot, the

quintuple was obtained in the VUV and “Blue” wavelength regions, and the triple in the “Red” and IR,

and for the case of the medium and high speed shots, the double was obtained. Therefore, the transfer

of momentum between elements of fluid should not be neglected. As happened in the zero-dimensional

simulations, the plateaus weren’t predicted at all. In relative terms, the rises from nil to the peak values

and the falls from the peak values to nil of the radiative intensities for the case of the low speed shots

were found to be steeper than the ones obtained from the zero-dimensional simulations. The rising parts

of the profiles of the numerical peaks now agree relatively well with the experimental ones, but not the

falling parts in the “Blue”, “Red”, and IR wavelength regions which are steeper (being once slighter)

than the experimental counterparts.
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Î
V

U
V
,e

x
p

[W
/
(c

m
2
·s

r)
]

0

10

20

Figure 4.9: Numerical (solid lines) and experimental (dotted lines) instrumentally resolved radiative

intensities ÎVUV(x) obtained for the low, medium and high speed shots.
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Figure 4.10: Numerical (solid lines) and experimental (dotted lines) instrumentally resolved non-

equilibrium metrics Î ne,VUV
λ (x) obtained for the low, medium and high speed shots.
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Figure 4.11: Numerical (solid lines) and experimental (dotted lines) instrumentally resolved radiative

intensities ÎBlue(x) obtained for the low, medium and high speed shots.
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Figure 4.12: Numerical (solid lines) and experimental (dotted lines) instrumentally resolved non-

equilibrium metrics Î ne,Blue
λ (x) obtained for the low, medium and high speed shots.
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Figure 4.13: Numerical (solid lines) and experimental (dotted lines) instrumentally resolved radiative

intensities ÎRed(x) obtained for the low, medium and high speed shots.
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Figure 4.14: Numerical (solid lines) and experimental (dotted lines) instrumentally resolved non-

equilibrium metrics Î ne,Red
λ (x) obtained for the low, medium and high speed shots.
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Î

IR
,e

x
p

[W
/
(c

m
2
·s

r)
]

0

10

20

Figure 4.15: Numerical (solid lines) and experimental (dotted lines) instrumentally resolved radiative

intensities ÎIR(x) obtained for the low, medium and high speed shots.
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Figure 4.16: Numerical (solid lines) and experimental (dotted lines) instrumentally resolved non-

equilibrium metrics Î ne,IR
λ (x) obtained for the low, medium and high speed shots.

4.4.1 Mole fractions, temperatures, and evolution to equilibrium

Figure 4.17 depicts the obtained heavy particle and free electron translational temperatures, Ttrh
(x) and

Ttre(x). As according to (3.94), the values of these temperatures, immediately downstream of the shock

wave (x = 0), correspond to Ttrh,2 = Ttre,2 = 22, 434 K, 50, 122 K and 58, 565 K for the low, medium and

high speed shots, respectively. As expected, these decrease along x, due to the endothermic processes, to

some identical values, and with a rate which is as high as the immediately downstream temperature.
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Figure 4.17: Heavy particle (solid lines) and free electron (dashed lines) translational temperatures,

Ttrh
(x) and Ttre

(x), obtained for the low (blue), medium (red) and high (green) speed shots.

Figure 4.18 presents the evolutions of the mole fractions xs(x) of the five species considered in the

simulations - N2, N, N +
2 , N+ and e– - for the low, medium and high speed shots. One finds that an
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higher upstream speed implies an earlier dissociation and ionisation of the particles. In the medium and

high speed shots, the dissociation is such that the mole fraction of atomic nitrogen N surpasses the mole

fraction of molecular nitrogen N2. There’s an increase and posterior decrease of the mole fractions of

atomic nitrogen ions N+, molecular nitrogen ions N +
2 and free electrons e–. The former is associated to

ionisation and the latter to recombination. The higher the upstream speed, the more abrupt the increases

and decreases of the mole fractions of the charged particles are.
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Figure 4.18: Species-specific mole fractions xs(x) obtained for the low, medium and high speed shots.

Table 4.1 makes a synopsis on the temperatures Ttrh
and Ttre , and mole fractions xs, obtained from

the simulations of the low, medium and high speed shots, at a far downstream point from the shock wave,

x = 5 cm - where the radiation intensities were found stagnated. The table also shows the values issued

by Cruden and Brandis [158] for the medium speed shot. These were obtained by fitting the conditions

of a hypothetical system such that the computed “Blue” and “Red” spectra matched the experimental

ones, using the NEQAIR tool [51, 159], at a x position for which the plateaus of radiative intensities

occurred. With that objective, a two-temperature model - of temperatures Ttrh−rot and Tvib−el−tre
- was

assumed and the populations of some particular energy levels were adjusted. Regarding the values of the

temperatures at x = 5 cm obtained in the present work, one can say that the heavy particle translational

temperature departed from the free electron translational temperature by −18 K (or −0.23 %), −3 K (or

−0.04 %) and −1 K (or −0.03 %) for the cases of the low, medium and high speed shots. These values

are sufficiently small for one to assume that an equilibrium between the respective energy modes was

attained. The values of the temperatures obtained by Cruden and Brandis are significantly higher than

the ones of this work. The analysis of the “Blue” spectra resulted in a Ttrh
value which is greater by

(1, 986± 170) K (or (28± 2) %) and a Ttre
value which is greater by (3, 213± 300) K (or (45± 4) %).

The analysis of the “Red” spectra resulted in a Ttrh
value which is greater by (2, 606± 2, 490) K (or

(36± 35) %) and a Ttre value which is greater by (2, 013± 130) K (or (28± 2) %). The mole fraction of
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N obtained from the simulation of the medium speed shot in the present work, at x = 5 cm, is almost

the double of the one obtained from the simulation of the low speed shot, evidencing a very meaningful

augmentation on the dissociation of N2. The mole fraction of N +
2 is lower (by 38 %) - due to a much

faster recombination - and the one of N+ is almost the double. The differences between the values of

the mole fractions obtained from the simulation of the high speed shot and the ones obtained from the

simulation of the medium speed shot aren’t significant enough, as also aren’t the differences between the

upstream speeds. Regarding the results of the work of Cruden and Brandis [158] for the medium speed

shot, one can say that not only the differences between the obtained chemical compositions and the one

of the present work are staggering but also the difference between the chemical composition resulting

from the analysis of the “Blue” spectra and the one resulting from the analysis of the “Red” spectra.

The results of the analysis of the “Blue” spectra showed a greater importance of the molecular particles

N2 and N +
2 and free electrons e– in the composition, while the results of the analysis of the “Red” spectra

showed a greater importance of atomic nitrogen N. In fact, the mole fractions of N2, N +
2 and e– obtained

in the the former case are 22, 133 and 30 times greater than the ones obtained in the latter case, and

the mole fraction of N is 57 % lower. This incoherence evidences that the models regarded in NEQAIR

may not represent sufficiently well the reality. Note that it is true that in the medium speed shot the

experimental results showed that the “Blue” spectra was almost completely dominated by radiation of

N2 and N +
2 while the “Red” spectra was dominated by the radiation of N. However, a valid numerical

model should be able to predict both qualities with the same chemical composition of the system, as they

were obtained by the same experiment. The results of Cruden and Brandis also evidence a much stronger

dissociation of N2 and ionisation of N than the ones of the present work: the predicted mole fraction

of N2 is at least 9 times lower, and the mole fraction of N+ is at least 20 times greater. Moreover, this

greater dissociation and ionisation are accomplished with a much lower cost of heavy particle and free

electron translational temperatures. Such result means that the post-shock elements of fluid simulated in

the present work may have lost more energy than they should, or didn’t gain as much. Since it was found

that the radiation variables were underpredicted by several orders of magnitude, the former hypothesis

should be disregarded. Two possible ways of the elements of fluid gaining more energy are by absorption

of radiation and conduction of heat, being both not taken into account in the simulations. The former

contribution should be more important since it makes the overall system to loose less than before (part

of the radiative energy which was once lost is retained) while the latter contribution simply redistributes

the energy within it without reducing the losses.

Table 4.1: Temperatures Ttrh
and Ttre

, and mole fractions xs, at x = 5 cm, obtained from the simulations

of the low, medium and high speed shots, as well as the ones obtained by Cruden and Brandis [158].

u∞[m/s] Ref. Ttrh
[K] Ttre [K] xN2

xN x
N +

2
x

N+ xe– xCN xH

6.88 This work 7, 793 7, 811 0.52 0.48 6.5× 10−5 2.6× 10−4 3.2× 10−4 — —

10.32

This work 7, 184 7, 187 0.27 0.73 4.0× 10−5 4.5× 10−4 4.9× 10−4 — —

NEQAIR, “Blue” [158] 9, 170± 170 10, 400± 300 0.029 0.42 0.016 0.27 0.27 7.3× 10−4 —

NEQAIR, “Red” [158] 9, 790± 2, 490 9, 200± 130 0.0013 0.98 1.2× 10−4 0.0089 0.0089 — 0.0010

11.16 This work 7, 098 7, 100 0.26 0.74 3.7× 10−5 4.4× 10−4 4.7× 10−4 — —
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To ascertain the impact of energy loss by radiation on the developed conditions of the post-shock

flow, it was decided to perform simulations disregarding spontaneous emission processes and to compare

the respective results with the ones obtained when regarding them. Table 4.2 makes a synopsis on the

resultant temperatures Ttrh
and Ttre

, and mole fractions xs, at x = 5 cm. All of the temperatures are

higher than the respective ones obtained when regarding spontaneous emission processes, and increasing

with the upstream speed. While the differences are negligible for the case of the low speed shot - Ttrh

differs by just 266 K (or 3.4 %) - they are meaningful for the case of the medium and high speed shots -

Ttrh
differs by 2080 K (or 29 %) and 3, 016 K (or 42 %). Meanwhile, a greater dissociation and ionisation

had occurred, as evidenced by the lower value for the mole fraction of N2 and the higher values for

the mole fractions of N and N+. These results show that the energy dumped by spontaneous emission

in the highly excited systems has a much higher proportion than in the less excited ones. The more

excited the particles are, the higher the number of spontaneous emissions and the higher the energy

that is lost through radiation. Surprisingly, the conditions for the medium speed shot disregarding

spontaneous emission processes are now coherent with the ones obtained by Cruden and Brandis [158],

with the exception of the mole fraction of N +
2 which is substantiality lower. This result sheds light to the

previously enunciated hypothesis of the simulated elements of fluid not receiving the energy that their

counterparts seem to receive in the experiment.

Table 4.2: Temperatures Ttrh
and Ttre

, and mole fractions xs, obtained from the simulations of the low,

medium and high speed shots, at x = 5 cm, disregarding spontaneous emission processes.

u∞[m/s] Ttrh
[K] Ttre [K] xN2

xN x
N +

2
x

N+ xe–

6.88 8, 059 8, 076 0.46 0.54 1.0× 10−4 4.6× 10−4 5.7× 10−4

10.32 9, 264 9, 265 0.022 0.93 3.1× 10−5 0.022 0.022

11.16 10, 114 10, 114 0.0041 0.89 2.4× 10−5 0.052 0.052

Another important result that may be ascertained from the numerical simulations is the disparity from

thermal equilibrium of the systems conditions. This can be done through computation of representative

temperatures. A representative temperature with respect to a particular energy mode is quantified by

the populations of its energy levels, and solely corresponds to a true temperature if self-equilibrium of

the energy mode was attained. In this work, a representative electronic temperature was considered for

each heavy species, as well as a representative vibrational temperature for each electronic level of each

molecular species. The way that these variables were defined will be now described.

By invoking the reasoning presented in section §2.2, assuming uncoupling between the rotational and

the vibrational energy modes2, one may infer that if the s-th species particles in the n-th electronic level

are at a vibrational temperature Ts,vib,n, the population of its m-th vibrational level is simply given by

Ns,m,n = Ns,n
gs,vib,n,m e

−
εs,vib,n,m
kBTs,vib,n

Qs,vib,n(Ts,vib,n)
. (4.1)

2In the SPARK code, the spectroscopic constant αe was disregarded.
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And, by further manipulating (4.1), it’s possible to obtain

ln

(
xs,m,n

gs,el,n · gs,vib,n,m

)
= − 1

kBTs,vib,n
εs,vib,n,m + ln

(
xs,n

gs,el,n ·Qs,vib,n(Ts,vib,n)

)
, (4.2)

where xs,m,n = Ns,m,n/N is the mole fraction of s-th species particles in their n-th electronic level and

m-th vibrational level, and xs,n = Ns,n/N is the mole fraction of s-th species particles in their n-th

electronic level. Equation (4.2) tells that under vibrational self-equilibrium, the natural logarithm of

the mole fraction of s-th species particles in a state of the n-th electronic level and m-th vibrational

level, i.e. ln(xs,m,n/(gs,el,n · gs,vib,n,m)), decreases linearly with their vibrational energy εs,vib,n,m. A

plot of ln(xs,m,n/(gs,el,n · gs,vib,n,m)) against εs,vib,n,m with s and n fixed, would show points positioned

in a line of slope −1/(kBTs,vib,n) and of ordinate of the y-intercept ln(xs,n/[gs,el,n · Qs,vib,n(Ts,vib,n)]).

The representative vibrational temperature associated to the n-th electronic level of the s-th species

Ts,vib,n which may or may not be in vibrational self-equilibrium is defined in this work as the respective

value obtained from a fit of the curve (4.2) to the numerically obtained points of abscissae εs,vib,n,m and

ordinates ln(xs,m,n/(gs,el,n · gs,vib,n,m)). If the s-th species particles are at an electronic temperature

Ts,el, and uncoupling between the rotational and vibrational energy modes is further assumed as well as

between the rotational and the electronic energy modes3, the population of its n-th electronic level is

simply given by

Ns,n = Ns
gs,el,n e

−
εs,el,n
kBTs,el Qs,vib,n(Ts,vib,n)

Qs,el-vib({Ts,vib,n}, Ts,el)
, (4.3)

being Qs,el-vib =
∑
n gs,el,n e

−
εs,el,n
kBTs,el Qs,vib,n(Ts,vib,n). Expression (4.3) may be conveniently transformed

into

ln

(
xs,n
gs,el,n

)
= − 1

kBTs,el
εs,el,n + ln

(
xs ·Qs,vib,n(Ts,vib,n)

Qs,el-vib({Ts,vib,n}, Ts,el)

)
. (4.4)

The representative electronic temperature associated to the s-th species Ts,el which may or may not be in

electronic self-equilibrium is defined in this work as the respective value obtained from a fit of the curve

(4.4) to the numerically obtained points of abscissae εs,el,n and ordinates ln(xs,n/gs,el,n). In thermal

equilibrium conditions, one has Ttrh
= Ttre = Ts,vib,n = Ts,el := T , ∀ s and n. By inserting (4.4) into

(4.2) one gets in such conditions

ln

(
xs,m,n

gs,el,n · gs,vib,n,m

)
= − 1

kBT
(εs,el,n + εs,vib,n,m) + ln

(
xs

Qs,el-vib(T )

)
. (4.5)

Therefore, at thermal equilibrium, the points of abscissae εs,el,n+εs,vib,n,m and ordinates ln(xs,m,n/(gs,el,n·

gs,vib,n,m)), with s fixed, lay in the same curve, being this of slope −1/(kBT ) and of y-intercept

ln(xs/Qs,el-vib(T )). And if the the vibrational partition function Qs,vib,n doesn’t vary too much with

the electronic level n such that Qs,vib,n ≈ Qs,vib, one may also show from relation (4.4) that in thermal

equilibrium the points of abscissae εs,el,n and ordinates ln(xs,n/gs,el,n), with s fixed, lay in the same

curve, being this of slope −1/(kBT ) and of y-intercept ln(xs/Qs,el(T )). The representative vibrational

and electronic temperatures may in their turn be used to compute Boltzmann representative vibronic

3In the SPARK code, the spectroscopic constant Be was approximated by the respective one for the ground electronic
level.
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mole fractions xBs,n,m := xs,n,m(Ts,vib,n) - given by (4.2) - and Boltzmann representative electronic mole

fractions xBs,n := xs,n(Ts,vib,n, Ts,el) - given by (4.4).

Figure 4.19 shows the electronic state-specific mole fractions xs,e/gs,el,e (markers) and respective

Boltzmann representatives xB
s,e/gs,el,e (lines) obtained from the simulations of the low, medium and high

speed shots, at x = 5 cm. The markers in the figure sparsely agree with the respective lines. This

result shows that self-equilibrium of the electronic energy modes of the different species wasn’t attained

at x = 5 cm. Also, one should warn the reader to note that the obtained lines associated to N2 and

N +
2 aren’t straight. As mentioned above, the dependence of the vibrational partition functions on the

electronic levels may not be negligible, as it seems not to be for the case of theses species.
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Figure 4.19: Electronic state-specific mole fractions xs,e/gs,el,e (markers) and respective Boltzmann

representatives xB
s,e/gs,el,e (lines) as functions of the electronic energies Te, obtained from the simulations

of the low, medium and high speed shots, at x = 5 cm.

The obtained representative electronic temperatures are presented by Table 4.3. It shows that these

temperatures depart from each other and from the obtained heavy particle and free electron translational

ones in the order of the thousands of kelvins. In fact, the variables Ts,el are all lower than Ttrh
, by

amounts from 3, 359 K (or 43.10 %) to 1, 407 K (or 18.05 %), 2, 811 K (or 39.13 %) to 968 K (or 13.47 %),

and 2740 K (or 38.60 %) to 932 K (or 13.13 %), for the cases of the low, medium and high speed shots,

respectively. Therefore, one cannot state that the electronic and the translational energy modes attained

an equilibrium between themselves at x = 5 cm.
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Table 4.3: Heavy particle and free electron translational temperatures Ttrh
and Ttre , and representative

electronic temperatures Ts,el obtained from the simulations of the low, medium and high speed shots, at

x = 5 cm.

u∞[m/s] Ttrh
[K] Ttre [K] TN2,el[K] TN,el[K] T

N +
2 ,el

[K] T
N+,el

[K]

6.88 7, 793 7, 811 4, 434 5, 551 6, 386 6, 093

10.32 7, 184 7, 187 4, 373 5, 682 6, 216 5.762

11.16 7, 098 7, 100 4, 358 5, 699 6, 166 5, 719

Figure 4.20 shows the obtained vibronic state-specific mole fractions xs,e,v/(gs,el,e · gs,vib,e,v) and

respective Boltzmann representatives xB
s,e,v/(gs,el,e · gs,vib,e,v) at x = 5 cm. In this figure, there are

markers that agree remarkably well with the respective lines (vibrational self-equilibrium was in those

cases achieved), and others (the ones associated to the seemingly horizontal lines) which don’t agree at all.

It can be shown that the deviations of the latter are due to the non-modelling of the spontaneous emission

processes of the higher vibronic levels, implying these to not be depopulated through spontaneous emission

in contrast to the lower ones. When fitting the respective vibronic state-specific mole fractions, a nearly

horizontal line is obtained, which is associated to a very high representative vibrational temperature. This

result is clearly unphysical. To avoid it in the future, one should consider a redistribution procedure on

the Einstein coefficients for spontaneous emission to model the vibronic levels whose data aren’t available.
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Figure 4.20: Vibronic state-specific mole fractions xs,e,v/(gs,el,e · gs,vib,e,v) (markers) and respective

Boltzmann representatives xB
s,e,v/(gs,el,e · gs,vib,e,v) (lines) as functions of the vibronic energies Tev,

obtained from the simulations of the low, medium and high speed shots, at x = 5 cm.

The non-absurd values of Ts,vib,n deviate from Ttrh
by amounts from −843 K (or −10.82 %) to 3, 730 K

(or 47.86 %), −383 K (or −5.33 %) to 1, 112 K (or 15.48 %), and −311 K (or −4.38 %) to 1, 188 K (or

16.74 %), for the cases of the low, medium and high speed shots, respectively. These values are too

large for one to assume that equilibrium between the vibrational and translational energy modes was
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attained for all the considered electronic levels. It’s important to note that markers associated to the

same species don’t lay on the same line, showing that the respective electronic energy mode isn’t at

self-equilibirum (as also evidenced by the fact that the markers in Figure 4.19 don’t coincide with their

Boltzmann representatives).

Since no absorption and induced emission processes weren’t considered in this work, spontaneous

emission occurred without any counterbalance. This may have led to the observed self-non-equilibrium of

the electronic energy modes. Figure 4.21 shows the electronic state-specific mole fractions xs,e/gs,el,e and

respective Boltzmann representatives xB
s,e/gs,el,e obtained from the simulations of the low, medium and

high speed shots, at x = 5 cm, disregarding spontaneous emission. The markers in this figure agree much

more with the respective lines than in Figure 4.19, whose results were obtained assuming spontaneous

emission. Self-equilibrium of the electronic energy modes seems to be attained by all species with the

exception of N2 and N in the case of the low speed shot, as the respective markers slightly depart from the

lines. Table 4.4 presents the obtained representative electronic temperatures. The variables Ts,el depart

from Ttrh
, by amounts from −948 K (or −11, 76 %) to 432 K (or 5.36 %), −83 K (or −0.90 %) to 39 K (or

0.42 %), and −81 K (or −0.80 %) to 11 K (or 0.11 %), for the cases of the low, medium and high speed

shots, respectively. All these values are negligibly small with the exception of the ones of the former case,

being the lower limit due to N and the higher limit due to N2, which, as mentioned above, were also found

to not be at electronic self-equilibrium. One can state that the electronic and the translational energy

modes of the particles attained an equilibrium between themselves at x = 5 cm, with the exception of N

and N2 in the case of low speed shot.
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Figure 4.21: Electronic state-specific mole fractions xs,e/gs,el,e (markers) and respective Boltzmann

representatives xB
s,e/gs,el,e (lines) as functions of the electronic energies Te, obtained from the simulations

of the low, medium and high speed shots, at x = 5 cm, disregarding spontaneous emission processes.
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Table 4.4: Heavy particle and free electron translational temperatures Ttrh
and Ttre , and representative

electronic temperatures Ts,el obtained from the simulations of the low, medium and high speed shots, at

x = 5 cm, disregarding spontaneous emission.

u∞[m/s] Ttrh
[K] Ttre [K] TN2,el[K] TN,el[K] T

N +
2 ,el

[K] T
N+,el

[K]

6.88 8, 059 8, 078 8, 491 7, 111 8, 100 8.063

10.32 9, 264 9, 271 9, 181 9.216 9.303 9.271

11.16 10, 114 10, 116 10, 033 10, 113 10, 125 10, 116

Figure 4.22 shows the vibronic state-specific mole fractions xs,e,v/(gs,el,e · gs,vib,e,v) and respective

Boltzmann representatives xB
s,e,v/(gs,el,e · gs,vib,e,v), obtained from the simulations of the low, medium

and high speed shots, at x = 5 cm, disregarding spontaneous emission. All markers in 4.22 lay in the

respective lines, evidencing that vibrational self-equilibrium occurs. However, the lines associated to N2

for the case of the low speed shot depart slightly from each other. This is a result of an electronic self-

non-equilibrium of N2, which was already mentioned before. The values of Ts,vib,n deviate from Ttrh
by

amounts from −1, 557 K (or −19.32 %) to 46 K (or 0.57 %), −1, 052 K (or −11.36 %) to 42 K (or 0.45 %),

and −729 K (or −7.21 %) to 13 K (or 0.13 %), for the cases of the low, medium and high speed shots,

respectively. The lower limits of the deviations are significant and in the same order of magnitude as

the ones obtained when considering spontaneous emission. The upper limits are, however, much smaller.

The vibrational and translational energy modes should therefore be closer to an equilibrium between each

other when disregarding spontaneous emission than when regarding.
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Figure 4.22: Vibronic state-specific mole fractions xs,e,v/(gs,el,e · gs,vib,e,v) (markers) and respective

Boltzmann representatives xB
s,e,v/(gs,el,e · gs,vib,e,v) (lines) as functions of the vibronic energies Tev,

obtained from the simulations of the low, medium and high speed shots, at x = 5 cm, disregarding

spontaneous emission processes.

All of the above-mentioned results allow the author to conclude that the spontaneous emission
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processes strongly contribute to the observed thermal non-equilibrium conditions of the systems at

x = 5 cm. It should be ascertained in the future if the consideration of absorption and induced emission

processes may reduce this thermal non-equilibrium. The results also showed that collisional processes,

alone, don’t ensure equilibrium between the electronic and translational energy modes of N2 and N in

the case of the low speed shot.

4.4.2 Dependence on the escape factor

It is well known that the emitted VUV radiation is strongly absorbed by the particles in the medium

[158] and, therefore, the assumption of it being optically thin may not be valid. By considering an escape

factor ΛVUV < 1 in the simulations, it’s possible to take into account, in a crude way, the effect of

auto-absorption (i.e. absorption by the same emitting source) of the VUV radiation on the resultant

radiation variables. Part of the energy which was once lost due to emitted VUV radiation escaping from

the system may now be used in other processes. More energy becomes available for excitation of the

particles, and as a consequence, more energy is radiated in the other wavelength intervals. There’s even

the possibility of more radiative energy in the VUV wavelength interval escaping from the system, since

though a significant fraction of the photons don’t escape, the number of emitted photons becomes as high

as the number excited particles. Values of ΛVUV = 0.1 and 0.01 were tried, and the respective overall

radiation variables, are shown in Figures 4.23 to 4.30.

Figure 4.23 shows that by decreasing the escape factor, the peak values of the instrumentally resolved

radiative intensities in the VUV wavelength region decreased as much as a half in the three shots. On

the other hand, the contributions of N increased significantly becoming now much more dominant than

the others (i.e. the ones of N +
2 (C − X), N2(a − X) and N2(A − X)), as shown in Figure 4.24). The

obtained spectra show better agreeability with the experimental result. The radiative intensity profiles

show steeper rises and falls, and, in the case of the low speed shot, it got closer to the experimental one.

Still, no plateaus were predicted in the cases of the medium and high speed shots. For the case of the

“Blue” wavelength region, the decrease in the escape factor made the peak values of the instrumentally

resolved radiative intensities to increase with some significance: as much as 10% in the low speed shot,

and 40% in the medium and high speed shots. The change on the shape of the peaks isn’t noticeable

to the eye (see Figure 4.25). Regarding the shape of the instrumentally resolved non-equilibrium metric,

Figure 4.26 shows that solely the peak associated to N2(C − B) at λ = 337 nm suffered a meaningful

change, increasing its height with the decrease in the escape factor value. For the case of the “Red” and

IR wavelength regions, the peak values of the instrumentally resolved radiative intensities also increased:

as much as 10% in the low speed shot, and 60% (for the case of the former) and 80% (for the case of the

latter) in the medium and high speed shots. The shapes of the peaks didn’t change significantly. And

the contributions of N to the non-equilibrium metrics were preferentially augmented (in particular in the

medium and high speed shots), agreeing better with the experimental results.

These results show strong evidence for the studied medium being optically thick in the VUV

wavelength region.
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Figure 4.23: Numerical instrumentally resolved radiative intensities ÎVUV(x), obtained with ΛVUV = 1

(solid black lines), ΛVUV = 0.1 (solid blue lines), and ΛVUV = 0.01 (solid red lines), as well as the

respective experimental instrumentally resolved radiative intensities ÎVUV,exp(x) (dotted black lines).

0

0.1

0.2

0.3

N
,

1
4
9

n
m

N
,

1
7
4

n
m ΛVUV = 1

ΛVUV = 0.1

ΛVUV = 0.01

Exp. overall

0

2

4

145 155 165 175 185 195
0

2

4

λ [nm]

0

0.1

0.2

0.3

0

2

4

6

0

2

4

6

0

0.2

0.4

0

5

10

Î
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Figure 4.24: Numerical instrumentally resolved non-equilibrium metrics Î ne,VUV
λ (x), obtained with

ΛVUV = 1 (solid black lines), ΛVUV = 0.1 (solid blue lines), and ΛVUV = 0.01 (solid red lines), as well

as the respective experimental instrumentally resolved non-equilibrium metrics Î ne,VUV,exp
λ (x) (dotted

black lines).
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Figure 4.25: Numerical instrumentally resolved radiative intensities ÎBlue(x), obtained with ΛVUV = 1

(solid black lines), ΛVUV = 0.1 (solid blue lines), and ΛVUV = 0.01 (solid red lines), as well as the

respective experimental instrumentally resolved radiative intensities ÎBlue,exp(x) (dotted black lines).
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Figure 4.26: Numerical instrumentally resolved non-equilibrium metrics Î ne,Blue
λ (x), obtained with

ΛVUV = 1 (solid black lines), ΛVUV = 0.1 (solid blue lines), and ΛVUV = 0.01 (solid red lines), as well as

the respective experimental instrumentally resolved non-equilibrium metrics Î ne,Blue,exp
λ (x) (dotted black
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Figure 4.27: Numerical instrumentally resolved radiative intensities ÎRed(x), obtained with ΛVUV = 1

(solid black lines), ΛVUV = 0.1 (solid blue lines), and ΛVUV = 0.01 (solid red lines), as well as the

respective experimental instrumentally resolved radiative intensities ÎRed,exp(x) (dotted black lines).
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Figure 4.28: Numerical instrumentally resolved non-equilibrium metrics Î ne,Red
λ (x), obtained with

ΛVUV = 1 (solid black lines), ΛVUV = 0.1 (solid blue lines), and ΛVUV = 0.01 (solid red lines), as well as

the respective experimental instrumentally resolved non-equilibrium metrics Î ne,Red,exp
λ (x) (dotted black

lines).
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Figure 4.29: Numerical instrumentally resolved radiative intensities ÎIR(x), obtained with ΛVUV = 1

(solid black lines), ΛVUV = 0.1 (solid blue lines), and ΛVUV = 0.01 (solid red lines), as well as the

respective experimental instrumentally resolved radiative intensities ÎIR,exp(x) (dotted black lines).
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Figure 4.30: Numerical instrumentally resolved non-equilibrium metrics Î ne,IR
λ (x), obtained with ΛVUV =

1 (solid black lines), ΛVUV = 0.1 (solid blue lines), and ΛVUV = 0.01 (solid red lines), as well as the

respective experimental instrumentally resolved non-equilibrium metrics Î ne,IR,exp
λ (x) (dotted black lines).
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4.4.3 Dependence on the dissociation rates of N2

The evolution of the post-shock conditions is highly dependent on the dissociation rates of N2. Greater

dissociation rates would imply a production of a greater number of N particles. And, being dissociation

an endothermic process, lesser energy would be available for excitation. However, it’s hard to say how

an increase of the dissociation rates could affect the excitation of the particles to some energy level.

Note that being lesser the population of N2, a lower number of N2 particles would be left to be excited.

Conversely, being greater the population of N, a greater number of N particles would be left to be excited.

Therefore, one cannot say, in straight forward manner, if the number of particles in some excited energy

level should get lower or higher.

To test the dependence of the numerical results on the dissociation rates of N2, it was decided to

consider dissociation rates of N2(X
1Σ+

g ) (the ground electronic level of molecular nitrogen4) scaled by

0.1 and 10, and to keep ΛVUV = 0.01. The obtained results are shown by Figures 4.31 to 4.38. These

figures show that the peak values of the instrumentally resolved radiative intensities increased with a

decrease of the rates of dissociation, being this more relevant for the case of all wavelength intervals of

the low speed shot and the wavelength intervals “Blue”, “Red” and IR of the medium and high speed

shots. The increase went from as low as insignificant to as high as the double. And for the case of an

increase of the rates of dissociation, the decrease of the peak values went from as low as 20 % to as high

as 70 %. The figures for the non-equilibrium metrics show that both contributions of N and N2 to the

radiation variables increased with the decrease of the rates of dissociation, being the effect on the latter

contribution much more significant. The energy that was once spent in dissociation was then spent in

excitation of N and N2, and because more N2 and less N particles were obtained, the effect on N2 had

a greater importance. Note, however, that in order to get a better agreeability with the experimental

spectra, the contributions of N should be the ones to get enhanced and not N2. Also, one should point

out that in the case of the low speed shot, the peaks of radiative intensity widened with the decrease of

the rates of dissociation, agreeing better with the experimental profiles for all wavelength intervals except

for VUV. And in the case of the other shots, the change on the peaks shape wasn’t significant. The

increase of the rates of dissociation made the peaks to narrow in the case of the low speed shot, agreeing

worse with experimental counterparts. Conversely, the increase made the peaks to widen in the case of

the “Blue” wavelength interval of the medium and high speed shots, getting closer to the experimental

results.

Concluding, a sole decrease or increase of the rates of dissociation of N2(X) don’t unequivocally lead

to better results.

4The ground electronic level of N2 is usually more populated than the other ones, being, therefore, more important in
what concerns dissociation.
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Figure 4.31: Numerical instrumentally resolved radiative intensities ÎVUV(x), obtained with ΛVUV = 0.01,

and unscaled dissociation of N2(X
1Σ+

g ) (solid black lines), and scaled by 0.1 (solid green lines), and by

10 (solid blue lines), as well as the respective experimental instrumentally resolved radiative intensities

ÎVUV,exp(x) (dotted black lines).
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Figure 4.32: Numerical instrumentally resolved non-equilibrium metrics Î ne,VUV
λ (x), obtained with

ΛVUV = 0.01, and unscaled dissociation of N2(X
1Σ+

g ) (solid black lines), and scaled by 0.1 (solid green

lines), and by 10 (solid blue lines), as well as the respective experimental instrumentally resolved non-

equilibrium metrics Î ne,VUV,exp
λ (x) (dotted black lines).
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Figure 4.33: Numerical instrumentally resolved radiative intensities ÎBlue(x), obtained with ΛVUV = 0.01,

and unscaled dissociation of N2(X
1Σ+

g ) (solid black lines), and scaled by 0.1 (solid green lines), and by

10 (solid blue lines), as well as the respective experimental instrumentally resolved radiative intensities

ÎBlue,exp(x) (dotted black lines).
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Figure 4.34: Numerical instrumentally resolved non-equilibrium metrics Î ne,Blue
λ (x), obtained with

ΛVUV = 0.01, and unscaled dissociation of N2(X
1Σ+

g ) (solid black lines), and scaled by 0.1 (solid green

lines), and by 10 (solid blue lines), as well as the respective experimental instrumentally resolved non-

equilibrium metrics Î ne,Blue,exp
λ (x) (dotted black lines).
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Figure 4.35: Numerical instrumentally resolved radiative intensities ÎRed(x), obtained with ΛVUV = 0.01,

and unscaled dissociation of N2(X
1Σ+

g ) (solid black lines), and scaled by 0.1 (solid green lines), and by

10 (solid blue lines), as well as the respective experimental instrumentally resolved radiative intensities

ÎRed,exp(x) (dotted black lines).
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Figure 4.36: Numerical instrumentally resolved non-equilibrium metrics Î ne,Red
λ (x), obtained with

ΛVUV = 0.01, and unscaled dissociation of N2(X
1Σ+

g ) (solid black lines), and scaled by 0.1 (solid green

lines), and by 10 (solid blue lines), as well as the respective experimental instrumentally resolved non-

equilibrium metrics Î ne,Red,exp
λ (x) (dotted black lines).
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Figure 4.37: Numerical instrumentally resolved radiative intensities ÎIR(x), obtained with ΛVUV = 0.01,

and unscaled dissociation of N2(X
1Σ+

g ) (solid black lines), and scaled by 0.1 (solid green lines), and by

10 (solid blue lines), as well as the respective experimental instrumentally resolved radiative intensities

ÎIR,exp(x) (dotted black lines).
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Figure 4.38: Numerical instrumentally resolved non-equilibrium metrics Î ne,IR
λ (x), obtained with ΛVUV =

0.01, and unscaled dissociation of N2(X
1Σ+

g ) (solid black lines), and scaled by 0.1 (solid green lines), and

by 10 (solid blue lines), as well as the respective experimental instrumentally resolved non-equilibrium

metrics Î ne,IR,exp
λ (x) (dotted black lines).
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4.4.4 Dependence on the excitation rates of N

In §4.4.2 it was found that the contributions of N to the radiation variables were still underestimated

when compared with the molecular contributions in the “Red” and IR wavelength intervals. It was then

decided to try scaling the excitation rate coefficients of N, keeping ΛVUV = 0.01, in order to enhance

them. The crude formulae of Annaloro et al. [84] and Panesi et al. [98] employed in this work5 as models

for excitation of N by heavy particle and electron impact, respectively, may indeed accommodate some

degree of uncertainty. Their multiplication by 10 and 100 was tried, and solely for the case of low speed

shot the numerical simulations converged. This is an indication of the rate coefficients being actually

high enough in the conditions of the medium and high speed shots, and by increasing their values, a

physical incoherence may have been obtained. The results are shown in Figures 4.39 to 4.46.

With the increase in the rate coefficients for excitation of N, the peaks values of the instrumentally

resolved radiative intensities rose as much as to the quintuple in the case of the VUV radiation, the

double in the case of the “Blue” and “Red” radiation, and the quadruple in the case of the IR radiation.

However, the values are still one to two orders of magnitude lower than the experimental ones. Regarding

the shape of the profiles, it was found that the rising and falling parts got steeper deviating significantly

from the experimental profiles. This result may be justified by the fact that a greater rate of excitation

of N produces a greater rate of emission of radiation, and therefore, the radiative intensity rises faster

and higher. As a higher excitation requires more energy, which is then lost in the form of radiation, the

system suddenly gets incapable of continually excite the particles, and the radiative intensity falls faster.

The Figures 4.40, 4.42, 4.44 and 4.46. show that the contribution of N to the instrumentally resolved non-

equilibrium metrics increased in all wavelength regions, agreeing better with the experimental spectra

except in the “Blue” wavelength region, for which the contributions of the molecular particles should

prevail over the ones of the atomic particles.

Concluding, it can’t be said that a sole increase of the rate coefficients for excitation of N unequivocally

leads to better results.
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Figure 4.39: Numerical instrumentally resolved radiative intensities ÎVUV(x), obtained with ΛVUV = 0.01,

and unscaled excitation of N (solid black lines), and scaled by 10 (solid blue lines), and by 100 (solid

red lines), as well as the respective experimental instrumentally resolved radiative intensities ÎVUV,exp(x)

(dotted black lines), for the case of the low speed shot.

5See sections §3.2.10 and §3.2.9 for more details.
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Figure 4.40: Numerical instrumentally resolved non-equilibrium metrics Î ne,VUV
λ (x), obtained with

ΛVUV = 0.01, and unscaled excitation of N (solid black lines), and scaled by 10 (solid blue lines), and

by 100 (solid red lines), as well as the respective experimental instrumentally resolved non-equilibrium

metrics Î ne,VUV,exp
λ (x) (dotted black lines), for the case of the low speed shot.
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Figure 4.41: Numerical instrumentally resolved radiative intensities ÎBlue(x), obtained with ΛVUV = 0.01,

and unscaled excitation of N (solid black lines), and scaled by 10 (solid blue lines), and by 100 (solid

red lines), as well as the respective experimental instrumentally resolved radiative intensities ÎBlue,exp(x)

(dotted black lines), for the case of the low speed shot.

340 360 380 400 420 440 460 480
0

5 · 10−2

0.1

N
,

3
8
3

n
m

N
,

3
8
9

n
m

N
,

4
0
2

n
m

N
,

4
1
1

n
m

N
,

4
1
5

n
m

N, 467 nm N, 493 nm

λ [nm]

Unscaled ex. of N

Ex. of N scaled by 10

Ex. of N scaled by 100

Exp. overall

0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0

2 · 10−2

4 · 10−2

Î
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Figure 4.42: Numerical instrumentally resolved non-equilibrium metrics Î ne,Blue
λ (x), obtained with

ΛVUV = 0.01, and unscaled excitation of N (solid black lines), and scaled by 10 (solid blue lines), and

by 100 (solid red lines), as well as the respective experimental instrumentally resolved non-equilibrium

metrics Î ne,Blue,exp
λ (x) (dotted black lines), for the case of the low speed shot.
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Figure 4.43: Numerical instrumentally resolved radiative intensities ÎRed(x), obtained with ΛVUV = 0.01,

and unscaled excitation of N (solid black lines), and scaled by 10 (solid blue lines), and by 100 (solid

red lines), as well as the respective experimental instrumentally resolved radiative intensities ÎRed,exp(x)

(dotted black lines), for the case of the low speed shot.
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Î
n
e
,R

e
d
,e

x
p

λ
[W

/(
cm

2
·s

r
·µ

m
)]

Figure 4.44: Numerical instrumentally resolved non-equilibrium metrics Î ne,Red
λ (x), obtained with

ΛVUV = 0.01, and unscaled excitation of N (solid black lines), and scaled by 10 (solid blue lines), and

by 100 (solid red lines), as well as the respective experimental instrumentally resolved non-equilibrium

metrics Î ne,Red,exp
λ (x) (dotted black lines), for the case of the low speed shot.
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Figure 4.45: Numerical instrumentally resolved radiative intensities ÎIR(x), obtained with ΛVUV = 0.01,

and unscaled excitation of N (solid black lines), and scaled by 10 (solid blue lines), and by 100 (solid

red lines), as well as the respective experimental instrumentally resolved radiative intensities ÎIR,exp(x)

(dotted black lines), for the case of the low speed shot.
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Figure 4.46: Numerical instrumentally resolved non-equilibrium metrics Î ne,IR
λ (x), obtained with ΛVUV =

0.01, and unscaled excitation of N (solid black lines), and scaled by 10 (solid blue lines), and by 100

(solid red lines), as well as the respective experimental instrumentally resolved non-equilibrium metrics

Î ne,IR,exp
λ (x) (dotted black lines), for the case of the low speed shot.

4.4.5 A synopsis about the dependence of the results on the different

parameters

Figure 4.47 shows the peak values of the instrumentally resolved radiative intensities Î lpeak (with l ∈

{VUV,“Blue”,“Red”,IR}) obtained with the different models and in the experiment for the low, medium

and high speed shots. And Figure 4.48 and Figure 4.49 show the temperatures Ttrh
and Ttre

and mole

fractions xs attained at x = 5 cm, respectively, which were obtained with the different models of this

work and of the work of Cruden and Brandis [158].

As referred before, the peak values of the instrumentally resolved radiative intensities obtained in

the zero-dimensional simulation (labelled by “0D” in the figures) are several times lower than the ones

obtained in the one-dimensional simulation (labelled by “1D”) and even more lower than the ones of

the experiment. On the other hand, the attained temperatures are much greater than the ones of the

one-dimensional simulation (Ttrh
differs by 1105 K, 1761 K and 1881 K for the cases of the low, medium

and high speed shots), agreeing better with the values of Cruden and Brandis (labelled by “NEQAIR,

“Blue”” and “NEQAIR, “Red””). Figure 4.49 shows that dissociation of N2 is weaker than in the case

of the one-dimensional simulation. The attained mole fractions of N +
2 and N+ at x = 5 cm are higher

(with the exception of N+ in the low speed shot). However, this can be shown to be simply due to a

slower recombination. It can be said that in the one-dimension simulation more energy was spent in

excitation, dissociation and ionisation of the particles. The results of Cruden and Brandis evidence that

these endothermic processes were even more stronger in the experiment.

By considering escape factors ΛVUV = 0.1 and ΛVUV = 0.01 for the VUV wavelength interval, the

peak values of the instrumentally resolved radiative intensities increase for all wavelength intervals except

VUV, for which it decreases. The attained temperatures rise just slightly, but the mole fractions of the

species don’t change appreciably. Part of the energy which was once lost through VUV radiation is now

lost through “Blue”, “Red” and IR radiations.

Decreasing the rates of dissociation of N2(X
1Σ+

g ), keeping ΛVUV = 0.01, makes the peak values of the
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instrumentally resolved radiative intensities to increase, and increasing the rates of dissociations makes

them to decrease. The impact is, however, not so relevant for the case of the VUV wavelength interval

of the medium and high speed shots. Figure 4.48 shows that by decreasing the rates of dissociation,

less energy is spent on endothermic processes (since higher translational temperatures are attained).

Curiously, increasing the rates of dissociation doesn’t decrease the attained translational temperatures in

the cases of the medium and high speed shots (the translational energy is then redistributed in a different

way). It’s important to mention here that the values of all of the referred temperatures are still much

lower (by several thousands of kelvins) than the ones inferred by Cruden and Brandis. Figure 4.49 shows

a tendency for an increase of the attained mole fractions of N and N+ and decrease of the ones of N2 and

N +
2 with an increase of the rates of dissociation. The increase on the mole fraction of N+ and the decrease

on the one of N +
2 can be justified by the fact that a stronger dissociation implies that, in contrast with N2,

more N particles become available to be ionised. The values of the mole fractions obtained by increasing

the rate coefficients are actually the ones of all the tried models (regarding spontaneous emission) who

better agree with the ones of Cruden and Brandis. Still, their results indicate that the system should

have suffered stronger dissociation and ionisation.

By keeping ΛVUV = 0.01, and increasing the excitation rates of N (which was only successful for the

case of the low speed shot), a meaningful rise of the peak radiation values occurs, in particular the ones

of the IR and VUV wavelength intervals. Still, these are one to two orders of magnitude lower than the
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Figure 4.47: Peak values of the instrumentally resolved radiative intensities Î lpeak obtained with the

different models and in the experiment for the low, medium and high speed shots.
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ones obtained in the experiment (labelled by “Exp.”). The increase in the radiation variables comes with

a cost of the translational temperatures (Ttrh
decreases as much as 698 K) and a weaker dissociation and

ionisation of N2. The mole fraction of N+ at x = 5 cm gets lower due to a faster recombination. The

peak value of the mole fraction of N+ actually increases as the highly excited N particles are more easily

ionised. It can be concluded that more energy is used in endothermic processes, being excitation of N

the mainly one.

As shown by Figures 4.48 and 4.49, the translational temperatures and the mole fractions of all species

except N +
2 attained in the one-dimension simulations disregarding spontaneous emission (labelled by “1D,

no s. emission”) agree well with the ones derived by Cruden and Brandis. This endorses the hypothesis

of the simulated elements of fluid, when regarding spontaneous emission, not receiving the amount of

energy that they should, as only by disregarding spontaneous emission (therefore, retaining a lot more

energy) the thermodynamic conditions get reasonably closer to the inferred ones.
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Figure 4.49: Mole fractions xs at x = 5 cm obtained with the different models for the low, medium and

high speed shots.

4.4.6 Other possible causes of the significant underestimation of the

experimental results by the numerical ones

Several studies in the literature reported the occurrence of analytical and numerical models which

significantly underestimated the radiation variables obtained trough shock tube experiments. In fact,

these discrepancies had been so recurrently observed that Cruden et al. [160] even used the term “long-

standing” to describe the longevity of the problem regarding results obtained from the Japan Aerospace

Exploration Agency’s High-Enthalpy Shock Tunnel (JAXA-HIEST). Cruden et al. [160] studied the

impact that contamination species have on the numerical results, fitting their concentrations in order to

match some particular JAXA-HIEST experimental results. They concluded that it may well be possible

for contaminants such as Fe (atomic iron) and CN (cyanogen radical) to cause the observed discrepancies.

In the case of the experiments that the produced benchmark data regarded in the present work - the EAST

test 62 - Cruden and Brandis [158] found evidence for the presence of the contaminants C (atomic carbon),

H (atomic hydrogen) and CN. However, it seems improbable that this could explain the deviations in

several orders of magnitude on the obtained radiation variables, since the observed spectrum is almost

completely dominated by the non-contaminant species (namely N, N2 and N +
2 ). Furthermore, Brandis

et al. [161] refer that in the latest EAST campaigns many upgrades to the system have been made in
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order to reduce the level of contamination.

A more feasible contribution to the discrepancies between the numerical and experimental results is

the non-modelling of the so-called precursor phenomena: some of the VUV radiation emitted by highly

excited particles in the shock layer is absorbed by others upstream of the shock wave, inducing their

excitation, photoionisation and photodissociation. This changes the conditions upstream of the shock

wave and, inevitably, also the conditions downstream of it: Nomura et al. [162] refer that the shock

layer thickness and the non-equilibrium temperatures are increased, yielding an excess of radiation.

Yamada et al. [163] compared experimental results with numerical ones obtained through a model that

doesn’t account the precursor phenomena, and found that the measured radiation intensities for N2,

N +
2 and N started to increase upstream of the shock wave. The radiation profiles in the shock layer

differed significantly, showing that the precursor phenomena had a great influence on the thermochemical

processes that occurred downstream of the shock wave.

Another feasible contribution to the observed discrepancies corresponds to heating of the driven gas

due to downstream plasma subjected to a stronger shock wave, and radiative energy transfer from the

driver gas and the EAST electric arc. Bogdanoff and Park [164] performed several shock tube experiments

and calculations, finding the temperature downstream of the shock wave in the observation point to be

three to four times the one obtained through the Rankine-Hugoniot relations. The electric arc of the

shock tube increases the temperature of the driver gas to very high values (several tens of thousands of

kelvins) which causes it to radiate a lot of energy, some of it to the driven gas upstream and downstream

of the shock wave. Also, it is known that the shock wave decelerates through the shock tube, heating

more the part of the driven gas near the diaphragm than the part of the driven gas near the observation

point. Thus, there’s also a transfer of energy from the former to the later while the shock wave moves

through the space between them.
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Chapter 5

Conclusions

5.1 Achievements

In this work a extensive set of vibronic energy levels for N2, N +
2 , N and N+ was built using the most

up-to-date data available in the literature. A near complete database of vibronic-specific kinetic processes

involving these species was congregated. Special caution was taken to ensure physical consistence up to

the highest temperatures. The database comprises chemical processes such as dissociation, ionisation and

charge exchange, as well as non-chemical processes, i.e. excitation and de-excitation of the energy levels

of the particles. The term “near complete” was herein used to describe it, since it misses transitions

between the highest electronic energy levels, as well as bound-free and free-free radiative processes.

Rates for vibrational transition and dissociation of the molecular particles were computed using the

FHO model. Thermal dissociation rate coefficients of N2(X
1Σ+

g ) by collisions with N2 and N were obtained

and calibrated using state-of-the-art experimental results, showing an agreeability between −59.9 and

8.9 %, and between −80.9 and −36.1 % for the former and latter interactions, respectively. Also, the

values were compared with the most recent QCT calculations deviating by a maximum of 56.5 %. Note

that although these values seem to be too large, they should be regarded as reasonable, since the deviations

are evaluated within an extensive set of temperatures (varying in many thousands of kelvins) for which

the rate coefficients suffer changes of several orders of magnitude.

It was ascertained in this work if the well-known Landau-Zener and Rosen-Zener-Demkov models

could be extended to vibronic transitions of molecular particles by heavy particle impact beyond electronic

transitions of atomic particles by atomic particle impact. As a verdict, it was found impractical, mainly

due to a current lack of knowledge about the characteristic constants that describe the models and to

the necessity of solving the classical equations of motion of the nuclei. An exponential gap law was then

preferred. However, the curve that represents the law was shown to deviate from experimental points by

as much as one order magnitude, reducing the confidence on the model.

The developed kinetic database was tested in zero and Euler one-dimensional simulations of the shots

19, 20 and 40 of the test 62 of EAST. The peak values of the radiative intensities obtained from the Euler

one-dimensional simulation were found to be between the double and the quintuple of the ones obtained
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from the zero-dimensional simulation, showing the hypothesis of the momentum transfer being negligible

(which is taken by the latter) to be invalid. Such result discourages the use in future works of the zero-

dimensional model as an approximation of the flow generated by shock tubes. Still, the one-dimensional

model underpredicted the experimental radiation variables by one to two orders of magnitude. And the

sensibility tests performed on the rate coefficients were unsuccessful in getting a reasonable agreeability.

The shape of the radiative intensities profiles of the low speed shot was correctly predicted, but not the

ones of the medium and high speed shots which revealed non-null plateaus proceeding or coalescing with

peaks. These plateaus weren’t predicted at all. The analysis of Cruden and Brandis on the spectra

obtained in the test 62 of EAST showed that higher values of the radiation variables were attained with a

lower cost of translation temperature. There’s a strong evidence for the underestimation of the radiation

variables observed in this work to result from the non-modelling of heat transfer by radiation within the

test gas, and possibly, between the driver gas (as well as the driver arc) and the test gas. The latter

hypothesis has been suggested by Bogdanoff and Park as a possible cause for such underestimations also

observed in other works.

5.2 Future Work

One of the next steps that should be taken in the future would be to test other kinetic databases reported

in the literature and to compare their results with the ones of this work, such that particular qualities

which were actually improved or, on the contrary, worsen may be identified. And to quantify the possible

divergences between the herein implemented vibronic-specific state-to-state model and the simpler models

such as the multi and single-temperature ones, these latter should also be tried.

In order to ascertain the effect of heat transfer within the test gas subjected to strong shock waves

generated by shock tubes, higher fidelity one-dimensional simulations should be performed. The crude

concept of an escape factor should be disregarded, and an equation of radiative transfer should be solved

instead. Also, the transport phenomena should be introduced in the balance equations. It’s of capital

importance to know if a lack of such complexities in the numerical model was the reason for the significant

underestimation of the radiation variables.

The database of radiative processes developed in this work should be extended, accommodating

absorption, induced emission, photodissociation, photoassociation, photoionisation, photorecombination

and bremsstrahlung, beyond spontaneous emission processes. And these processes should be treated as

rovibronic instead of simply vibronic, as the numerical spectra associated to the molecular contributions

obtained in this work showed pointier profiles when compared to the ones obtained in the experiments.

An extrapolation of the Einstein coefficients for spontaneous emission to the energy levels whose data

aren’t available should be performed to avoid getting unphysical populations distributions.

And finally, as more ambitious goals, the impact on the radiation variables of the precursor phenomena,

the absorption of radiation emitted by the driver gas and the EAST electric arc, and the conduction of

heat from the driver to the test gas should be studied.
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[18] J. Annaloro. Modèles collisionnels-radiatifs appliqués aux situations d’entrée atmosphérique

martienne et terrestre. PhD thesis, Université de Rouen, 2013. url:http://www.coria.fr/spip.
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[146] E. Biémont, Y. Frémat, and P. Quinet. Ionization Potentials of Atoms and Ions from Lithium to Tin

(Z = 50). Atomic Data and Nuclear Data Tables, 71(1):117–146, 1999. doi:10.1006/adnd.1998.0803.

[147] T. Trickl, E. F. Cromwell, Y. T. Lee, and A. H. Kung. State-selective ionization of nitrogen in the

X2Σ+
g v+ = 0 and v+ = 1 states by two-color (1+1) photon excitation near threshold. The Journal

of Chemical Physics, 91(10):6006–6012, 1989. doi:10.1063/1.457417.

[148] E. M. Bahati, J. J. Jureta, D. S. Belic, H. Cherkani-Hassani, M. O. Abdellahi, and P. Defrance.

Electron impact dissociation and ionization of N +
2 . Journal of Physics B: Atomic, Molecular and

Optical Physics, 34(15):2963–2973, jul 2001. doi:10.1088/0953-4075/34/15/303.

[149] C. R. Cowley. An approximate Stark broadening formula for use in spectrum synthesis. The

Observatory, 91:139–140, Aug 1971. https://ui.adsabs.harvard.edu/abs/1971Obs....91.

.139C/abstract.

[150] K.H. Wilson and W.E. Nicolet. Spectral absorption coefficients of carbon, nitrogen and

oxygen atoms. Journal of Quantitative Spectroscopy and Radiative Transfer, 7(6):891–941, 1967.

doi:10.1016/0022-4073(67)90005-2.

[151] Daniel Potter. Modelling of radiating shock layers for atmospheric entry at Earth and Mars. PhD

thesis, The University of Queensland, 2011. url:https://espace.library.uq.edu.au/view/UQ:

242003. Accessed: 2020-11-03.

[152] E.E. Whiting. An empirical approximation to the Voigt profile. Journal of Quantitative Spectroscopy

and Radiative Transfer, 8(6):1379–1384, 1968. doi:10.1016/0022-4073(68)90081-2.

[153] J.J. Olivero and R.L. Longbothum. Empirical fits to the Voigt line width: A brief review. Journal

of Quantitative Spectroscopy and Radiative Transfer, 17(2):233–236, 1977. doi:10.1016/0022-

4073(77)90161-3.

210

https://doi.org/10.2514/6.2010-4774
https://vtechworks.lib.vt.edu/handle/10919/29769
https://vtechworks.lib.vt.edu/handle/10919/29769
https://doi.org/10.1016/0022-4073(82)90094-2
https://doi.org/10.1103/PhysRev.128.515
https://doi.org/10.1006/adnd.1998.0803
https://doi.org/10.1063/1.457417
https://doi.org/10.1088/0953-4075/34/15/303
https://ui.adsabs.harvard.edu/abs/1971Obs....91..139C/abstract
https://ui.adsabs.harvard.edu/abs/1971Obs....91..139C/abstract
https://doi.org/10.1016/0022-4073(67)90005-2
https://espace.library.uq.edu.au/view/UQ:242003
https://espace.library.uq.edu.au/view/UQ:242003
https://doi.org/10.1016/0022-4073(68)90081-2
https://doi.org/10.1016/0022-4073(77)90161-3
https://doi.org/10.1016/0022-4073(77)90161-3


[154] I. N. Kadochnikov and I. V. Arsentiev. Modelling of vibrational nonequilibrium effects on the H2-air

mixture ignition under shock wave conditions in the state-to-state and mode approximations. Shock

Waves, 30:491–504, 7 2020. doi:10.1007/s00193-020-00961-0.

[155] Theodore Lyman. Victor Schumann. The Astrophysical Journal, 38:1, January 1914.

doi:10.1086/142050.

[156] NASA’s Data Portal - Electric Arc Shock Tube (EAST) Test Data. url:https://data.nasa.gov/

docs/datasets/aerothermodynamics/EAST/index.html. Accessed: 2020-10-07.

[157] Brett A. Cruden. Recent Progress in Entry Radiation Measurements in the NASA Ames Electric

ARC Shock Tube Facility. In 5th International Workshop on Radiation of High Temperature Gases

in Atmospheric Entry Workshop, Barcelona, October 2012. url:https://ntrs.nasa.gov/search.

jsp?R=20130001599.

[158] Brett A. Cruden and Aaron M. Brandis. Analysis of Shockwave Radiation Data in Nitrogen. Jun

2019. doi:10.2514/6.2019-3359.

[159] Brett A Cruden and Aaron M Brandis. Updates to the neqair radiation solver. Radiation in High

Temperature Gases, 2014. https://ntrs.nasa.gov/api/citations/20150022164/downloads/

20150022164.pdf.

[160] Brett A. Cruden, Aaron M. Brandis, Jay H. Grinstead, Joseph Olejniczak, Lindsay Kirk,

Randolph P. Lillard, Hideyuki Tanno, and Tomoyuki Komuro. Measurement of Ultraviolet Radiative

Heating Augmentation in HIEST Reflected Shock Tunnel. Jun 2015. doi:10.2514/6.2015-2512.

[161] Aaron Brandis, Brett Cruden, Dinesh Prabhu, Deepak Bose, Matthew McGilvray, Richard Morgan,

and Richard Morgan. Analysis of Air Radiation Measurements Obtained in the EAST and X2

Shocktube Facilities. Jun 2010. doi:10.2514/6.2010-4510.

[162] Satoshi Nomura, Taito Kawakami, and Kazuhisa Fujita. Nonequilibrium Effects in Precursor

Electrons Ahead of Shock Waves. Journal of Thermophysics and Heat Transfer, 0(0):1–6, 2020.

doi:10.2514/1.T6057.

[163] Gouji Yamada, Mizuki Kajino, and Kiyonobu Ohtani. Experimental and numerical study on

radiating shock tube flows for spacecraft reentry flights. Journal of Fluid Science and Technology,

14(3):JFST0022–JFST0022, 2019. doi:10.1299/jfst.2019jfst0022.

[164] D.W. Bogdanoff and C. Park. Radiative interaction between driver and driven gases in an arc-driven

shock tube. Shock Waves, 12:205–214, Nov 2002. doi:10.1007/s00193-002-0157-y.

[165] Christophe O Laux. Radiation and nonequilibrium collisional-radiative models. von Karman

Institute Lecture Series, 7, 2002.

[166] K. P. Huber and G. Herzbeg. Molecular Spectra and Molecular Structure: IV. Constants of Diatomic

Molecules. Van Nostrand Reinhold Company, New York, 1979. doi:10.1007/978-1-4757-0961-2.

211

https://doi.org/10.1007/s00193-020-00961-0
https://doi.org/10.1086/142050
https://data.nasa.gov/docs/datasets/aerothermodynamics/EAST/index.html
https://data.nasa.gov/docs/datasets/aerothermodynamics/EAST/index.html
https://ntrs.nasa.gov/search.jsp?R=20130001599
https://ntrs.nasa.gov/search.jsp?R=20130001599
https://doi.org/10.2514/6.2019-3359
https://ntrs.nasa.gov/api/citations/20150022164/downloads/20150022164.pdf
https://ntrs.nasa.gov/api/citations/20150022164/downloads/20150022164.pdf
https://doi.org/10.2514/6.2015-2512
https://doi.org/10.2514/6.2010-4510
https://doi.org/10.2514/1.T6057
https://doi.org/10.1299/jfst.2019jfst0022
https://doi.org/10.1007/s00193-002-0157-y
https://doi.org/10.1007/978-1-4757-0961-2


[167] J. L. Dunham. The Energy Levels of a Rotating Vibrator. Phys. Rev., 41:721–731, Sep 1932.

doi:10.1103/PhysRev.41.721.

[168] Mark S Child. Semiclassical mechanics with molecular applications. Oxford University Press, USA,

2014. doi:10.1093/acprof:oso/9780199672981.001.0001.

[169] Hugh M. Hulburt and Joseph O. Hirschfelder. Potential Energy Functions for Diatomic Molecules.

The Journal of Chemical Physics, 9(1):61–69, 1941. doi:10.1063/1.1750827.

[170] Philip Huxley and John N. Murrell. Ground-state diatomic potentials. J. Chem. Soc., Faraday

Trans. 2, 79:323–328, 1983. doi:10.1039/F29837900323.

[171] F. Gilmore. Potential energy curves for N2, NO, O2 and corresponding ions. Journal of Quantitative

Spectroscopy and Radiative Transfe, 5:369–389, April 1965. doi:10.1016/0022-4073(65)90072-5.

[172] M. Hochlaf, H. Ndome, D. Hammoutène, and M. Vervloet. Valence–Rydberg electronic states of

N2: spectroscopy and spin–orbit couplings. Journal of Physics B: Atomic, Molecular and Optical

Physics, 43(24):245101, nov 2010. doi:10.1088/0953-4075/43/24/245101.

[173] Alf Lofthus and Paul H. Krupenie. The Spectrum of Molecular Nitrogen. Journal of Physical and

Chemical Reference Data, 6(1):113–307, 1977. doi:10.1063/1.555546.

[174] Harry Partridge, Stephen R. Langhoff, Charles W. Bauschlicher, and David W. Schwenke.

Theoretical study of the A′5Σ+
g and C′′5Πu states of N2: Implications for the N2 afterglow. The

Journal of Chemical Physics, 88(5):3174–3186, 1988. doi:10.1063/1.453962.

[175] Sophie Chauveau. Constitution de bases de données spectroscopiques relatives à un plasma d’air
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de doctorat dirigée par Perrin, Marie-Yvonne Energétique Châtenay-Malabry, url:http://www.
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Appendix A

The quantum free harmonic

oscillator

The quantum free harmonic oscillator is exactly solvable, and it proves to be useful in this work when

dealing with the vibration modes of molecular particles. The classical picture of a free harmonic oscillator,

illustrated by Figure A.1, consists of a rigid mass, m, connected to a wall through a spring of stiffness f

(also referred as a “force constant”). The “free” label emphasises the fact that no external forces act on

the system. And the “harmonic” label is due to the assumed law which the spring follows: the Hooke’s

law.

0 ỹ0 ỹ

Ỹ

Figure A.1: Classical picture of the free harmonic oscillator.

Let ỹ and ỹ0 be the instantaneous and equilibrium body positions, respectively. Let also Ỹ = ỹ − ỹ0

be the body displacement. The Schrödinger equation for this system is expressed by

(
− ~2

2m

∂2

∂Ỹ 2
+

1

2
fỸ 2

)
Ψ(t, Ỹ ) = i~

∂Ψ

∂t
(t, Ỹ ) . (A.1)

Since the potential V (Ỹ ) = 1
2fỸ

2 doesn’t depend explicitly on time, the wave function is separable,

i.e. Ψ(t, Ỹ ) = T (t)ψ(Ỹ ), where T (t) and ψ(Ỹ ) are functions of time and the oscillator displacement,

respectively. By using the method of separation of variables, one can show (the involved steps will not
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be shown here for compactness reasons) that the solution of the Schrödinger equation is given by

Ψ(t, Ỹ ) =

∞∑
n=0

cnHn(Ỹ )e−i
En
~ t , (A.2)

where cn, with n = 0, 1, 2, ..., are some constants. The quantities Hn

(
Ỹ
)

and En, are the eigenfunctions

and eigenenergies of the system, respectively. These are expressed by

Hn

(
Ỹ
)

=
(mω
π~

) 1
4

(2nn!)
− 1

2 Hn
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~
mω

 e−
mω
2~ Ỹ

2

,

(A.3)

En =

(
n+

1

2

)
~ω , (A.4)

respectively, where ω =
√

f
m is the natural angular frequency of the harmonic oscillator and Hn(x) are

the physicists’ Hermite polynomials, of variable x = Ỹ√
~
mω

, which are given by

Hn(x) = (−1)nex
2 dn

dxn

(
e−x

2
)

. (A.5)

By definition, the eigenfunctions and eigenenergies of the system satisfy the time-independent Schrödinger

equation: (
− ~2

2m

∂2

∂Ỹ 2
+

1

2
fỸ 2

)
Hn

(
Ỹ
)

= EnHn

(
Ỹ
)

. (A.6)
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Appendix B

Spectroscopy: the internal energy of

a diatomic molecular particle

The internal energy of a diatomic molecular particle is the one resultant from the movement of its

internal structure: nuclei and electrons. There are therefore three contributions to the internal energy:

vibrational energy Gv, rotational energy FvJ , and electronic sensible energy Te [165]. The letters v and

J subscripted in the symbols Gv and FvJ , denote the vibrational and rotational quantum numbers of

the molecule, respectively (v = 0, 1, 2, ... and J = 0, 1, 2, ...). The letter e subscripted in the symbol

Te denotes the electronic level per se, and not an electronic quantum number. Although coupling exists

between vibration and rotation, only rotation expresses some of this coumpling (hence the letter v in FvJ

besides J) since the motion associated to the latter is usually much faster than the one associated to the

former [44]. The coupling between the electronic motion and the vibrational and rotation motions is also

considered by both vibrational energy Gv and rotational energy FvJ (the label for the electronic level e

doesn’t however appear in these symbols for simplicity reasons).

The sum of the vibrational and rotational energies, also denominated rovibrational energy, can be

denoted by the symbol TvJ [166]. And in a similar way, the sum of the electronic and vibrational energies

- the vibronic energy - can be denoted by the symbol Tev (instead of Tev, the symbol Tv usually appears

in the literature [165], but the latter may induce ambiguity problems). The symbol TevJ is attributed

to the sum of all of the three contributions to the internal energy of the particle - the rovibronic energy.

One should then write

TvJ = Gv + FvJ , (B.1) Tev = Te +Gv , (B.2) TevJ = Te +Gv + FvJ . (B.3)

The following section will focus only on the rovibrational energy.
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B.1 The Dunham expansion

The rovibrational energy of a diatomic molecule in the e-th electronic energy level can be expressed

through an infinite series known as Dunham expansion [167]:

TvJ =

∞∑
i,j=0

Yij

(
v +

1

2

)i
[J (J + 1)]

j
. (B.4)

The constant coefficients Yij are called Dunham parameters, and they are specific to the electronic

level of the molecule (i.e. there is a set of Dunham parameters for each electronic level e). It’s easy

to conclude from equation (B.4) that, if the quantum numbers are treated as continuous variables, the

Dunham expansion is actually a Taylor series expansion of the function TvJ in the v + 1
2 and J (J + 1)

variables around v + 1
2 = 0 and J (J + 1) = 0. Therefore, in such conditions, the Dunham parameters

are the coefficients of that Taylor series, which are ultimately defined by

Yij =
1

i!j!

{
∂i+jTvJ

∂
(
v + 1

2

)i
∂ [J (J + 1)]

j

}∣∣∣∣
v+ 1

2 =0, J(J+1)=0

. (B.5)

When J = 0 there’s no rotation and the rovibrational energy TvJ is purely vibrational. When J 6= 0

new terms in the Dunham expansion appear, whose contribution corresponds to the rotational energy.

Therefore vibrational and rotational energies can be defined as Gv = Tv0 and FvJ = TvJ−Gv, respectively.

And by invoking the Dunham expansion (B.4), these quantities are expressed through

Gv =

∞∑
i=0

Yi0

(
v +

1

2

)i
= Y00 + ωe

(
v +

1

2

)
− ωexe

(
v +

1

2

)2

+ ωeye

(
v +

1

2

)3

+ ωeze

(
v +

1

2

)4

+ ωeae

(
v +

1

2

)5

+ ωebe

(
v +

1

2

)6

+ ωece

(
v +

1

2

)7

+ ... , (B.6)

FvJ =

∞∑
i=0
j=1

Yij

(
v +

1

2

)i
[J (J + 1)]

j
= BvJ (J + 1)−Dv [J (J + 1)]

2
+Hv [J (J + 1)]

3
+Lv [J (J + 1)]

4
+... ,

(B.7)

being the functions Bv, Dv, Hv and Lv introduced in (B.7) given by:

Bv =

∞∑
i=0

Yi1

(
v +

1

2

)i
= Be − αe

(
v +

1

2

)
+ γe

(
v +

1

2

)2

+ δe

(
v +

1

2

)3

+ ηe

(
v +

1

2

)4

+ ... , (B.8)

Dv = −
∞∑
i=0

Yi2

(
v +

1

2

)i
= De + βe

(
v +

1

2

)
+ ... , (B.9)

Hv =

∞∑
i=0

Yi3

(
v +

1

2

)i
= He + ... , (B.10)
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Lv =

∞∑
i=0

Yi4

(
v +

1

2

)i
= Le + ... . (B.11)

The constants involved in the expression for the vibrational energy (B.6) - Y00, ωe, ωexe, ωeye, ωeze,

ωeae, ωebe and ωece - are called vibrational constants, and the constants involved in the expression for

the rotational energy (B.7) - Be, De, He, Le, αe, βe, γe, δe, ηe - are called rotational constants. All

of these quantities are denominated spectroscopic constants, corresponding apart from sign to Dunham

parameters Yij as shown in Table B.1.

Table B.1: Relation between Dunham parameters and the spectroscopic constants.

i\Yij Yi0 Yi1 Yi2 Yi3 Yi4

0 Y00 Be −De He Le

1 ωe −αe −βe
2 −ωexe γe

3 ωeye δe

4 ωeze ηe

5 ωeae

6 ωebe

7 ωece

The Dunham parameter Y00 may be approximated by [168]

Y00 ≈
Be
4

+
αeωe
12Be

+
(αeωe)

2

144B3
e

− ωexe
4

. (B.12)

It can be easily seen that functions Gv, Bv, Dv, Hv and Lv correspond apart of sign to the first five

coefficients of a Taylor expansion of TvJ in J (J + 1) around J (J + 1) = 0:

Gv = Tv0 , (B.13) Bv =

{
∂TvJ

∂ [J (J + 1)]

} ∣∣∣∣
J(J+1)=0

, (B.14)

Dv = −1

2

{
∂2TvJ

∂ [J (J + 1)]
2

}∣∣∣∣
J(J+1)=0

, (B.15) Hv =
1

6

{
∂3TvJ

∂ [J (J + 1)]
3

}∣∣∣∣
J(J+1)=0

, (B.16)

Lv =
1

24

{
∂4TvJ

∂ [J (J + 1)]
4

}∣∣∣∣
J(J+1)=0

. (B.17)

B.2 The Fourier Grid Hamiltonian method

If all of the Dunham parameters (which correspond to an infinite set) in equation (B.4) were known, the

rovibrational energy TvJ would be well defined for all vibrational and rotational quantum numbers. But

the truth is that only a finite set of Dunham parameters can be obtained from experiment. This finite set
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usually correspond to the first Dunham parameters, making the Dunham expansion only valid for the first

quantum numbers. Note that the highest terms in the Dunham expansion become more important with

the increase in the quantum numbers values - the higher the order of the terms the higher the exponent

in v and J (J + 1). Therefore, the higher the values of the quantum numbers the more imprecise is the

Dunham expansion in estimating the respective rovibrational energy.

To obtain the rovibrational energies for all of the allowable vibrational and rotational quantum

numbers, from the lowest to the highest ones, a more reliable method should be considered, as is example

the Fourier Grid Hamiltonian method (FGH) [78]. This method consists in a numerical algorithm that

determines the eigenenergies and eigenfunctions of a quantum system by solving its Schrödinger equation.

Because the desired eigenvalues correspond to the rovibrational energies TvJ , the Schrödinger equation

to be solved should the radial Schrödinger equation (2.307) with the energy relatively to the centre of

mass of the system E′ subtracted by the electronic sensible energy Te (giving TvJ := E′ − Te), and the

centrifugally corrected internuclear potential energy Un,l(R) (expressed by (2.309)) also subtracted by

the electronic sensible energy Te (giving VJ(r) := Un,l(R)− Te):[
− ~2

2µ

∂2

∂r2
+ VJ(r)

]
ψv,J(r) = Tv,Jψv,J(r) , (B.18)

where µ is the reduced mass of the diatomic molecule, r is the internuclear distance (expressed by R in

(2.307)), J is the already mentioned rotational quantum number (expressed by l in (2.307)) and ψv,J is

the (v, J)-th eigenfunction of the system (expressed by xn,l,m(R) in (2.307)). Note also that the label n

for the electronic level as well as the quantum number for the z-component of the angular momentum m

in (2.307) were occulted in (B.18).

To simplify the nomenclature, VJ(r) = V (r) + ~2J (J + 1) /
(
2µr2

)
will be called the “centrifugally

corrected internuclear potential energy” and V (r) will be called the “internuclear potential energy” until

the end of this appendix, although these terms were already attributed before to Un,l(R) and Un(R),

respectively.

B.3 The Rydberg-Klein-Rees method

The Rydberg [79, 80]–Klein [81]–Rees [82] method (RKR), which is based on Semiclassical Mechanics,

allows the determination of the internuclear potential energy function V (r) for a diatomic molecule,

requiring only the knowledge of its spectroscopic constants. The book of Child [168] explains the

foundations of the method within a great detail. A derivation of this method can be developed by

departing from the Bohr-Sommerfeld quantisation condition:

vJ(E) +
1

2
=

1

π

√
2µ

~2

� bJ (E)

aJ (E)

[E − VJ(r)]
1
2 dr , (B.19)

being vJ(E) the vibrational quantum number associated to the rovibrational energy E and rotational

quantum number J , aJ(E) the respective lower classical turning point, and bJ(E) the respective upper

classical turning point. Note that, from a quantum perspective, energy E is equivalent to the previously
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stated energy TvJ , but from a classical perspective, it corresponds to the total relative energy 1
2µṙ

2+VJ(r).

Since the RKR method is semiclassical, it embodies concepts of both Quantum and Classical Mechanics.

To understand the classical view of the nuclei motion, one should first look to a typical potential curve

VJ(r) as the one depicted in Figure B.1.

aJ(E) re bJ(E)

Emin,J

E

U

VJ(r)

r

VJ

Figure B.1: Centrifugally corrected internuclear potential energy VJ(r), and the classical turning points

aJ(E) and bJ(E) for a given energy E. The figure also depicts the potential minimum Emin,J , the energy

value U , and the integration domain, filled in red, both considered in equation (B.21).

Classically, if E = VJ(r) then ṙ = 0, stating a null relative speed of the nuclei. Due to the concavity

of the potential VJ(r), there are two points for each E value at which such condition is satisfied1: aJ(E)

and bJ(E). Because VJ(r) needs to be lower or equal to E (or ṙ would be imaginary) the internuclear

distance should always be in the interval [aJ(E), bJ(E)]. The point (r, VJ) = (re, Emin,J) corresponds

to a minimum, in which the curve has no slope (i.e. dVJ
dr (re) = 0) and therefore the internuclear force

F at that point is null as well as the relative acceleration r̈ (note that F = µr̈ = −dVJ (r)
dr ). A diatomic

molecule at r = re with ṙ = 0 would have its nuclei permanently stationary in relation to each other.

And if instead the molecule had ṙ > 0, the internuclear distance r would increase, passing to the interval

]re, bJ(E)]. Due to the positive slope of the curve VJ(r) in ]re, bJ(E)], the relative acceleration r̈ would

be negative, which implies a reduction of the relative velocity ṙ to a null value, at r = bJ(E), and to

a negative one after that, meaning an inversion of the relative trajectory of the nuclei. If instead the

molecule had ṙ > 0 at r = re, the analogous would happen, but with a symmetric signal in ṙ and r̈,

being aJ(E) the internuclear distance r at which the relative velocity becomes null. Due to the fact that

this behaviour of the molecule is only supported in a classical world, aJ(E) and bJ(E) are called classical

turning points of the trajectory.

To obtain the potential curve VJ(r), one can compute the classical turning points aJ(E) and bJ(E)

for known rovibrational energy values E = TvJ , resulting in a set of points (r, VJ) = (aJ (E) , E) and

(r, VJ) = (bJ (E) , E) (note that VJ = E in r = aJ(E) and r = bJ(E), by definition of classical turning

point). This procedure would recreate only the part of the potential supported by the domain of the

known rovibrational energies. Another procedure would be needed to attain the remaining parts of the

1There’s an exception to this proposition: at the minimum of the potential VJ (r), the equality E = VJ (r) only occurs
for one point. Such case depicts a molecule whose nuclei are perpetually at rest in relation to each other.
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potential, a problem that will be addressed in the following section. But before that, expressions to

compute aJ(E) and bJ(E) should be found. Let’s start by considering the function

AJ(U) = π

� U

Emin,J

vJ(E) + 1
2

(U − E)
1
2

dE . (B.20)

By substituting (B.19) in (B.20) one can obtain

AJ(U) =

√
2µ

~2

� U

Emin,J

{� bJ (E)

aJ (E)

[
E − VJ(r)

U − E

] 1
2

dr

}
dE . (B.21)

And by considering the integration domain represented in Figure B.1, a change in the order of integration

in (B.21) can be easily performed, giving

AJ(U) =

√
2µ

~2

� bJ (U)

aJ (U)

� U

VJ (r)

[
E − VJ(r)

U − E

] 1
2

dE dr =
π

2

√
2µ

~2

� bJ (U)

aJ (U)

[U − VJ(r)] dr . (B.22)

On the other hand, by picking equation (B.20), performing an integration by parts and making a change

in the integration variable,the following relation can be obtained:

AJ(U) = 2π

� vJ (U)

vmin,J

[U − EJ(v)]
1
2 dv , (B.23)

where EJ(v) corresponds to the rovibrational energy E associated to the quantum numbers v and J ,

and vmin,J is the vibrational quantum number v for which the respective rovibrational energy coincides

with its minimum value, i.e. vmin,J = v : EJ(v) = Emin,J . From a quantum view, the rovibrational

energy corresponds to EJ(v) = TvJ = Gv + FvJ , whose minimum occurs for v = − 1
2 , if Y00 ≈ 0. This

assumption will be considered from now on, and therefore vmin,J will be substituted by − 1
2 in the following

mathematical manipulations.

From (B.22) and (B.23), one has the equality

� vJ (U)

− 1
2

[U − EJ(v)]
1
2 dv =

1

4

√
2µ

~2

� bJ (U)

aJ (U)

[U − VJ(r)] dr . (B.24)

By differentiating2 equation (B.24) in U , one can obtain

bJ(U)− aJ(U) = 2

√
~2

2µ

� vJ (U)

− 1
2

1

[U − EJ(v)]
1
2

dv := fJ(U) . (B.25)

And by differentiating3 equation (B.24) in J , one can get

1

aJ(U)
− 1

bJ(U)
= 2

√
2µ

~2

� vJ (U)

− 1
2

BJ(v)

[U − EJ(v)]
1
2

dv := gJ(U) , (B.26)

2Which requires the use of the Leibniz integral rule, since there are limits of integration in equation (B.24) that depend
on U .

3In a similar way to the previous case, such derivation requires the use of the Leibniz integral rule, since there are limits
of integration in equation (B.24) that depend on J .
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where BJ(v) = ∂[Ev(J)]
∂[J(J+1)] . Note that B0(v) = Bv, being Bv the previously introduced function given by

expressions (B.8) and (B.14).

From equations (B.25) and (B.26) one can obtain the classical turning points aJ(U) and bJ(U):


aJ(U) =

1

2

[√
f2
J(U) + 4

fJ(U)

gJ(U)
− fJ(U)

]
, (B.27a)

bJ(U) =
1

2

[√
f2
J(U) + 4

fJ(U)

gJ(U)
+ fJ(U)

]
, (B.27b)

being fJ(U) and gJ(U) given by (B.25) and (B.26), respectively. Because only the non centrifugally

corrected potential V (r) needs to be determined (the correction term is known), and VJ(r) = V (r) if

J = 0, solely the classical turning points a0(U) and b0(U) are required. Also, one only needs to consider

the J = 0 associated energies, i.e. EJ(v) = E0(v) = Gv and BJ(v) = B0(v) = Bv.

B.4 Extrapolation of the RKR resultant potential

The non-experimentally supported parts of the potential V (r) can be obtained through extrapolation.

The part of the potential obtained through the RKR method, i.e. the experimentally supported part,

corresponds to the middle of the desired full curve (since the experimental energies are usually the lower

ones and the middle of the curve corresponds to the bottom of the well). Let this middle part be VRKR(r).

Therefore, not one but two extrapolations are actually required: one for the short-range (left) part and

another for the long-range (right) part of the potential. Let Vsr(r) be the former and Vlr(r) the latter.

The short-range part of the potential was assumed to have the form

Vsr(r) = αr−β , (B.28)

where α and β are positive constants. These constants can be determined by fitting the curve Vsr(r) to

the repulsive part of VRKR(r). In this work, the three leftest points of VRKR(r) were chosen as the fitting

data.

The long-range part of the potential was assumed to have one of two possible forms:

VHH(r) = De

{[
1− e−γ(r−re)

]2
+ δγ3 (r − re)3

e−2γ(r−re) [1 + ζγ (r − re)]
}

, (B.29)

VER(r) = De −De

[
1 + γ (r − re) + δ (r − re)2

+ ζ (r − re)3
]
e−γ(r−re) , (B.30)

where re is the equilibrium internuclear distance, and De is the depth of the potential well. These are a

priori known. The constants γ, δ and ζ are three fittable parameters. In this work, they were obtained

by fitting the respective curve to the three rightest points of VRKR(r). Equation (B.29) represents a

Hulburt-Hirschfelder potential [169] and equation (B.30) represents an Extended Rydberg potential [170].

In contrast with the Extended Rydberg potential, the fit resultant Hulburt-Hirschfelder potential may
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express an upward “bump” at the right of the potential well4, which may or may not exist in reality.

If it is known that such “bump” doesn’t exist in reality5, then the Extended Rydberg potential should

be considered instead. As an illustrative example, Figure B.2 depicts the full reconstructed potential

curve V (r) for the electronic level B3Πg of the nitrogen molecule N2. Two different cases are shown:

one in which the the long-range part of the potential is obtained through an extrapolation using the

Hulburt-Hirschfelder shape, and another in which the Extended Rydberg shape is employed instead. A

“bump” appears for the Hulburt-Hirschfelder case, which isn’t real (one can compare the obtained curve

with the ones in references [171] and [172]), and therefore the Extended Rydberg shape should be the

one to consider.

re

De

VRKR(r)

Vsr(r)

VHH(r)

VER(r)

r

V

Figure B.2: Full reconstructed potential curve V (r) for the case of the electronic level B3Πg of the

nitrogen molecule N2, considering either a Hulbuth-Hirschfelder or an Extended Rydberg shape for the

extrapolated long-range part.

B.5 Potential curves for N2 in its different electronic levels

Potential curves V (r) for the electronic levels X1Σ+
g , A3Σ+

u , B3Πg, W3∆u, B′3Σ−u , a′1Σ−u , a1Πg, w1∆u,

A′5Σ+
g , C3Πu, b1Πu, c3

1Πu, c′4
1Σ+

u , b′1Σ+
u and o3

1Πu of the nitrogen molecule N2 were obtained. All

curves were constructed by application of the RKR method and posterior extrapolation. Values for the

Dunham parameters which are the input variables of the RKR method, were required. Table B.2 shows

such values, being taken from the literature. The potential curves Ve(r) = V (r) +Te obtained for each of

the electronic levels of molecular nitrogen N2, are depicted in Figure B.3. All of the dissociation products

shown in Figure B.3 were taken from reference [173] with the exception of the one associated to the

electronic level A′5Σ+
g , which was taken from reference [174].

4The states of the molecule associated to this “bump” are called quasi-bound states.
5To verify if the molecule assumes, or not, quasi-bound states, accurate potentials in the literature, which correspond

the curves that the author intend to reconstruct, were reviewed.
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Figure B.3: Full reconstructed potential curves Ve(r) = Te + V (r) for the different electronic levels

of the nitrogen molecule N2. The terms N
(

4Su

)
+ N

(
4Su

)
, N

(
4Su

)
+ N

(
2Du

)
, N

(
4Su

)
+ N

(
2Pu

)
,

N
(

2Du

)
+ N

(
2Du

)
and N

(
2Du

)
+ N

(
2Pu

)
represent the dissociation products of the nitrogen molecule in

the electronic levels associated to the immediately below potential curves.

B.6 Potential curves for N +
2 in its different electronic levels

All the data required to obtain the potential curves V (r) for the different electronic levels of the nitrogen

molecular ion N +
2 , is found in Table B.3. The considered electronic levels for this species were X2Σ+

g ,

A2Πu, B2Σ+
u , D2Πg and C2Σ+

u . The resultant potential curves Ve(r) = V (r) + Te, are depicted in Figure

B.4. All of the dissociation products shown in Figure B.4 were taken from reference [173].
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Figure B.4: Full reconstructed potential curves Ve(r) = Te + V (r) for the different electronic levels

of the nitrogen molecular ion N +
2 . The terms N

(
4Su

)
+ N+

(
3P
)

and N
(

2Du

)
+ N+

(
3P
)

represent the

dissociation products of the nitrogen molecular ion in the electronic levels associated to the immediatly

below potential curves.
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Appendix C

Auxiliary data from test 62 of the

EAST shock tube

In this chapter, auxiliary data from test 62 of the EAST shock tube issued by Brandis and Cruden [43]

via NASA’s repository website [156] is presented. The auxiliary data is grouped into three tables. Table

C.1 issues the upstream speeds u∞, wavelength integration limits [λlmin, λ
l
max] for the instrumentally

resolved specific radiative intensities Î l(x) - defined by (3.102) - and relative position integration limits

[x̂lmin, x̂
l
max] for the instrumentally resolved non-equilibrium metrics Îne,l

λ (λ) - defined by (3.103) - with

respect to the benchmark shots considering the four wavelength intervals. Table C.2 issues the half-widths

at half-maxima wlG and wlL as well as the exponents rl for the instrument line-shape factors φ̂spe,l(λ′) -

given by (3.107). Table C.3 issues the base widths dltri, d
l
trap,1, dltrap,2 and dlrect, as well the as half-widths

at half-maxima wlG and wlL for the spatial resolution function φ̂spa,l(x′′) - given by (3.108).

Also, estimates for the relative position of the shock wave associated to the benchmark data and the

respective wavelength intervals x̂lsw (which were inferred by the present author) are issued in table C.4.
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Table C.1: Shot numbers, upstream speeds u∞, wavelength integration limits [λlmin, λ
l
max], and relative position

integration limits [x̂lmin, x̂
l
max] associated to the benchmark data issued by Brandis and Cruden [43].

Shot
u∞ [λVUV

min , λVUV
max ] [x̂VUV

min , x̂VUV
max ] [λBlue

min , λ
Blue
max ] [x̂Blue

min , x̂
Blue
max ] [λRed

min , λ
Red
max] [x̂Red

min , x̂
Red
max] [λIR

min, λ
IR
max] [x̂IR

min, x̂
IR
max]

[km/s] [nm] [cm] [nm] [cm] [nm] [cm] [nm] [cm]

2 10.04 [145, 195] [1.34, 5.34] [330, 480] [1.81, 5.81] — — — —

4 9.88 [120, 170] [0.87, 4.87] [190, 330] [1.14, 5.14] — — — —

5 9.63 [145, 195] [1.05, 5.05] [330, 480] [1.53, 5.53] [480, 890] [0.97, 4.97] [890, 1400] [1.05, 5.05]

6 8.70 [145, 195] [1.10, 5.10] [330, 480] [1.57, 5.57] [480, 890] [0.95, 4.95] [890, 1400] [2.13, 6.13]

9 8.98 [120, 170] [1.15, 5.15] [190, 330] [1.53, 5.53] — — [1130, 1650] [1.96, 5.96]

13 8.12 [145, 195] [1.11, 5.11] [330, 480] [1.54, 5.54] [480, 890] [0.97, 4.97] [890, 1400] [1.54, 5.54]

15 8.19 [120, 170] [1.15, 5.15] [190, 330] [1.41, 5.41] — — [1130, 1650] [1.44, 5.44]

16 7.70 [120, 170] [0.98, 4.97] [190, 330] [1.38, 5.38] — — [1130, 1650] [2.31, 6.31]

19 10.32 [145, 195] [1.57, 5.57] [330, 480] [2.16, 6.16] [480, 890] [1.45, 5.45] [890, 1450] [2.75, 6.75]

20 11.16 [145, 195] [1.82, 5.82] [330, 480] [2.46, 6.46] [480, 890] [1.87, 5.87] [890, 1450] [2.35, 6.35]

21 10.72 [145, 195] [1.37, 5.37] [330, 480] [1.72, 5.72] [480, 890] [0.97, 4.97] [890, 1450] [2.49, 6.49]

23 10.74 [120, 170] [1.11, 5.11] [190, 330] [1.32, 5.32] [654, 658] [0.37, 4.37] [890, 1450] [2.36, 6.36]

29 10.34 [120, 170] [0.87, 4.87] [190, 330] [1.54, 5.54] [654, 658] [0.01, 4.01] [1130, 1650] [1.38, 5.38]

37 7.15 — — [190, 330] [1.68, 5.68] — — [1130, 1650] [1.77, 5.77]

40 6.88 [145, 195] [1.44, 5.44] [330, 480] [1.82, 5.82] [480, 890] [1.13, 5.13] [890, 1400] [2.20, 6.20]

41 6.20 — — [330, 480] [1.81, 5.81] [480, 890] [1.19, 5.19] [890, 1400] [3.51, 7.51]

42 5.94 — — [190, 330] [1.44, 5.44] [480, 890] [1.04, 5.04] — —

Table C.2: Half-widths at half-maxima wlG and wlL, and exponents rl for

the instrument line-shape factors φ̂spe,l(λ′) associated to the benchmark

data issued by Brandis and Cruden [43].

Shot
wVUV
G wVUV

L wBlue
G wBlue

L wRed
G wRed

L rRed wIR
G wIR

L rIR

[nm] [nm] [nm] [nm] [nm] [nm] [nm] [nm]

2 0.198 0.006 0.222 0.024 — — — — — —

4 0.198 0.006 0.307 0.024 — — — — — —

5 0.198 0.006 0.307 0.024 1.121 9.469 −1.498 2.335 0.868 0.425

6 0.198 0.006 0.307 0.024 1.121 9.469 −1.498 2.335 0.868 0.425

9 0.198 0.006 0.307 0.024 — — — 2.335 0.868 0.425

13 0.207 0.007 0.422 0.022 1.690 13.838 −1.529 3.034 — −∞ (a)

15 0.207 0.007 0.422 0.022 — — — 3.034 — −∞ (a)

16 0.207 0.007 0.422 0.022 — — — 3.034 — −∞ (a)

19 0.192 0.006 0.222 0.024 0.811 6.009 −1.387 2.335 0.868 0.425

20 0.198 0.006 0.307 0.024 0.811 6.009 −1.387 2.335 0.868 0.425

21 0.198 0.006 0.307 0.024 0.811 6.009 −1.387 2.316 0.789 0.469

23 0.198 0.006 0.307 0.024 0.012 0.046 −0.815 2.316 0.789 0.469

29 0.198 0.006 0.307 0.024 0.012 0.046 −0.815 2.335 0.868 0.425

37 — — 0.422 0.022 — — — 3.034 — −∞ (a)

40 0.207 0.007 0.422 0.022 1.690 13.838 −1.529 3.034 — −∞ (a)

41 — — 0.422 0.022 1.690 13.838 −1.529 3.034 — −∞ (a)

42 — — 0.422 0.022 1.690 13.838 −1.529 — — —

a For this case, the second branch of the instrument line-shape factor given by (3.107) is

regarded to be purely gaussian, hence the value −∞ for rIR and the empty one for wIR
L .
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Table C.3: Base widths dltri, d
l
trap,1, dltrap,2 and dlrect, as well as half-widths at half-maxima wlG and wlL for the spatial

resolution function φ̂spa,l(x′′) associated to the benchmark data issued by Brandis and Cruden [43].

Shot
dVUV

tri wVUV
G wVUV

L dVUV
rect dBlue

tri wBlue
G wBlue

L dBlue
rect dRed

tri wRed
G wRed

L dRed
rect dIR

trap,1 dIR
trap,2 wIR

G dIR
rect

[cm] [cm] [10−4cm] [cm] [cm] [cm] [10−4cm] [cm] [cm] [cm] [10−4cm] [cm] [cm] [cm] [cm] [cm]

2 0.041 0.039 5.52 0.502 0.041 0.111 15.9 0.251 — — — — — — — —

4 0.041 0.043 7.72 0.494 0.041 0.111 15.9 0.247 — — — — — — — —

5 0.041 0.048 4.02 0.481 0.041 0.122 17.4 0.241 0.041 0.033 49.6 0.193 0.313 0.128 0.088 0.944

6 0.041 0.035 15.7 0.435 0.041 0.111 12.6 0.218 0.041 0.048 59.8 0.174 0.313 0.128 0.092 0.853

9 0.041 0.046 5.87 0.449 0.041 0.112 15.5 0.225 — — — — 0.313 0.128 0.080 0.880

13 0.041 0.046 4.32 0.406 0.041 0.110 21.6 0.203 0.041 0.032 45.2 0.162 0.313 0.128 0.076 0.795

15 0.041 0.046 4.32 0.819 0.041 0.110 21.6 0.410 — — — — 0.313 0.128 0.079 0.803

16 0.041 0.046 5.31 0.770 0.041 0.101 5.75 0.385 — — — — 0.313 0.128 0.079 0.754

19 0.041 0.015 1.47× 10−6 0.516 0.041 0.104 22.2 0.258 0.041 0.019 30.3 0.206 0.313 0.128 0.094 1.011

20 0.041 0.041 3.79 0.558 0.041 0.120 15.3 0.279 0.041 0.034 47 0.223 0.313 0.128 0.081 1.094

21 0.041 0.037 1.71 0.268 0.041 0.117 18.3 0.268 0.041 0.032 46.7 0.214 0.313 0.128 0.090 1.050

23 0.041 0.039 3.28 0.268 0.041 0.091 23.6 0.268 0.041 0.024 56.8 1.074 0.313 0.128 0.111 1.052

29 0.041 0.037 4.94 0.517 0.041 0.087 58.7 0.258 0.041 0.024 56.5 1.034 0.313 0.128 0.086 1.013

37 — — — — 0.041 0.087 58.7 0.357 — — — — 0.313 0.128 0.086 0.700

40 0.041 0.037 4.94 0.688 0.041 0.087 58.7 0.172 0.041 0.024 56.5 0.344 0.313 0.128 0.086 0.674

41 — — — — 0.041 0.087 58.7 0.155 0.041 0.024 56.5 0.310 0.313 0.128 0.086 0.607

42 — — — — 0.041 0.087 58.7 0.297 0.041 0.024 56.5 0.594 — — — —

Table C.4: Relative positions of the shock wave x̂lsw associated to

the benchmark data issued by Brandis and Cruden [43], being these

inferred by the present author.

Shot
x̂VUV

sw x̂Blue
sw x̂Red

sw x̂IR
sw

[cm] [cm] [cm] [cm]

2 2.880 3.250 — —

4 2.400 2.850 — —

5 2.630 2.950 2.550 2.500

6 2.660 3.160 2.620 3.370

9 2.680 3.050 — 3.440

13 2.690 3.120 2.580 2.940

15 2.230 2.830 — 2.840

16 2.330 2.860 — 3.770

19 3.260 3.730 3.250 4.310

20 3.360 3.910 3.380 3.990

21 2.960 3.240 2.710 3.930

23 2.790 3.020 1.730 4.040

29 2.350 3.070 1.810 3.000

37 — 3.140 — 3.220

40 2.660 3.390 2.700 3.710

41 — 3.170 2.660 4.910

42 — 2.900 2.220 —
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