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Motivation - Mars

Image credit: JPL, jpl.nasa.gov

Exploration: 6 missions
launched in 2020, 3 to land in
2021

Mars is a challenging planet to
land: Thin atmosphere, mostly
composed of CO2

Need to account for convective
and radiative heating
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Heatshield design

Relevance of CO2 IR radiative heating
only recognized in recent years

Image credit: Sahai, 2019

Radiation and kinetics are tightly
coupled in atmospheric entry flows

Image credit: Sahai, 2019

Detailed models are required which can be translated to engineering design tools
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State-to-State Models

State-to-State models potentially provide the greatest levels of detail

Macroscopic:
Assumed internal distribution
characterized by a temperature

State-to-State
Internal states are treated
individually
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Shortcomings of CO2 models

State of the art state-to-state (StS) kinetic models of CO2 are based on SSH:

Extrapolate badly
Do not allow multi-quantum jumps
Dissociation is not handled in the most correct way
Questions regarding coupling of symmetric and bending mode

Recent works rely on SSH models, there is room for improvement.

The gold standard for high-T CO2 IR radiation, CDSD4000:
Large database
Computationally prohibitive for full spectrum calculations
Cannot separate between vib. and rot. modes

A smaller, more compact database is desirable.

This presentation will showcase new models that curtail these shortcomings
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Outline

1 Introduction

2 Kinetics
Test Cases

3 Radiation
Test Cases

4 Conclusions
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Kinetics
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CO2 Kinetic Modelling - Assumptions

Symmetric - v1
Bending - vl22

Asymmetric - v3

Mode separability

No Potential Energy Surface (PES) of
CO2 accurate up to dissociation. Each
mode breaks apart in different ways.

v1: CO2 + 18.53 eV → C + O + O

v2: CO2 + 11.45 eV → C + O2

v3: CO2 + 7.42 eV → CO + O

Limits allows potential reconstruction
by extrapolation of NASA-Ames-2 PES

Consider only extreme states

Extreme states =


v1000
0vl22 0
000v3

Mixed states = v1vl22 v3

Also limit v2 = l2, otherwise
computationally untenable
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Forced Harmonic Oscillator

The Forced Harmonic Oscillator (FHO) - 1D collision geometry, generalized to 3D
with steric factors

Physically consistent extrapolation
Handles multi quantum jumps
CO2(X) and CO2(B) modeled through FHO
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Ground State Level Manifold

Low lying levels are obtained
through Chédin (1984)
polynomial expansion
Sym. and Asym. stretch high
lying levels are obtained through
Schrödinger’s equation
Bending levels can be "safely"
extrapolated, Quapp (1993)
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3B2 Level Manifold

In Grebenshchikov (2017) some vib. levels of CO2(3B2) are tabulated. These are
used to obtain the coefficients of the polynomial expression:

E(v1, v2, v3) =
∑

i=1,2,3

ωivi +
∑

i=1,2,3

xiiv
2
i + x12v1v2 + x13v1v3 + x23v2v3
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MSX1 - Crossing energy
between ground and 3B2

TS3 - Dissociation
energy of 3B2
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VT and VVT

Including the first reactions

Obtain semi-empirical parameters to fit FHO to known rates
Extrapolate to the whole level manifold
No rates for CO2(B), use the same parameters as CO2(X)

Vibration-Translation
CO2(X,v’)+M←−→ CO2(X,v”)+M
v’ and v” belong to the same vib.

mode.

Vibration-Vibration-Translation
CO2(X,v)+ CO2(X,v)←−→
CO2(X,v+1)+ CO2(X,v-1)
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Model Schematic
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IVT

Including inter-mode (IVT) energy exchanges

PIVT = PVT(vi → 0)PVT(0→ vf )

vi and vf are from different
vibrational modes.

The product of probabilities makes
PIVT → 0 when vi or vf grows v1
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Model Schematic
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Singlet-Triplet Interaction

Including the interaction between
CO2(X) and CO2(B).

The ground and triplet state
cross
The crossing point cannot be
accurately determined
Approximate region indicates
the crossing is dominated by the
ground state bending mode

Crossing is modeled through
Rosen-Zener theory.

*Upper figure is illustrative
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Model Schematic
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Pathways to dissociation

*Red line empirical potential

Three pathways for dissociation
Ladder climbing dissociation is
possible for the ground and triplet
state

Another cross with a repulsive
configuration of a triplet state
occurs at 5.85 eV
First two paths can be modelled
using FHO, the third one through
Rosen-Zener theory
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Model Schematic
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Exchange Reactions

The exchange reaction CO2 + O←−→ CO+ O2 should be included. Dean (1973)
observed increased CO2 dissociation with increased presence of O atoms.

No available state to state
reaction rates
Macroscopic rates available
in literature
Redistribution of
macroscopic rate is
performed with J. Annaloro
(2013) method using
CO2 ground state only
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A set of state to state CO2(X,v)+ O←−→ CO+ O2 reaction rates is included.
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Other Reactions

The set of reactions in Cruden et al. (2018) is also included.

Reaction A (m3/mol/s) n Ea (K)
CO + M←−→ C + O + M 7.99E+32 -5.50 1.29E+5
C2 + O←−→ CO + C 3.61E+08 0.00 0.0E+0
C2 + M←−→ C + C + M 1.82E+09 0.00 6.40E+4
CO + O←−→ C + O2 3.90E+07 -0.18 6.92E+4
O2 + M←−→ O + O + M 1.20E+08 0.00 5.42E+4
C + e– ←−→ C+ + e– + e– 3.70E+25 -3.00 1.30E+5
O + e– ←−→ O+ + e– + e– 3.90E+27 -3.78 1.58E+5

CO + e– ←−→ CO+ + e– + e– 4.50E+08 2.75 1.63E+5
O2 + e– ←−→ O +

2 + e– + e– 2.19E+04 1.16 1.30E+5
C + O←−→ CO+ + e– 8.80E+02 1.00 3.31E+4

CO + C+ ←−→ CO+ + C 1.10E+07 0.00 3.14E+4
O + O←−→ O +

2 + e– 7.10E-04 2.70 8.06E+4
O2 + C+ ←−→ O +

2 + C 1.00E+07 0.00 9.40E+3
O +
2 + O←−→ O2 + O+ 2.19E+04 1.16 1.30E+5

Set of reactions calibrated against EAST experiments
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Summary

Name Type #Reac.
CO2(X,v′1) + M↔ CO2(X,v′′1 ) + M VT 1770
CO2(X,v′2) + M↔ CO2(X,v′′2 ) + M VT 5050
CO2(X,v′3) + M↔ CO2(X,v′′3 ) + M VT 861

CO2(X,v′1) + CO2(X,v′1)↔ CO2(X,v′1+1) + CO2(X,v′1-1) VVT 58
CO2(X,v′2) + CO2(X,v’2)↔ CO2(X,v′2+1) + CO2(X,v′2-1) VVT 99
CO2(X,v′3) + CO2(X,v’3)↔ CO2(X,v′3+1) + CO2(X,v′3-1) VVT 41

CO2(X,v′1) + M↔ CO2(X,v′′2 ) + M IVT 5900
CO2(X,v′1) + M↔ CO2(X,v′′3 ) + M IVT 2478
CO2(X,v′2) + M↔ CO2(X,v′′3 ) + M IVT 4200
CO2(B,v′1) + M↔ CO2(B,v′′1 ) + M VT 78
CO2(B,v′2) + M↔ CO2(B,v′′2 ) + M VT 325
CO2(B,v′3) + M↔ CO2(B,v′′3 ) + M VT 21

CO2(B,v′1) + CO2(B,v’1)↔ CO2(B,v′1+1) + CO2(B,v′1-1) VVT 11
CO2(B,v′2) + CO2(B,v’2)↔ CO2(B,v′2+1) + CO2(B,v′2-1) VVT 24
CO2(B,v′3) + CO2(B,v’3)↔ CO2(B,v′3+1) + CO2(B,v′3-1) VVT 6

CO2(B,v′1) + M↔ CO2(B,v′′2 ) + M IVT 300
CO2(B,v′1) + M↔ CO2(B,v′′3 ) + M IVT 84
CO2(B,v′2) + M↔ CO2(B,v′′3 ) + M IVT 175
CO2(X,v′2) + M↔ CO2(B,v′′1 ) + M VE 103
CO2(X,v′2) + M↔ CO2(B,v′′2 ) + M VE 311
CO2(X,v′2) + M↔ CO2(B,v′′3 ) + M VE 163
CO2(X,v′3) + M↔ CO + O(1D) + M VD 42
CO2(X,v′3) + M↔ CO + O(3P ) + M VD 42
CO2(B,v′3) + M↔ CO + O(3P ) + M VD 7

CO2(X,v′1,2,3) + O(3P)↔ CO + O2 Zeldov. 201
CO2(X,v′1,2,3) + C↔ CO + CO Zeldov. 201

O(1D) + M↔ O(3P) + M Quench. 4

A total of 22566 reactions (with only extreme states)
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Test Cases
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Case 1: Isothermal
0D Isotherm. in pure CO2 (no dissociation), Tv = 300 K and 2 kPa, Tg = 10,000 K
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Case 1: Isothermal
0D Isotherm. in pure CO2 (no dissociation), Tv = 300 K and 2 kPa, Tg = 10,000 K
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Case 2: Dissociation

0D pure CO2 at 300K and 2kPa
suddenly heated to 10,000K

Temperature (Boltzmann fitted)
evolution indicates internal
modes follow isothermal case
CO2 + O←−→ CO+ O2
dominates CO2 decomposition
O atoms are created through
CO2 +M←−→ CO+ O+M
which then accelerate the
CO2 + O collision
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Case 3: Recombination

Dissociated 1000K CO2 gas at 1 bar

Analogous to a recombination exp.
Typical recomb. time scale in exp.
measurements is ms
Depending on the chosen
CO2 + O←−→ CO+ O2 rate,
recombination occurs at 105 or
10−3 seconds
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Case 4: CO2 Decomposition Time

Shots in VUT-1 shock tube at
MIPT (Moscow, Russia)
ESA TRP CFD validation in a CO2
environment, 2008.
VUV lamp used to assess relative
concentration of CO2(X) by
absorption
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Typical time scale 1-40 µs
Macroscopic model always predicts
< 2µs
StS model provides correct
shock-velocity trends and
overpredicts decomposition times by
50-100%
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Radiation
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CO2 IR Radiation Modelling

CDSD4000 will be used to refit a vibrationally specific CO2 IR database

Dubbed CDSDv, this database will feature:

Separation between rotational and vibrational modes
Can be coupled to kinetic solver

dNi

dt
=

∑
j

KijNiNj −
∑
j

KjiNjNi −
∑
j

AijNi

Reconstruction of ro-vibrational data
Will lose detail: not suitable for detailed spectroscopy, perturbations will not
be accounted for.
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Level Database

Fit ro-vibrational energy levels:

EvJ = Gv +Bv[J(J + 1)]−Dv[J(J + 1)]2 +Hv[J(J + 1)]3
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Extrapolation of J to 300 (or 301) or to Ediss.
We now have a levels database.
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Fitting Transitions

Av′

v′′ × FJ′,J′′ =
Av′J′

v′′J′′

Sl′J′
l′′J′′

Av′

v′′ –Vibrational Einstein coefficients

FJ′,J′′ –Herman-Wallis factors

Av′J′
v′′J′′ –Ro-vibrational Einstein coefficients

Sl′J′
l′′J′′ –Hönl-London factors

RHS is obtained through reading databases
LHS is a polynomial expansion

Ro-vibrational transitions have branches and polynomial coefficients are
shared

Each transition is fitted for every branch “simultaneously"
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Transition Fitting

Some examples of transition fitting.
Transitions 00011→00001 and
01111→01101 (e and f)
Perturbed data was removed
prior to fitting.
Data was truncated at
convenient J
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Reconstruction of Einstein Coefficients

Reconstructed Einstein coefficients
of transitions 00011→00001 (top)
and 01111→01101 (bottom).

Comparison with CDSD4000 and
HITRAN values.

Perturbed data is not reproduced
and does not affect fitting
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Lorentz Broadening

In CDSD4000:
Semi empirical expressions
Only Air and Self broadening
From reference p and T values

In CDSDv:
Generalized expressions, effect
dependant
Can be used for any mixture
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Absorption Coefficient
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Test Cases
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Case 1: JAXA Mars Entry

Measurements of IR radiation were carried out in JAXA facility by Takaynagi et al.
(2018). Pannier and Laux (2019) performed a numerical analysis repeated here.

4.3 µm region
Line of sight 7 cm long simplified
into 3 zones
1st and 3rd cell are free flow zones,
low pressure, non-eq.
2nd cell is the forebody cell, high
pressure and temperature, no CO2
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Case 2: EAST MSL Entry

Campaign at EAST - Mars Science
Laboratory conditions

Shock at 3.69 km/s
1 Torr, 97% CO2

4.3 µm spectral region
Peak Temperature at 3050 K

Simulation profile kindly shared by B.
Cruden.
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Case 3: Atmospheric Plasma Torch

CO2 Atmospheric plasma torch at
1,000–5,000K, work of Depraz et al.
(2012)

2.7 and 4.3 µm regions probed
Measurements at h = 6, 20 mm
Torch radial profile is divided into
10 cells

Radiative Transfer with CDSDv + CO in
the central chord: line of sight is taken
as the full diameter of the torch.
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Conclusions
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Accomplishments

A more physically consistent approach to CO2 dissociation has been
presented

Step-up from SSH-based models
Inclusion of 3B2 state
Displayed physically consistent though not 100% predictive results
Lots of room for improvement

A CO2 IR radiation database was presented
Refitting method is universal
Broadening calculation is more flexible
In the 4.3 µm region, reduction from 81M to 5M lines
CDSDv database is 16.6 MB compared to CDSD4000 16 GB
Reasonable agreement with experiments and calculations
Significant performance enhancement
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Further work

Kinetics

Different collision partners
Improve intermode transition rates
Inclusion of radiative processes
Uncertainty CO2 + O←−→ CO+ O2

Reduced order modelling
Experimental validation

Radiation
Adding a C/J or C/(J + 1) term on Herman-Wallis expressions
Add more transitions, 2.7 and 4.3 µm regions
Apply CDSDv to cases with different mixtures of gases
Fitting of CDSDv to emission spectra
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Add more transitions, 2.7 and 4.3 µm regions
Apply CDSDv to cases with different mixtures of gases
Fitting of CDSDv to emission spectra
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Final Remarks

There is still a lot of multi-disciplinary work to be done. It is my hope this work
can be used as a reference point for further developments.

Would like to finish by acknowledging the role of other people in this work, some
of whom are here present. Thank you
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Dissociation of CO2

0D simulation, 3.69 km/s shock, 1 Torr in pure CO2
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CO+ O2 ←−→ CO2 + O
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Note that I only performed inversion on Sharipov and Varga rates
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More CO+ O2 ←−→ CO2 + O

Rates already included:
CO2(X,v)+ O(3P)←−→ CO(X)+ O2(X)
CO2(X,v)+ O(1D)←−→ CO(X)+ O2(X)
CO2(X,v)+ C←−→ CO(X)+ CO(X)

Other candidate rates to include:
CO(a)+ O2(X)←−→ CO2 + O(3P)
CO(X)+ O2(a)←−→ CO2 + O(1D)
O2(a)+M←−→ O2(b)+M
O2(b)+ O2(X)←−→ O2(a)+ O2(a)
CO(a)+ CO←−→ CO2 + C
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Radiative Power
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Performance

# 1 2
Parameters Tight Lax

Range 2100-2500 2000-2500
Database CDSDv CDSD4000 CDSDv CDSD4000
Time 1 (s) 30.98 85.18 20.11 174.95
Time 2 (s) 329.58 356.25 145.11 341.63
Time 3 (s) 2855.43 3891.64 1007.92 1773.45
Max RAM 446.3 MiB 3.830 GiB 607.75 MiB 7.985 GiB
# Lines 4,266,280 37,497,133 5,867,324 81,963,950

# 3 4
Parameters Lax Tight

Range 2100-2500 2000-2500
Database CDSDv CDSD4000 CDSDv CDSD4000
Time 1 (s) 17.09 65.53 39.95 181.62
Time 2 (s) 124.82 183.89 574.38 738.41
Time 3 (s) 613.40 791.06 6846.50 12253.16
Max RAM 442.7 MiB 3.660 GiB 608.14 MiB 7.963 GiB
# Lines 4,266,280 37,497,133 5,867,324 81,963,950
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Some Transmittance Results
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Glow Discharge
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Einstein Coefficients
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Polyads

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Energy, eV

0

5

10

15

20

25

30
Po

ly
ad

Observed levels
Unperturbed levels
v1 Unperturbed
v2 Unperturbed
v3 Unperturbed
v1 Observed
v2 Observed
v3 Observed

João Vargas High-Temperature Non-Equilibrium CO2 13th November, PhD 11 / 13



Prospective Shock-Tube Experiments

Good experimental data still needed
these days

New experiments may bring more
insight. A mix of time-dependent
emission and absorption
spectroscopy is very promising.

CO2 IR radiative emission
CO IR radiative emission
probing O(3P);O(1D) from the
130nm O transition. Is this
possible?
probing O2 from
Schumann-Runge transition

Dissociation and incubation times
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More Experiments

Complementary to shock tubes,
microwave plasmas and plasma
torches can also contribute
In addition to previous diagnostics:

CO2 Chemiluminescence bands
Raman spectroscopy (?)

Recombination experiments
Relative high-T and steady state
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