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1. Mission Context
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Neptune’s Mission

● Neptune is a strong candidate for a joint class-M 
NASA/ESA mission (2030-2040)  to our Solar 
System’s Ice Giants (Uranus and Neptune)

● Neptune’s atmosphere:
○ H

2
 and He (~ 80%/20%)

○ CH
4

 (~ 1.5%)

● Mission’s Goal: reach final elliptic orbit which 
includes regular flybys on Triton (Neptune’s moon) 
○ Using atmospheric drag to slow the spacecraft
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1. Mission Context

Credits: NASA
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Aerocapture

Lifting entry               angle of attack

For controlled angle of attack, the most common systems are:

● Ballast mass

● Reaction Control Systems (RCS) 

● Using trim tab  (may increase mission’s useful mass by 140%)

1. Mission Context
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Ballistic vs Lifting entry [2]Aerocapture. [1]
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2. Objectives
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Objectives

● Aerothermodynamic analysis for two trajectory points (TP) 

○ (Ballistic) Entry TP and Aerocapture TP

○ Study capsule design and atmospheric compositions

○ Focus on convective and radiative wall heat fluxes

● Aerodynamic analysis for Aerocapture TP

○ Analyze aerodynamic coefficients 

○ Check sweep angle influence
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2. Objectives
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3. Aerothermodynamic Effects
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High-Temperature Effects

High-temperature effects in hypersonic flow (H
2

 - He - CH
4

 mixtures).  Adapted from [3]

3. Aerothermodynamic Effects

10



João Coelho MEAer

4. Capsule Design
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Capsule Design

4. Capsule Design

12

● 𝜃c     cone angle
● D      diameter
● rnose  nose radius
● 𝜂       sweep angle
● lflap    trim tab’s       

---..-.length

Capsule front view. Capsule side view.
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Capsule Design

Flap’s sweep angle (𝜂).

Capsule dimensions.
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4. Capsule Design

60º and 45º Capsules.
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5. Governing Equations
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Navier Stokes Equations
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5. Governing Equations

● Mass conservation

● Momentum conservation

● Energy conservation
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Navier Stokes Equations
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● Mass conservation

● Momentum conservation

● Energy conservation

For each thermal non-equilibrium mode, adds:

5. Governing Equations
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Non-Equilibrium Models
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Composition A freestream
● 79.8% H

2

● 18.7% He
●    1.5% CH

4

Composition B freestream
● 81.0% H

2

● 19.0% He
●    0.0% CH

4

Thermal Non-Equilibrium
2T model with T

v,H2

Chemical Non-Equilibrium
Two chemical compositions studied: 

Chemical species for each composition

5. Governing Equations
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Transport Model

● Gupta-Yos Model (1st and 2nd Order)
○ Mixing rule for all transport properties function of Collisional Cross 

Sections (CCS)
■ Viscosity
■ Thermal conduction
■ Diffusion

                         function of CCS different for each interaction (s,l)
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5. Governing Equations
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Heat Flux
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● Radiative heat flux neglected in the flowfield computations

● Flowfield and Radiation decoupled

● Radiative heat flux only computed at the wall

5. Governing Equations



João Coelho MEAer

Radiative Heat Flux
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Spectral radiative heat flux

Retrieved from [3]

5. Governing Equations

Beer-Lambert Law (Radiative Transfer Equation)
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6. Computational Framework
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SPARK CFD Code
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SPARK Code

Software Package for Aerodynamics Radiation and Kinetics
Maintained IPFN

● Cell-centered finite volume formulation

● Euler and Navier-Stokes formulations

● Time discretization

○ Implicit and Explicit second-order

● Convective fluxes discretization

○ Second-order TVD Harten-Yee (with minmod flux limiter)

● Non-Equilibrium models (chemical and/or thermal)

● Multi-species chemically reacting flows

● Flowfield and radiation uncoupled
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6. Computational Framework - SPARK CFD
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Computational Approach

● Axisymmetric flow

● 0º angle of attack (2D code limitations)

● Domain with flap ~ without flap

○ Assumption: flow is supersonic in the 

outlet:

■ Expansion do not need modeling, 

since its influence does not reach 

upstream
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6. Computational Framework - SPARK CFD
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Mesh Boundaries
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𝜃c=60º 𝜃c=45º

6. Computational Framework - SPARK CFD
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Mesh Study
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● Mesh convergence study
○ 90 x 60 mesh
○ 70 x 60 mesh
○ 50 x 60 mesh *

*for Radiative Study (computationally more expensive)

● Mesh refinement
○ Shock and Boundary Layer
○ Performed externally 

(MATLAB)

Mesh refinement example (𝜃c=60º)

6. Computational Framework - SPARK CFD
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SPARK Line-by-Line
Radiative Solver
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SPARK Line by Line (LbL) Structure
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6. Computational Framework - SPARK LbL
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Tangent slab approach

● Spatial integration over one coordinate
● Overpredicts the radiative heating (5-20% in this work)
● Faster
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Tangent slab representation. [3]

6. Computational Framework - SPARK LbL
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Ray tracing model
● Solved along particular directions through different rays

○ Requires ray discretization

■ Ray distribution (Fibonacci lattice)

■ Convergence study

● 50 rays present errors below 2.5% locally (compared with 1500 rays) and 

globally (compared with 150 rays)
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Latitude-longitude vs Fibonacci lattice. [8]

6. Computational Framework - SPARK LbL
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7. Results
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Test case 1
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Test case 1

Study CH4 and capsule design influence in both in the flowfield results and 
radiative results.
● Focus on the wall convective and radiative heat fluxes

Two trajectory points (TP): 

33

● (Ballistic) Entry TP
○ ESA CDF Study [5]

● Aerocapture TP
○ Hollis et al. [4]

Freestream properties for both TP

7. Results (Test case 1)

Test Matrix for Test case 1
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Sonic line transition

● Aerocapture TP for 60º: does not present supersonic outlet (with/without CH
4

)
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7. Results (Test case 1)

Sonic Line for Aerocapture TP 𝜃
c
=60º Sonic Line for Aerocapture TP 𝜃

c
=45º
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Sonic line transition

● 𝜃
c
 > 𝜃

s
 

○ 𝜃
s
  → 𝜃 when the sonic line attachment 

starts to move away from the spherical 
part of the capsule
■ 𝜃

s 
= f(𝛾, M

∞ 
)

■ 𝛾 post-shock varies with 
temperature

● Transition already happening for Entry TP
○ Not critical
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7. Results (Test case 1)

Sonic Line for Entry TP 𝜃
c
=60º
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Sonic line transition
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7. Results (Test case 1)

● Vary 𝜃
c
 from 45º to 61º (keeping r

nose
 constant)

● Bubble created at  𝜃
c
=46º

● Expansion would be required starting from  

𝜃
c
=52º, as the sonic line reaches the shoulder

● After joining the shock, the sonic line would attach 

in the expansion region as the flow accelerates

● Instabilities particularly when an angle of attack is 

considered

● Incorrect assumptions made a priori Sonic Line (red) for Aerocapture TP
from 𝜃

c
=45º to 𝜃

c
=61º

r
nose 

= 0.5m
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Entry TP - Stagnation line
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7. Results (Test case 1)

● Peak temperature ~ 8,000 K
● Equilibrium region temperature ~ 5,000 K

● Significant discrepancy in total radiative 
power between chemical compositions
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Entry TP - Stagnation line
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7. Results (Test case 1)

● C
2

 transitions are dominant for chemical composition A
● H for chemical composition B (lower order of magnitude)
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Aerocapture TP - Stagnation line
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7. Results (Test case 1)

● Peak temperature ~ 18,500 K
● Equilibrium region temperature ~ 16,000 K

● Almost no difference in total radiative 
power between chemical compositions



João Coelho MEAer

Aerocapture TP - Stagnation line
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7. Results (Test case 1)

● Atomic H transitions is the dominant radiative system
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Wall heat fluxes - Entry TP
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7. Results (Test case 1)

● Convective heat fluxes with similar results between chemical compositions
● Significant difference in radiative heat fluxes between chemical compositions

○ Chemical composition B (without CH
4

) has marginal radiative influence 
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Wall heat fluxes - Aerocapture TP
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7. Results (Test case 1)

● Difference between chemical compositions in radiative heat fluxes is no longer 
critical

● Convective heat fluxes again similar with/without CH
4
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Wall heat fluxes - Profile shapes
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7. Results (Test case 1)

● Different profile shape for radiative heat fluxes (blue line)
○ Continuous growth for Entry TP
○ Higher values in the spherical part for Aerocapture TP
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Wall heat fluxes - Profile shapes

44

7. Results (Test case 1)

● Different profile shape for radiative heat fluxes (blue line)
○ Continuous growth for Entry TP
○ Higher values in the spherical part for Aerocapture TP
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Temperature
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7. Results (Test case 1)

● Temperature difference between stagnation region and near shoulder is more 
significant for Aerocapture TP (>10,000K) compared to Entry TP (<1,000K)

Entry TP Aerocapture TP
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Radiative Power - Entry TP (with CH4)
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7. Results (Test case 1)

● C
2

 concentration increases as we get farther from the stagnation region

Total Radiative Power C2 Mass fraction
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Radiative Power - Entry TP (with CH4)
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7. Results (Test case 1)

● C
2

 radiative systems dominant in both locations
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Radiative Power - Aerocapture TP (with CH4)
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7. Results (Test case 1)

● H concentration decreases as we get farther from the stagnation region
● Temperature has the main influence in the Radiative Power

○ Higher temperatures preclude the presence of molecular C
2 

in the nose region

○ H (atomic) emits more radiation at higher temperatures

Total Radiative Power H mass fraction
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Radiative Power - Aerocapture TP (with CH4)
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7. Results (Test case 1)

● Majority of spectral heat flux integration comes from H in the stagnation region.

● In the shoulder, lower temperatures:
○ H not emitting significantly

○ C
2 

 systems present, even though emitting at low magnitudes
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Test case 2
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Test case 2

● Only for Aerocapture TP 

● Compute aerodynamic coefficients for both chemical configurations

● Evaluate sweep angle influence in the results
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7. Results (Test case 2)

Test Matrix for Test case 2
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Approach
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7. Results (Test case 2)

Pressure correction function

Mach cone

● Pressure correction ● Y-Force projection
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Aerodynamic coefficients

● Low influence of the chemical composition
● Pressure correction (*) larger impact on lower sweep angles
● Sweep angle marginal impact on the drag
● Low lift, but enough to produce a pitching moment
● Low influence of the viscous forces (0.0001% of the total)
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7. Results (Test case 2)

60º

45º with p.c.

45º no p.c.
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8. Achievements and Future Work
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Achievements

● CH
4

 significantly enhances flow’s radiation

○ At lower velocities the radiative heating starts being detrimental

○ At higher velocities provide also a smaller impact

● Instabilities for 𝜃
c
 > 47º due to sonic line transition

○  𝜃
c
 = 45º capsule should be favored (following Galileo legacy)

■ Marginal advantages in the wall heating fluxes

■ Critical advantages in the stability

8. Achievements and Future work

55



João Coelho MEAer

Future work

● Include the expansion region in the domain;

● Study with more detail the sonic line transition, together with angle of 

attack;

● Introduce the continuity of the second order derivative on the capsule’s 

shape.

8. Achievements and Future work
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THANK YOU FOR YOUR 
ATTENTION!
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Major Achievements:
● CH4 significantly enhances flow’s radiation

○ Critical at lower velocities
● Instabilities for 𝜃c > 47º due to sonic line transition

○ 45º -> desired shape
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Aerothermodynamic Analysis of Aerocapture and 
Ballistic Entry Flows in Neptune’s Atmosphere
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