High-Temperature Non-Equilibrium $CO₂$ Kinetic and Radiation Processes

João Vargas

13th November 2020, PhD Defense

耳目 のなべ

K ロ ▶ K 何 ▶ K 급

• Exploration: 6 missions launched in 2020, 3 to land in 2021

K ロ ⊁ K 倒 ≯ K

Image credit: JPL, jpl.nasa.gov

 $E \cap Q$

• Exploration: 6 missions launched in 2020, 3 to land in 2021

• Mars is a challenging planet to land: Thin atmosphere, mostly composed of $CO₂$

 \leftarrow \Box \rightarrow \rightarrow \Box \rightarrow

Image credit: JPL, jpl.nasa.gov

 QQ

Image credit: JPL, jpl.nasa.gov

- **•** Exploration: 6 missions launched in 2020, 3 to land in 2021
- Mars is a challenging planet to land: Thin atmosphere, mostly composed of $CO₂$
- Need to account for convective and radiative heating

(ロ) (何)

 QQ

Heatshield design

Relevance of CO_2 IR radiative heating only recognized in recent years

Image credit: Sahai, 2019

 QQ

 \leftarrow \Box \rightarrow \leftarrow \Box

Relevance of CO_2 IR radiative heating only recognized in recent years

Image credit: Sahai, 2019

Radiation and kinetics are tightly coupled in atmospheric entry flows

4. 0. 3.

 QQ

Relevance of CO_2 IR radiative heating only recognized in recent years

Image credit: Sahai, 2019

Radiation and kinetics are tightly coupled in atmospheric entry flows

Image credit: Sahai, 2019

4 ロ ▶ (何

Detailed models are required which can be translated to engineering design tools

 Ω

Macroscopic:

• Assumed internal distribution characterized by a temperature

 $= \Omega Q$

← ロ ▶ → イ 同 →

Macroscopic:

• Assumed internal distribution characterized by a temperature State-to-State

o Internal states are treated individually

← ロ ▶ → イ 同 →

 $= \Omega Q$

Macroscopic:

• Assumed internal distribution characterized by a temperature

State-to-State

4.000.00

o Internal states are treated individually

 QQ

Macroscopic:

• Assumed internal distribution characterized by a temperature State-to-State

4 0 F

o Internal states are treated individually

 2990

Shortcomings of $CO₂$ models

State of the art state-to-state (StS) kinetic models of CO₂ are based on SSH:

 $E \cap Q$

 \leftarrow \Box \rightarrow \rightarrow \overline{m} \rightarrow

Shortcomings of $CO₂$ models

State of the art state-to-state (StS) kinetic models of CO₂ are based on SSH:

• Extrapolate badly

 Ω

(□) () (

Shortcomings of $CO₂$ models

State of the art state-to-state (StS) kinetic models of CO₂ are based on SSH:

- **•** Extrapolate badly
- Do not allow multi-quantum jumps

 Ω

◆ ロ ▶ → 何

- **•** Extrapolate badly
- Do not allow multi-quantum jumps
- Dissociation is not handled in the most correct way

 Ω

◆ ロ ▶ → 何

- **•** Extrapolate badly
- Do not allow multi-quantum jumps
- Dissociation is not handled in the most correct way
- Questions regarding coupling of symmetric and bending mode

Recent works rely on SSH models, there is room for improvement.

- **•** Extrapolate badly
- Do not allow multi-quantum jumps
- Dissociation is not handled in the most correct way
- Questions regarding coupling of symmetric and bending mode Recent works rely on SSH models, there is room for improvement.

The gold standard for high-T $CO₂$ IR radiation, CDSD4000:

- **•** Extrapolate badly
- Do not allow multi-quantum jumps
- Dissociation is not handled in the most correct way
- Questions regarding coupling of symmetric and bending mode Recent works rely on SSH models, there is room for improvement.

The gold standard for high-T $CO₂$ IR radiation, CDSD4000:

• Large database

- **•** Extrapolate badly
- Do not allow multi-quantum jumps
- Dissociation is not handled in the most correct way
- Questions regarding coupling of symmetric and bending mode Recent works rely on SSH models, there is room for improvement.

The gold standard for high-T $CO₂$ IR radiation, CDSD4000:

- **•** Large database
- Computationally prohibitive for full spectrum calculations

- **•** Extrapolate badly
- Do not allow multi-quantum jumps
- Dissociation is not handled in the most correct way
- Questions regarding coupling of symmetric and bending mode Recent works rely on SSH models, there is room for improvement.

The gold standard for high-T $CO₂$ IR radiation, CDSD4000:

- **•** Large database
- Computationally prohibitive for full spectrum calculations
- Cannot separate between vib. and rot. modes

A smaller, more compact database is desirable.

- **•** Extrapolate badly
- Do not allow multi-quantum jumps
- Dissociation is not handled in the most correct way
- Questions regarding coupling of symmetric and bending mode Recent works rely on SSH models, there is room for improvement.

The gold standard for high-T $CO₂$ IR radiation, CDSD4000:

- **•** Large database
- Computationally prohibitive for full spectrum calculations
- Cannot separate between vib. and rot. modes

A smaller, more compact database is desirable.

This presentation will showcase new models that curtail these shortcomings

耳目 のなべ

K ロ ▶ K 何 ▶ K 手

K ロ ⊁ K 個 ≯ K 君 ⊁ K 君 ≯

重目 のへぐ

Kinetics

重目 のへぐ

メロト メタト メミト メミト

重目 のへぐ

 \leftarrow \Box \rightarrow \rightarrow \Box \rightarrow

K ロ ▶ K 何 ▶ K

重目 のへぐ

No Potential Energy Surface (PES) of CO_2 accurate up to dissociation. Each mode breaks apart in different ways.

- v_1 : CO₂ + 18.53 eV \rightarrow C + O + O
- v_2 : CO₂ + 11.45 eV \rightarrow C + O₂
- v_3 : CO₂ + 7.42 eV \rightarrow CO + O

Limits allows potential reconstruction by extrapolation of NASA-Ames-2 PES

 Ω

(□) () (

No Potential Energy Surface (PES) of CO_2 accurate up to dissociation. Each mode breaks apart in different ways.

- v_1 : CO₂ + 18.53 eV \rightarrow C + O + O
- v_2 : CO₂ + 11.45 eV \rightarrow C + O₂
- v_3 : CO₂ + 7.42 eV \rightarrow CO + O

Limits allows potential reconstruction by extrapolation of NASA-Ames-2 PES Consider only extreme states

$$
\text{Extreme states} = \begin{cases} \mathsf{v_1}0^00 \\ 0\mathsf{v_2^{l_2}}0 \\ 00^0\mathsf{v_3} \end{cases}
$$

Mixed states $= v_1v_2^{l_2}v_3$

イロメ イ押 トイヨ トイヨメ

Also limit $v_2 = l_2$, otherwise computationally untenable

 $E|E \cap Q$

耳目 のなべ

← ロ ▶ → イ 同 →

Physically consistent extrapolation

 Ω

(□) () (

- Physically consistent extrapolation
- Handles multi quantum jumps

4. 0. 3. 4.

- **Physically consistent extrapolation**
- Handles multi quantum jumps
- $CO₂(X)$ and $CO₂(B)$ modeled through FHO

4 0 F

Ground State Level Manifold

- Low lying levels are obtained through Chédin (1984) polynomial expansion
- Sym. and Asym. stretch high lying levels are obtained through Schrödinger's equation
- **•** Bending levels can be "safely" extrapolated, Quapp (1993)

4 0 F

Ground State Level Manifold

- Low lying levels are obtained through Chédin (1984) polynomial expansion
- Sym. and Asym. stretch high lying levels are obtained through Schrödinger's equation
- **•** Bending levels can be "safely" extrapolated, Quapp (1993)

20

15

 $\mathop{\mathbb{S}}\limits_{\mathsf{u}}$ 10

 $V₁$

$3B_2$ Level Manifold

In Grebenshchikov (2017) some vib. levels of $\mathsf{CO}_2(^3\mathsf{B}_2)$ are tabulated. These are used to obtain the coefficients of the polynomial expression:

$$
E(v_1, v_2, v_3) = \sum_{i=1,2,3} \omega_i v_i + \sum_{i=1,2,3} x_{ii} v_i^2 + x_{12} v_1 v_2 + x_{13} v_1 v_3 + x_{23} v_2 v_3
$$

目目 のない

イロト イ押ト イヨト イ

$3B_2$ Level Manifold

In Grebenshchikov (2017) some vib. levels of $\mathsf{CO}_2(^3\mathsf{B}_2)$ are tabulated. These are used to obtain the coefficients of the polynomial expression:

$$
E(v_1, v_2, v_3) = \sum_{i=1,2,3} \omega_i v_i + \sum_{i=1,2,3} x_{ii} v_i^2 + x_{12} v_1 v_2 + x_{13} v_1 v_3 + x_{23} v_2 v_3
$$

Including the first reactions

- Obtain semi-empirical parameters to fit FHO to known rates
- **•** Extrapolate to the whole level manifold
- No rates for CO $_2(\mathsf{B})$, use the same parameters as CO $_2(\mathsf{X})$

耳目 のなべ

K ロ ▶ K 何 ▶ K 手
VT and VVT

Including the first reactions

- Obtain semi-empirical parameters to fit FHO to known rates
- **•** Extrapolate to the whole level manifold
- No rates for CO $_2(\mathsf{B})$, use the same parameters as CO $_2(\mathsf{X})$

VT and VVT

Including the first reactions

- Obtain semi-empirical parameters to fit FHO to known rates
- **•** Extrapolate to the whole level manifold
- No rates for CO $_2(\mathsf{B})$, use the same parameters as CO $_2(\mathsf{X})$

Model Schematic

重目 のへぐ

(ロ) (d)

 \sim 10 \pm э \mathbf{h} IVT

Including inter-mode (IVT) energy exchanges

$$
P_{\mathsf{IVT}} = P_{\mathsf{VT}}(\mathsf{v}_i \to 0) P_{\mathsf{VT}}(0 \to \mathsf{v}_f)
$$

 v_i and v_f are from different vibrational modes.

The product of probabilities makes $P_{\text{IVT}} \rightarrow 0$ when v_i or v_f grows

 $\log_{10}(K_{\text{IVT}})$ at 5,000 K

K ロ ▶ K 何 ▶ K 日

 Ω

Model Schematic

×

 \mathcal{A} э \mathbf{h} 重目 のへぐ

◆ロト → 伊 ▶

Singlet-Triplet Interaction

Including the interaction between $CO₂(X)$ and $CO₂(B)$.

- The ground and triplet state cross
- The crossing point cannot be accurately determined
- Approximate region indicates the crossing is dominated by the ground state bending mode

Crossing is modeled through Rosen-Zener theory.

*Upper figure is illustrative

 \leftarrow \Box

Singlet-Triplet Interaction

Including the interaction between $CO₂(X)$ and $CO₂(B)$.

- The ground and triplet state cross
- The crossing point cannot be accurately determined
- Approximate region indicates the crossing is dominated by the ground state bending mode

Crossing is modeled through Rosen-Zener theory.

*Upper figure is illustrative

Model Schematic

×

重目 のへぐ

(ロ) (d)

 \mathcal{A} э \mathbf{h}

Pathways to dissociation

*Red line empirical potential

Three pathways for dissociation

← ロ ▶ → イ 同 →

• Ladder climbing dissociation is possible for the ground and triplet state

 Ω

Pathways to dissociation

^{*}Red line empirical potential

Three pathways for dissociation

- Ladder climbing dissociation is possible for the ground and triplet state
- Another cross with a repulsive configuration of a triplet state occurs at 5.85 eV

← ロ ▶ → イ 同 →

 QQ

Pathways to dissociation

*Red line empirical potential

Three pathways for dissociation

- Ladder climbing dissociation is possible for the ground and triplet state
- Another cross with a repulsive configuration of a triplet state occurs at 5.85 eV
- First two paths can be modelled using FHO, the third one through Rosen-Zener theory

← ロ ▶ → イ 同 →

 Ω

Model Schematic

 \mathcal{A} э \sim 重目 のへぐ

 \leftarrow \Box \rightarrow \rightarrow $\overline{\land}$ \rightarrow

The exchange reaction $\mathsf{CO}_2 + \mathsf{O} \longleftrightarrow \mathsf{CO} + \mathsf{O}_2$ should be included. Dean (1973) observed increased $CO₂$ dissociation with increased presence of O atoms.

 $E|E \cap Q \cap Q$

K ロ ▶ K 何 ▶ K

The exchange reaction $\mathsf{CO}_2 + \mathsf{O} \longleftrightarrow \mathsf{CO} + \mathsf{O}_2$ should be included. Dean (1973) observed increased $CO₂$ dissociation with increased presence of O atoms.

- No available state to state reaction rates
- Macroscopic rates available in literature
- **•** Redistribution of macroscopic rate is performed with J. Annaloro (2013) method using $CO₂$ ground state only

耳目 のなべ

The exchange reaction $\mathsf{CO}_2 + \mathsf{O} \longleftrightarrow \mathsf{CO} + \mathsf{O}_2$ should be included. Dean (1973) observed increased $CO₂$ dissociation with increased presence of O atoms.

- No available state to state reaction rates
- Macroscopic rates available in literature
- **•** Redistribution of macroscopic rate is performed with J. Annaloro (2013) method using $CO₂$ ground state only

 $E|E$ Ω

The exchange reaction $\mathsf{CO}_2 + \mathsf{O} \longleftrightarrow \mathsf{CO} + \mathsf{O}_2$ should be included. Dean (1973) observed increased $CO₂$ dissociation with increased presence of O atoms.

- No available state to state reaction rates
- Macroscopic rates available in literature
- **•** Redistribution of macroscopic rate is performed with J. Annaloro (2013) method using $CO₂$ ground state only

A set of state to state CO $_2$ (X,v) + O ${\longleftrightarrow}$ CO + O $_2$ reaction rates is included.

← ロ ⊁ → 何 ▶ → ヨ ▶ →

重目 のへぐ

The set of reactions in Cruden et al. (2018) is also included.

Set of reactions calibrated against EAST experiments

毛目 のへぐ

British

K ロ ▶ K 何 ▶ K 手

Summary

A total of 22566 reactions (with only [ext](#page-52-0)r[em](#page-54-0)[e](#page-52-0) [s](#page-53-0)[t](#page-54-0)[at](#page-21-0)[e](#page-22-0)[s](#page-53-0)[\)](#page-54-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ [할 날 수 있어

Test Cases

重目 のへぐ

メロトメ 倒下 メミトメ

0D Isotherm. in pure $CO₂$ (no dissociation), $T_v = 300$ K and 2 kPa, $T_q = 10,000$ K

イロメ イ何 ト イヨ ト イヨ

重目 のへぐ

0D Isotherm. in pure CO_2 (no dissociation), $T_v = 300$ K and 2 kPa, $T_q = 10,000$ K

 $E \cap Q$

K ロ ▶ K 何 ▶ K 手

0D Isotherm. in pure CO₂ (no dissociation), $T_v = 300$ K and 2 kPa, $T_a = 10,000$ K

耳目 のなべ

K ロ ▶ K 何 ▶ K ヨ ▶ K

0D Isotherm. in pure CO_2 (no dissociation), $T_v = 300$ K and 2 kPa, $T_q = 10,000$ K

 Ω

毛目 のへぐ

 \leftarrow \Box \rightarrow \rightarrow \overline{m} \rightarrow

- Temperature (Boltzmann fitted) evolution indicates internal modes follow isothermal case
- \bullet CO₂ + O \longleftrightarrow CO + O₂ dominates $CO₂$ decomposition
- O atoms are created through $CO₂ + M \longleftrightarrow CO + O + M$ which then accelerate the $CO₂ + O$ collision

 $E \cap Q$

(□) () →

- **•** Temperature (Boltzmann fitted) evolution indicates internal modes follow isothermal case
- \bullet CO₂ + O \longleftrightarrow CO + O₂ dominates $CO₂$ decomposition
- O atoms are created through $CO₂ + M \longleftrightarrow CO + O + M$ which then accelerate the $CO₂ + O$ collision

4. 0. 3.

- **•** Temperature (Boltzmann fitted) evolution indicates internal modes follow isothermal case
- \bullet CO₂ + O \longleftrightarrow CO + O₂ dominates $CO₂$ decomposition
- O atoms are created through $CO₂ + M \longleftrightarrow CO + O + M$ which then accelerate the $CO₂ + O$ collision

Dissociated 1000K $CO₂$ gas at 1 bar

э \sim ミミ めんび

K ロ ⊁ K 何 ⊁

Dissociated 1000K $CO₂$ gas at 1 bar

- Analogous to a recombination exp.
- Typical recomb. time scale in exp. measurements is ms
- Depending on the chosen $CO_2 + O \longleftrightarrow CO + O_2$ rate, recombination occurs at $10⁵$ or 10^{-3} seconds

 $E = \Omega Q$

← ロ ▶ → イ 同 →

Dissociated 1000K $CO₂$ gas at 1 bar

- Analogous to a recombination exp.
- Typical recomb. time scale in exp. measurements is ms
- Depending on the chosen $CO_2 + O \longleftrightarrow CO + O_2$ rate, recombination occurs at $10⁵$ or 10^{-3} seconds

o Varga rate

4 0 F

Case $4: CO₂$ Decomposition Time

- Shots in VUT-1 shock tube at MIPT (Moscow, Russia)
- \bullet ESA TRP CFD validation in a CO₂ environment, 2008.
- VUV lamp used to assess relative concentration of $CO₂(X)$ by absorption

4 0 F

 Ω

Case 4: $CO₂$ Decomposition Time

- Shots in VUT-1 shock tube at MIPT (Moscow, Russia)
- \bullet ESA TRP CFD validation in a CO₂ environment, 2008.
- VUV lamp used to assess relative concentration of $CO₂(X)$ by absorption

- Typical time scale 1-40 μ s
- Macroscopic model always predicts $< 2 \mu s$
- StS model provides correct shock-velocity trends and overpredicts decomposition times by 50-100[%](#page-66-0) $\overline{}$ $E|E \cap Q$

Radiation

重目 のへぐ

K ロ ⊁ K 倒 ≯ K

∍ \sim \sim CDSD4000 will be used to refit a vibrationally specific $CO₂$ IR database

Dubbed CDSDv, this database will feature:

 $E \cap Q$

← ロ ▶ → イ 同 →

CDSD4000 will be used to refit a vibrationally specific $CO₂$ IR database

Dubbed CDSDv, this database will feature:

Separation between rotational and vibrational modes

 $E \cap Q$

← ロ ▶ → イ 同 →

CDSD4000 will be used to refit a vibrationally specific $CO₂$ IR database

Dubbed CDSDv, this database will feature:

- Separation between rotational and vibrational modes
- Can be coupled to kinetic solver

$$
\frac{dN_i}{dt} = \sum_j K_{ij} N_i N_j - \sum_j K_{ji} N_j N_i - \sum_j A_{ij} N_i
$$

4 0 F

 $= \Omega Q$
CDSD4000 will be used to refit a vibrationally specific $CO₂$ IR database

Dubbed CDSDv, this database will feature:

- Separation between rotational and vibrational modes
- Can be coupled to kinetic solver

$$
\frac{dN_i}{dt} = \sum_j K_{ij} N_i N_j - \sum_j K_{ji} N_j N_i - \sum_j A_{ij} N_i
$$

e Reconstruction of ro-vibrational data

CDSD4000 will be used to refit a vibrationally specific $CO₂$ IR database

Dubbed CDSDv, this database will feature:

- Separation between rotational and vibrational modes
- Can be coupled to kinetic solver

$$
\frac{dN_i}{dt} = \sum_j K_{ij} N_i N_j - \sum_j K_{ji} N_j N_i - \sum_j A_{ij} N_i
$$

e Reconstruction of ro-vibrational data

Will lose detail: not suitable for detailed spectroscopy, perturbations will not be accounted for.

ミミ りょい

Fit ro-vibrational energy levels:

$$
E_{vJ} = G_v + B_v[J(J+1)] - D_v[J(J+1)]^2 + H_v[J(J+1)]^3
$$

重目 のへぐ

メロメ メタメ メミメ メ

Fit ro-vibrational energy levels:

$$
E_{vJ} = G_v + B_v[J(J+1)] - D_v[J(J+1)]^2 + H_v[J(J+1)]^3
$$

 $E = \Omega Q$ B

(ロ) (d)

Fit ro-vibrational energy levels:

$$
E_{vJ} = G_v + B_v[J(J+1)] - D_v[J(J+1)]^2 + H_v[J(J+1)]^3
$$

Fit ro-vibrational energy levels:

$$
E_{vJ} = G_v + B_v[J(J+1)] - D_v[J(J+1)]^2 + H_v[J(J+1)]^3
$$

$$
A_{v''}^{v'} \times F_{J',J''} = \frac{A_{v''J''}^{v'J'}}{S_{l''J''}^{l'J'}}
$$

- $A_{v^{\prime\prime}}^{v^{\prime}}$ –Vibrational Einstein coefficients
- $F_{J',J''}$ -Herman-Wallis factors
- $A_{v^{\prime\prime}J^{\prime\prime}}^{v^{\prime}J^{\prime\prime}}$ –Ro-vibrational Einstein coefficients

K ロ ▶ K 何 ▶ K 三 ▶ K

- $S^{l'J'}_{l''J''}$ –Hönl-London factors
- RHS is obtained through reading databases
- LHS is a polynomial expansion

毛目 のへぐ

$$
A_{v''}^{v'} \times F_{J',J''} = \frac{A_{v'',J''}^{v'J'}}{S_{l''J''}^{l'J'}}
$$

- $A_{v^{\prime\prime}}^{v^{\prime}}$ –Vibrational Einstein coefficients
- $F_{J',J''}$ -Herman-Wallis factors
- $A_{v^{\prime\prime}J^{\prime\prime}}^{v^{\prime}J^{\prime\prime}}$ –Ro-vibrational Einstein coefficients
- $S^{l'J'}_{l''J''}$ –Hönl-London factors
- RHS is obtained through reading databases
- LHS is a polynomial expansion
- Ro-vibrational transitions have branches and polynomial coefficients are shared

毛目 のへぐ

K ロ ▶ K 何 ▶ K ヨ ▶ K

$$
A_{v''}^{v'} \times F_{J',J''} = \frac{A_{v'',J''}^{v'J'}}{S_{l''J''}^{l'J'}}
$$

- $A_{v^{\prime\prime}}^{v^{\prime}}$ –Vibrational Einstein coefficients
- $F_{J',J''}$ -Herman-Wallis factors
- $A_{v^{\prime\prime}J^{\prime\prime}}^{v^{\prime}J^{\prime\prime}}$ –Ro-vibrational Einstein coefficients
- $S^{l'J'}_{l''J''}$ –Hönl-London factors
- RHS is obtained through reading databases
- LHS is a polynomial expansion
- Ro-vibrational transitions have branches and polynomial coefficients are shared

Each transition is fitted for every branch "simultaneously"

耳目 のなべ

イロメ イ何 ト イヨ ト イヨ

Some examples of transition fitting.

- Transitions 00011→00001 and $01111 \rightarrow 01101$ (e and f)
- **•** Perturbed data was removed prior to fitting.
- Data was truncated at convenient J

Some examples of transition fitting.

- \bullet Transitions 00011 \rightarrow 00001 and $01111 \rightarrow 01101$ (e and f)
- **•** Perturbed data was removed prior to fitting.
- Data was truncated at convenient J

4. 0. 3.

 Ω

Some examples of transition fitting.

- Transitions 00011→00001 and $01111 \rightarrow 01101$ (e and f)
- **•** Perturbed data was removed prior to fitting.
- Data was truncated at convenient J

← ロ ▶ → イ 同 →

 Ω

Some examples of transition fitting.

- Transitions 00011→00001 and $01111 \rightarrow 01101$ (e and f)
- Perturbed data was removed prior to fitting.
- Data was truncated at convenient J

CDSD P data CDSD Q data CDSD R data P branch fit Q branch fit R branch fit

Ein stein Acoefficie nt/ Sl 0J 0 l00^J 00, ^s 1

Reconstructed Einstein coefficients of transitions $00011 \rightarrow 00001$ (top) and $01111 \rightarrow 01101$ (bottom).

Comparison with CDSD4000 and HITRAN values.

Perturbed data is not reproduced and does not affect fitting

 $E \cap Q$

← ロ ▶ → イ 同 →

Reconstruction of Einstein Coefficients

Reconstructed Einstein coefficients of transitions $00011 \rightarrow 00001$ (top) and $01111 \rightarrow 01101$ (bottom).

Comparison with CDSD4000 and HITRAN values.

Perturbed data is not reproduced and does not affect fitting

4 0 F

 Ω

Reconstruction of Einstein Coefficients

Reconstructed Einstein coefficients of transitions $00011 \rightarrow 00001$ (top) and $01111 \rightarrow 01101$ (bottom).

Comparison with CDSD4000 and HITRAN values.

Perturbed data is not reproduced and does not affect fitting

In CDSD4000:

- Semi empirical expressions
- **Only Air and Self broadening**
- From reference p and T values

 $E \cap Q$

◆ ロ ▶ → 何

In CDSD4000:

- **•** Semi empirical expressions
- Only Air and Self broadening
- From reference p and T values

In CDSDv:

- **•** Generalized expressions, effect dependant
- Can be used for any mixture

4. 0. 3.

 $= \Omega Q$

In CDSD4000:

- **•** Semi empirical expressions
- **Only Air and Self broadening**
- From reference p and T values

In CDSDv:

- **•** Generalized expressions, effect dependant
- Can be used for any mixture

4. 0. 3. 4.

 Ω

In CDSD4000:

- **•** Semi empirical expressions
- Only Air and Self broadening
- From reference p and T values

In CDSDv:

- **•** Generalized expressions, effect dependant
- Can be used for any mixture

K ロ ▶ K 何 ▶ K 手

耳目 のなべ

296K

э

1000K

э

2000K

3000K

∢ ロ ≯ ∢ 伊 ≯

Test Cases

重目 のへぐ

メロメ メタメ メミメメ

Measurements of IR radiation were carried out in JAXA facility by Takaynagi et al. (2018). Pannier and Laux (2019) performed a numerical analysis repeated here.

 $E \cap Q$

← ロ ▶ → イ 同 →

Case 1: JAXA Mars Entry

Measurements of IR radiation were carried out in JAXA facility by Takaynagi et al. (2018). Pannier and Laux (2019) performed a numerical analysis repeated here.

- \bullet 4.3 μ m region
- Line of sight 7 cm long simplified into 3 zones
- 1st and 3rd cell are free flow zones. low pressure, non-eq.
- 2nd cell is the forebody cell, high pressure and temperature, no $CO₂$

4. 0. 3.

Case 1: JAXA Mars Entry

Measurements of IR radiation were carried out in JAXA facility by Takaynagi et al. (2018). Pannier and Laux (2019) performed a numerical analysis repeated here.

- \bullet 4.3 μ m region
- Line of sight 7 cm long simplified into 3 zones
- 1st and 3rd cell are free flow zones. low pressure, non-eq.
- 2nd cell is the forebody cell, high pressure and temperature, no $CO₂$

Campaign at EAST - Mars Science Laboratory conditions

- Shock at 3.69 km/s
- \bullet 1 Torr, 97% CO₂
- \bullet 4.3 μ m spectral region
- Peak Temperature at 3050 K

Simulation profile kindly shared by B. Cruden.

目目 のない

← ロ ▶ → イ 同 →

Campaign at EAST - Mars Science Laboratory conditions

- Shock at 3.69 km/s
- \bullet 1 Torr, 97% CO₂
- \bullet 4.3 μ m spectral region

• Peak Temperature at 3050 K Simulation profile kindly shared by B. Cruden.

4. 0. 3. 4.

 209

 $CO₂$ Atmospheric plasma torch at 1,000–5,000K, work of Depraz et al. (2012)

- 2.7 and 4.3 μ m regions probed
- Measurements at $h = 6, 20$ mm
- **•** Torch radial profile is divided into 10 cells

Radiative Transfer with $CDSDv + CO$ in the central chord: line of sight is taken as the full diameter of the torch.

 Ω

Case 3: Atmospheric Plasma Torch

 $CO₂$ Atmospheric plasma torch at 1,000–5,000K, work of Depraz et al. (2012)

- 2.7 and 4.3 μ m regions probed
- Measurements at $h = 6, 20$ mm
- **•** Torch radial profile is divided into 10 cells

Radiative Transfer with $CDSDv + CO$ in the central chord: line of sight is taken as the full diameter of the torch.

4 0 F

Case 3: Atmospheric Plasma Torch

 $CO₂$ Atmospheric plasma torch at 1,000–5,000K, work of Depraz et al. (2012)

- 2.7 and 4.3 μ m regions probed
- Measurements at $h = 6, 20$ mm
- **•** Torch radial profile is divided into 10 cells

Radiative Transfer with $CDSDv + CO$ in the central chord: line of sight is taken as the full diameter of the torch.

 Ω

Conclusions

重目 のへぐ

K ロ ⊁ K 何 ⊁

 \mathcal{A} ∍ \sim \sim A more physically consistent approach to $CO₂$ dissociation has been presented

重目 のへぐ

メロメ メタメ メミメ メ

- \bullet A more physically consistent approach to $CO₂$ dissociation has been presented
	- Step-up from SSH-based models

 $E \cap Q$

K ロ ▶ K 何 ▶
- \bullet A more physically consistent approach to $CO₂$ dissociation has been presented
	- Step-up from SSH-based models
	- Inclusion of ${}^{3}B_{2}$ state

 $E \cap Q$

K ロ ▶ K 何 ▶ K

- \bullet A more physically consistent approach to $CO₂$ dissociation has been presented
	- Step-up from SSH-based models
	- Inclusion of ${}^{3}B_{2}$ state
	- Displayed physically consistent though not 100% predictive results

 $E \cap Q$

← ロ ▶ → イ 同 →

- \bullet A more physically consistent approach to $CO₂$ dissociation has been presented
	- Step-up from SSH-based models
	- Inclusion of ${}^{3}B_{2}$ state
	- Displayed physically consistent though not 100% predictive results
	- Lots of room for improvement

目目 のない

K ロ ▶ K 何 ▶ K

- \bullet A more physically consistent approach to $CO₂$ dissociation has been presented
	- Step-up from SSH-based models
	- Inclusion of ${}^{3}B_{2}$ state
	- Displayed physically consistent though not 100% predictive results
	- Lots of room for improvement

 $E \cap Q$

- \bullet A more physically consistent approach to $CO₂$ dissociation has been presented
	- Step-up from SSH-based models
	- Inclusion of ${}^{3}B_{2}$ state
	- Displayed physically consistent though not 100% predictive results
	- Lots of room for improvement

- A CO $_{\rm 2}$ IR radiation database was presented
	- Refitting method is universal

ミミ りょい

K ロ ▶ K 何 ▶ K

- \bullet A more physically consistent approach to $CO₂$ dissociation has been presented
	- Step-up from SSH-based models
	- Inclusion of ${}^{3}B_{2}$ state
	- Displayed physically consistent though not 100% predictive results
	- Lots of room for improvement

- A CO $_{\rm 2}$ IR radiation database was presented
	- Refitting method is universal
	- Broadening calculation is more flexible

ミミ りょい

K ロ ▶ K 何 ▶ K

- \bullet A more physically consistent approach to $CO₂$ dissociation has been presented
	- Step-up from SSH-based models
	- Inclusion of ${}^{3}B_{2}$ state
	- Displayed physically consistent though not 100% predictive results
	- Lots of room for improvement

- Refitting method is universal
- Broadening calculation is more flexible
- \bullet In the 4.3 μ m region, reduction from 81M to 5M lines

 $E|E$ narr

K ロ ▶ | K 何 ▶ | K ヨ ▶

- \bullet A more physically consistent approach to $CO₂$ dissociation has been presented
	- Step-up from SSH-based models
	- Inclusion of ${}^{3}B_{2}$ state
	- Displayed physically consistent though not 100% predictive results
	- Lots of room for improvement

- Refitting method is universal
- Broadening calculation is more flexible
- \bullet In the 4.3 μ m region, reduction from 81M to 5M lines
- CDSDv database is 16.6 MB compared to CDSD4000 16 GB

毛目 のへぐ

イロト イラト・モト

- \bullet A more physically consistent approach to $CO₂$ dissociation has been presented
	- Step-up from SSH-based models
	- Inclusion of ${}^{3}B_{2}$ state
	- Displayed physically consistent though not 100% predictive results
	- Lots of room for improvement

- Refitting method is universal
- Broadening calculation is more flexible
- \bullet In the 4.3 μ m region, reduction from 81M to 5M lines
- CDSDv database is 16.6 MB compared to CDSD4000 16 GB
- Reasonable agreement with experiments and calculations

 $E|E$ narr

イロメ イ何 ト イヨ ト イヨ

- \bullet A more physically consistent approach to $CO₂$ dissociation has been presented
	- Step-up from SSH-based models
	- Inclusion of ${}^{3}B_{2}$ state
	- Displayed physically consistent though not 100% predictive results
	- Lots of room for improvement

- Refitting method is universal
- Broadening calculation is more flexible
- \bullet In the 4.3 μ m region, reduction from 81M to 5M lines
- CDSDv database is 16.6 MB compared to CDSD4000 16 GB
- Reasonable agreement with experiments and calculations
- Significant performance enhancement

 $E|E \cap Q$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Kinetics

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ [활]릭 19 Q @

Kinetics

Different collision partners

K ロ > K 何 > K ヨ > K ヨ > (ヨ = K) Q Q O

Kinetics

- Different collision partners
- **·** Improve intermode transition rates

K ロ ▶ K 御 ▶ K 경 ▶ K 경

重目 のへぐ

Kinetics

- Different collision partners
- Improve intermode transition rates
- Inclusion of radiative processes

British

K ロ ▶ K 何 ▶ K 日

重目 のへぐ

Kinetics

- **•** Different collision partners
- Improve intermode transition rates
- Inclusion of radiative processes
- Uncertainty $CO_2 + O \longleftrightarrow CO + O_2$

重目 のへぐ

British

K ロ ▶ K 何 ▶ K 手

Kinetics

- **•** Different collision partners
- **·** Improve intermode transition rates
- Inclusion of radiative processes
- Uncertainty $CO_2 + O \longleftrightarrow CO + O_2$
- Reduced order modelling

耳目 のなべ

Kinetics

- **•** Different collision partners
- Improve intermode transition rates
- Inclusion of radiative processes
- Uncertainty $CO_2 + O \longleftrightarrow CO + O_2$
- Reduced order modelling
- Experimental validation

Radiation

耳目 のなべ

Kinetics

- **•** Different collision partners
- Improve intermode transition rates
- Inclusion of radiative processes
- Uncertainty $CO_2 + O \longleftrightarrow CO + O_2$
- Reduced order modelling
- Experimental validation

Radiation

• Adding a C/J or $C/(J+1)$ term on Herman-Wallis expressions

耳目 のなべ

Kinetics

- Different collision partners
- Improve intermode transition rates
- Inclusion of radiative processes
- Uncertainty $CO_2 + O \longleftrightarrow CO + O_2$
- Reduced order modelling
- Experimental validation

Radiation

- Adding a C/J or $C/(J+1)$ term on Herman-Wallis expressions
- Add more transitions, 2.7 and 4.3 μ m regions

重目 のへぐ

K ロ ▶ K 何 ▶ K

Kinetics

- Different collision partners
- **·** Improve intermode transition rates
- Inclusion of radiative processes
- Uncertainty $CO_2 + O \longleftrightarrow CO + O_2$
- Reduced order modelling
- Experimental validation

Radiation

- Adding a C/J or $C/(J+1)$ term on Herman-Wallis expressions
- Add more transitions, 2.7 and 4.3 μ m regions
- Apply CDSDv to cases with different mixtures of gases

 $E|E \cap Q$

Kinetics

- Different collision partners
- **·** Improve intermode transition rates
- Inclusion of radiative processes
- Uncertainty $CO_2 + O \longleftrightarrow CO + O_2$
- Reduced order modelling
- Experimental validation

Radiation

- Adding a C/J or $C/(J+1)$ term on Herman-Wallis expressions
- Add more transitions, 2.7 and 4.3 μ m regions
- Apply CDSDv to cases with different mixtures of gases
- Fitting of CDSDv to emission spectra

 $E|E \cap Q$

イロメ イ何 ト イヨ ト イヨ

There is still a lot of multi-disciplinary work to be done. It is my hope this work can be used as a reference point for further developments.

K ロ ▶ K 何 ▶ K

ミミ めんび

There is still a lot of multi-disciplinary work to be done. It is my hope this work can be used as a reference point for further developments.

Would like to finish by acknowledging the role of other people in this work, some of whom are here present. Thank you

 $E \cap Q$

There is still a lot of multi-disciplinary work to be done. It is my hope this work can be used as a reference point for further developments.

Would like to finish by acknowledging the role of other people in this work, some of whom are here present. Thank you

Partition Function

Partition function:

- **Can be recovered from level** database.
- Matches literature values for most of the temperature range.

Temperature, K

João Vargas High-Temperature Non-Equilibrium CO₂

Dissociation of $CO₂$

0D simulation, 3.69 km/s shock, 1 Torr in pure $CO₂$

 \Box

 $CO + O₂ \longleftrightarrow CO₂ + O$

Note that I only performed inversion on Sharipov and Va[rga](#page-133-0)-ra[te](#page-133-0)[s](#page-134-0)

 $= \Omega Q$

More $CO + O_2 \longleftrightarrow CO_2 + O$

Rates already included:

$$
\bullet \ CO_2(X,v) + O(^3P) \longleftrightarrow CO(X) + O_2(X)
$$

$$
\bullet \ CO_2(X,v) + O(^1D) \longleftrightarrow CO(X) + O_2(X)
$$

$$
\bullet \ CO_2(X,v) + C \longleftrightarrow CO(X) + CO(X)
$$

Other candidate rates to include:

$$
\bullet \ \text{CO(a)} + \text{O}_2(\text{X}) \longleftrightarrow \text{CO}_2 + \text{O}(^{3}\text{P})
$$

$$
\bullet \ \text{CO(X)} + \text{O}_2(\text{a}) \longleftrightarrow \text{CO}_2 + \text{O}(^1\text{D})
$$

$$
\bullet \ \mathrm{O}_2(\mathsf{a}) + \mathsf{M} \longleftrightarrow \mathrm{O}_2(\mathsf{b}) + \mathsf{M}
$$

$$
\bullet \ \mathsf{O}_2(\mathsf{b}) + \mathsf{O}_2(\mathsf{X}) \longleftrightarrow \mathsf{O}_2(\mathsf{a}) + \mathsf{O}_2(\mathsf{a})
$$

 \bullet CO(a) + CO \longleftrightarrow CO₂ + C

重目 のへぐ

メロメ オ何 トメ ミト メミト

5,000 K

10,000 K

メロト メタト メミト メミト

重目 のへぐ

重目 のへぐ

 $\mathbb{B} \rightarrow \mathbb{R} \oplus \mathbb{R}$

K ロ ⊁ K 倒 ≯ K

Performance

K ロ > K 何 > K ヨ > K ヨ > (ヨ = K) Q Q O

Some Transmittance Results

重目 のへぐ

K ロ ⊁ K 倒 ≯ K

∍ \mathbf{h} \sim ÷

Einstein Coefficients

э \sim \sim 重目 のへぐ

Polyads

×

 \sim

Prospective Shock-Tube Experiments

- Good experimental data still needed these days
- New experiments may bring more insight. A mix of time-dependent emission and absorption spectroscopy is very promising.
	- **CO₂** IR radiative emission
	- **CO IR radiative emission**
	- probing $O(^3P)$; $O(^1D)$ from the 130nm O transition. Is this possible?
	- probing $O₂$ from Schumann-Runge transition
- Dissociation and incubation times

4. 0. 3.
- Complementary to shock tubes, microwave plasmas and plasma torches can also contribute
- In addition to previous diagnostics:
	- \bullet CO₂ Chemiluminescence bands
	- Raman spectroscopy (?)
- Recombination experiments
- Relative high-T and steady state

← ロ ▶ → イ 同 →

 Ω