High-Temperature Non-Equilibrium CO₂ Kinetic and Radiation Processes

João Vargas

13th November 2020, PhD Defense

João Vargas

High-Temperature Non-Equilibrium CO2

A B A B
 A B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• Exploration: 6 missions launched in 2020, 3 to land in 2021

Image credit: JPL, jpl.nasa.gov

-

• Exploration: 6 missions launched in 2020, 3 to land in 2021

• Mars is a challenging planet to land: Thin atmosphere, mostly composed of CO₂

A D > <
 A P >
 A

Image credit: JPL, jpl.nasa.gov

Image credit: JPL, jpl.nasa.gov

- Exploration: 6 missions launched in 2020, 3 to land in 2021
- Mars is a challenging planet to land: Thin atmosphere, mostly composed of CO₂
- Need to account for convective and radiative heating

A D > <
 A P >
 A

Heatshield design

Relevance of CO_2 IR radiative heating only recognized in recent years

Image credit: Sahai, 2019

Relevance of CO_2 IR radiative heating only recognized in recent years

Image credit: Sahai, 2019

Radiation and kinetics are tightly coupled in atmospheric entry flows

Relevance of CO_2 IR radiative heating only recognized in recent years

Image credit: Sahai, 2019

Radiation and kinetics are tightly coupled in atmospheric entry flows

Image credit: Sahai, 2019

A D > <
 A P >
 A

Detailed models are required which can be translated to engineering design tools

Macroscopic:

• Assumed internal distribution characterized by a temperature

Macroscopic:

• Assumed internal distribution characterized by a temperature

State-to-State

• Internal states are treated individually

A D > <
 A P >
 A

Macroscopic:

• Assumed internal distribution characterized by a temperature

State-to-State

• Internal states are treated individually

Macroscopic:

• Assumed internal distribution characterized by a temperature

State-to-State

• Internal states are treated individually

Shortcomings of CO₂ models

State of the art state-to-state (StS) kinetic models of CO_2 are based on SSH:

A D > <
 A P >
 A

Shortcomings of CO₂ models

State of the art state-to-state (StS) kinetic models of CO_2 are based on SSH:

• Extrapolate badly

Shortcomings of CO₂ models

State of the art state-to-state (StS) kinetic models of CO_2 are based on SSH:

- Extrapolate badly
- Do not allow multi-quantum jumps

- Extrapolate badly
- Do not allow multi-quantum jumps
- Dissociation is not handled in the most correct way

- Extrapolate badly
- Do not allow multi-quantum jumps
- Dissociation is not handled in the most correct way
- Questions regarding coupling of symmetric and bending mode

Recent works rely on SSH models, there is room for improvement.

- Extrapolate badly
- Do not allow multi-quantum jumps
- Dissociation is not handled in the most correct way
- Questions regarding coupling of symmetric and bending mode Recent works rely on SSH models, there is room for improvement.

The gold standard for high-T CO₂ IR radiation, CDSD4000:

- Extrapolate badly
- Do not allow multi-quantum jumps
- Dissociation is not handled in the most correct way
- Questions regarding coupling of symmetric and bending mode Recent works rely on SSH models, there is room for improvement.

The gold standard for high-T CO_2 IR radiation, CDSD4000:

Large database

- Extrapolate badly
- Do not allow multi-quantum jumps
- Dissociation is not handled in the most correct way
- Questions regarding coupling of symmetric and bending mode Recent works rely on SSH models, there is room for improvement.

The gold standard for high-T CO_2 IR radiation, CDSD4000:

- Large database
- Computationally prohibitive for full spectrum calculations

- Extrapolate badly
- Do not allow multi-quantum jumps
- Dissociation is not handled in the most correct way
- Questions regarding coupling of symmetric and bending mode Recent works rely on SSH models, there is room for improvement.

The gold standard for high-T CO₂ IR radiation, CDSD4000:

- Large database
- Computationally prohibitive for full spectrum calculations
- Cannot separate between vib. and rot. modes

A smaller, more compact database is desirable.

- Extrapolate badly
- Do not allow multi-quantum jumps
- Dissociation is not handled in the most correct way
- Questions regarding coupling of symmetric and bending mode Recent works rely on SSH models, there is room for improvement.

The gold standard for high-T CO_2 IR radiation, CDSD4000:

- Large database
- Computationally prohibitive for full spectrum calculations
- Cannot separate between vib. and rot. modes

A smaller, more compact database is desirable.

This presentation will showcase new models that curtail these shortcomings

A D N A B N A B

Outline

2 Kinetics• Test Cases

4 Conclusions

三日 のへで

э

Image: A math a math

Kinetics

三日 のへの

イロト イヨト イヨト イヨ

ELE NOR

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

ELE NOR

A B > 4
 B > 4
 B

No Potential Energy Surface (PES) of CO_2 accurate up to dissociation. Each mode breaks apart in different ways.

- $\bullet \ v_1 : \ CO_2 \, + \, 18.53 \ eV \rightarrow C \, + \, O \, + \, O$
- $\bullet \ v_2 : \ \mathsf{CO}_2 \, + \, 11.45 \ \mathsf{eV} \rightarrow \mathsf{C} \, + \, \mathsf{O}_2$
- $\bullet \ v_3 : \ CO_2 \, + \, 7.42 \ eV \rightarrow CO \, + \, O$

Limits allows potential reconstruction by extrapolation of NASA-Ames-2 PES

4 D b 4 6 b

No Potential Energy Surface (PES) of CO_2 accurate up to dissociation. Each mode breaks apart in different ways.

- $\bullet \ v_1 : \ CO_2 \, + \, 18.53 \ eV \rightarrow C \, + \, O \, + \, O$
- $\bullet \ v_2 : \ \mathsf{CO}_2 \, + \, 11.45 \ \mathsf{eV} \rightarrow \mathsf{C} \, + \, \mathsf{O}_2$
- $\bullet \ v_3 : \ CO_2 \, + \, 7.42 \ eV \rightarrow CO \, + \, O$

Limits allows potential reconstruction by extrapolation of NASA-Ames-2 PES

Consider only extreme states

Extreme states =
$$\begin{cases} \mathsf{v}_1 0^{0} 0\\ 0 \mathsf{v}_2^{l_2} 0\\ 0 0^0 \mathsf{v}_3 \end{cases}$$

Mixed states = $v_1 v_2^{l_2} v_3$

Also limit $v_2 = l_2$, otherwise computationally untenable

ELE NOR

ELE NOR

• • • • • • • • • • • • •

• Physically consistent extrapolation

ELE NOR

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Physically consistent extrapolation
- Handles multi quantum jumps

A D > <
 A P >

- Physically consistent extrapolation
- Handles multi quantum jumps
- $CO_2(X)$ and $CO_2(B)$ modeled through FHO

Ground State Level Manifold

- Low lying levels are obtained through Chédin (1984) polynomial expansion
- Sym. and Asym. stretch high lying levels are obtained through Schrödinger's equation
- Bending levels can be "safely" extrapolated, Quapp (1993)

Ground State Level Manifold

- Low lying levels are obtained through Chédin (1984) polynomial expansion
- Sym. and Asym. stretch high lying levels are obtained through Schrödinger's equation
- Bending levels can be "safely" extrapolated, Quapp (1993)

15

€ 10 Ш

P3+0(PP1+0(PD

V₁

³B₂ Level Manifold

In Grebenshchikov (2017) some vib. levels of $CO_2({}^3B_2)$ are tabulated. These are used to obtain the coefficients of the polynomial expression:

$$E(v_1, v_2, v_3) = \sum_{i=1,2,3} \omega_i v_i + \sum_{i=1,2,3} x_{ii} v_i^2 + x_{12} v_1 v_2 + x_{13} v_1 v_3 + x_{23} v_2 v_3$$

A D > <
 A P >

³B₂ Level Manifold

In Grebenshchikov (2017) some vib. levels of $CO_2({}^3B_2)$ are tabulated. These are used to obtain the coefficients of the polynomial expression:

$$E(v_1, v_2, v_3) = \sum_{i=1,2,3} \omega_i v_i + \sum_{i=1,2,3} x_{ii} v_i^2 + x_{12} v_1 v_2 + x_{13} v_1 v_3 + x_{23} v_2 v_3$$

Including the first reactions

- Obtain semi-empirical parameters to fit FHO to known rates
- Extrapolate to the whole level manifold
- No rates for $CO_2(B)$, use the same parameters as $CO_2(X)$

I= nac

A B A B
 A B
 A B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 B
 A
 A
VT and VVT

Including the first reactions

- Obtain semi-empirical parameters to fit FHO to known rates
- Extrapolate to the whole level manifold
- No rates for $CO_2(B)$, use the same parameters as $CO_2(X)$

A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

VT and VVT

Including the first reactions

- Obtain semi-empirical parameters to fit FHO to known rates
- Extrapolate to the whole level manifold
- No rates for CO₂(B), use the same parameters as CO₂(X)

Model Schematic

1= 9QC

A B +
 A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

IVT

Including inter-mode (IVT) energy exchanges

$$P_{\mathsf{IVT}} = P_{\mathsf{VT}}(\mathsf{v}_i \to 0) P_{\mathsf{VT}}(0 \to \mathsf{v}_f)$$

 v_i and v_f are from different vibrational modes.

The product of probabilities makes $P_{IVT} \rightarrow 0$ when v_i or v_f grows

 $\log_{10}(K_{\rm IVT})$ at 5,000 K

Model Schematic

= 9QC

A B +
 A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Singlet-Triplet Interaction

Including the interaction between $CO_2(X)$ and $CO_2(B)$.

- The ground and triplet state cross
- The crossing point cannot be accurately determined
- Approximate region indicates the crossing is dominated by the ground state bending mode

Crossing is modeled through Rosen-Zener theory.

*Upper figure is illustrative

Singlet-Triplet Interaction

Including the interaction between $CO_2(X)$ and $CO_2(B)$.

- The ground and triplet state cross
- The crossing point cannot be accurately determined
- Approximate region indicates the crossing is dominated by the ground state bending mode

Crossing is modeled through Rosen-Zener theory.

*Upper figure is illustrative

Model Schematic

1= 9QC

A B +
 A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Pathways to dissociation

*Red line empirical potential

Three pathways for dissociation

A D > <
 A P >
 A

• Ladder climbing dissociation is possible for the ground and triplet state

Pathways to dissociation

*Red line empirical potential

Three pathways for dissociation

- Ladder climbing dissociation is possible for the ground and triplet state
- Another cross with a repulsive configuration of a triplet state occurs at 5.85 eV

A D > <
 A P >
 A

Pathways to dissociation

*Red line empirical potential

Three pathways for dissociation

- Ladder climbing dissociation is possible for the ground and triplet state
- Another cross with a repulsive configuration of a triplet state occurs at 5.85 eV
- First two paths can be modelled using FHO, the third one through Rosen-Zener theory

A D > <
 A P >
 A

Model Schematic

-

The exchange reaction $CO_2 + O \leftrightarrow CO + O_2$ should be included. Dean (1973) observed increased CO_2 dissociation with increased presence of O atoms.

I= nac

A B A B
 A B
 A B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 B
 A
 A

Exchange Reactions

The exchange reaction $CO_2 + O \leftrightarrow CO + O_2$ should be included. Dean (1973) observed increased CO_2 dissociation with increased presence of O atoms.

- No available state to state reaction rates
- Macroscopic rates available in literature
- Redistribution of macroscopic rate is performed with J. Annaloro (2013) method using CO₂ ground state only

Exchange Reactions

The exchange reaction $CO_2 + O \leftrightarrow CO + O_2$ should be included. Dean (1973) observed increased CO_2 dissociation with increased presence of O atoms.

- No available state to state reaction rates
- Macroscopic rates available in literature
- Redistribution of macroscopic rate is performed with J. Annaloro (2013) method using CO₂ ground state only

Exchange Reactions

The exchange reaction $CO_2 + O \leftrightarrow CO + O_2$ should be included. Dean (1973) observed increased CO_2 dissociation with increased presence of O atoms.

- No available state to state reaction rates
- Macroscopic rates available in literature
- Redistribution of macroscopic rate is performed with J. Annaloro (2013) method using CO₂ ground state only

A ID > A ID > A

A set of state to state $CO_2(X,v) + O \longleftrightarrow CO + O_2$ reaction rates is included.

I= nac

Reaction	$A (m^3/mol/s)$	n	$E_a(K)$
$CO + M \longleftrightarrow C + O + M$	7.99E+32	-5.50	1.29E+5
$C_2 + O \longleftrightarrow CO + C$	3.61E+08	0.00	0.0E+0
$C_2 + M \longleftrightarrow C + C + M$	1.82E+09	0.00	6.40E+4
$C\overline{O} + O \longleftrightarrow C + O_2$	3.90E+07	-0.18	6.92E+4
$O_2 + M \longleftrightarrow O + O + M$	1.20E+08	0.00	5.42E+4
$\bar{C} + e^- \longleftrightarrow C^+ + e^- + e^-$	3.70E+25	-3.00	1.30E+5
$O + e^- \longleftrightarrow O^+ + e^- + e^-$	3.90E+27	-3.78	1.58E+5
$CO + e^- \longleftrightarrow CO^+ + e^- + e^-$	4.50E+08	2.75	1.63E+5
$O_2 + e^- \longleftrightarrow O_2^+ + e^- + e^-$	2.19E+04	1.16	1.30E+5
$C + O \longleftrightarrow CO^+ + e^-$	8.80E+02	1.00	3.31E+4
$CO + C^+ \longleftrightarrow CO^+ + C$	1.10E+07	0.00	3.14E+4
$0 + 0 \leftrightarrow 0_2^+ + e^-$	7.10E-04	2.70	8.06E+4
$O_2 + C^+ \longleftrightarrow O_2^{-+} + C$	1.00E+07	0.00	9.40E+3
$0_2^{-+} + 0 \leftrightarrow 0_2^{-} + 0^+$	2.19E+04	1.16	1.30E+5

The set of reactions in Cruden et al. (2018) is also included.

Set of reactions calibrated against EAST experiments

A D > <
 A P >
 A

Summary

Name	Туре	#Reac.
$CO_2(X,v_1') + M \leftrightarrow CO_2(X,v_1'') + M$	VT	1770
$CO_2(X,v_2^{\dagger}) + M \leftrightarrow CO_2(X,v_2^{\dagger\prime}) + M$	VT	5050
$CO_2(X,v_3^7) + M \leftrightarrow CO_2(X,v_3^7) + M$	VT	861
$\operatorname{CO}_2(X, v_1') \stackrel{-}{+} \operatorname{CO}_2(X, v_1') \leftrightarrow \operatorname{CO}_2(X, v_1'+1) + \operatorname{CO}_2(X, v_1'-1)$	VVT	58
$CO_{2}(X,v_{2}^{\prime}) + CO_{2}(X,v_{2}^{\prime}) \leftrightarrow CO_{2}(X,v_{2}^{\prime}+1) + CO_{2}(X,v_{2}^{\prime}-1)$	VVT	99
$\operatorname{CO}_{2}^{-}(X, v_{3}^{7}) + \operatorname{CO}_{2}^{-}(X, v_{3}^{7}) \leftrightarrow \operatorname{CO}_{2}^{-}(X, v_{3}^{7}+1) + \operatorname{CO}_{2}^{-}(X, v_{3}^{7}-1)$	VVT	41
$\operatorname{CO}_{2}(X, \overline{v}_{1}') + M \leftrightarrow \operatorname{CO}_{2}(X, v_{2}'') + M$	IVT	5900
$CO_2(X,v_1^T) + M \leftrightarrow CO_2(X,v_3^T) + M$	IVT	2478
$CO_2(X,v_2^{f}) + M \leftrightarrow CO_2(X,v_3^{\gamma}) + M$	IVT	4200
$CO_2(B,v_1^7) + M \leftrightarrow CO_2(B,v_1^7) + M$	VT	78
$CO_2(B,v_2^{\dagger}) + M \leftrightarrow CO_2(B,v_2^{\dagger\prime}) + M$	VT	325
$CO_{2}(B,v_3^7) + M \leftrightarrow CO_{2}(B,v_3^7) + M$	VT	21
$\operatorname{CO}_2(B,v_1') + \operatorname{CO}_2(B,v_1') \leftrightarrow \operatorname{CO}_2(B,v_1'+1) + \operatorname{CO}_2(B,v_1'-1)$	VVT	11
$\operatorname{CO}_{2}^{-}(B,v_{2}^{\overline{\prime}}) + \operatorname{CO}_{2}^{-}(B,v_{2}^{\overline{\prime}}) \leftrightarrow \operatorname{CO}_{2}^{-}(B,v_{2}^{\overline{\prime}}+1) + \operatorname{CO}_{2}^{-}(B,v_{2}^{\overline{\prime}}-1)$	VVT	24
$\operatorname{CO}_{2}^{-}(B,v_{3}^{\prime}) + \operatorname{CO}_{2}^{-}(B,v_{3}^{\prime}) \leftrightarrow \operatorname{CO}_{2}^{-}(B,v_{3}^{\prime}+1) + \operatorname{CO}_{2}^{-}(B,v_{3}^{\prime}-1)$	VVT	6
$CO_2(B,v_1') + M \leftrightarrow CO_2(B,v_2') + M$	IVT	300
$CO_2(B,v_1^T) + M \leftrightarrow CO_2(B,v_3^T) + M$	IVT	84
$CO_{2}(B,v_{2}^{t}) + M \leftrightarrow CO_{2}(B,v_{3}^{t'}) + M$	IVT	175
$CO_2(X,v_2^7) + M \leftrightarrow CO_2(B,v_1^7) + M$	VE	103
$CO_2(X,v_2^7) + M \leftrightarrow CO_2(B,v_2^7) + M$	VE	311
$CO_2(X,v_2^7) + M \leftrightarrow CO_2(B,v_3^7) + M$	VE	163
$CO_2(X,v_3^7) + M \leftrightarrow CO + O(^1D) + M$	VD	42
$\mathbf{CO}_{2}(\mathbf{X},\mathbf{v}_{3}^{7}) + \mathbf{M} \leftrightarrow \mathbf{CO} + \mathbf{O}(^{3}P) + \mathbf{M}$	VD	42
$CO_{2}(B,v_{2}^{\prime}) + M \leftrightarrow CO + O(^{3}P) + M$	VD	7
$CO_2(X,v'_{1,2,3}) + O(^3P) \leftrightarrow CO + O_2$	Zeldov.	201
$CO_2(X,v'_{1,2,3}) + C \leftrightarrow CO + CO$	Zeldov.	201
$ O(^{1}D) + M \leftrightarrow O(^{3}P) + M $	Quench.	4

A total of 22566 reactions (with only extreme states)

João Vargas

◆□ → ◆□ → ◆三 → ◆三 → 三 → のへで

Test Cases

三日 のへの

イロト イヨト イヨト イ

0D Isotherm. in pure CO₂ (no dissociation), $T_v = 300$ K and 2 kPa, $T_g = 10,000$ K

ELE NOR

0D Isotherm. in pure CO₂ (no dissociation), $T_v = 300$ K and 2 kPa, $T_g = 10,000$ K

• • • • • • • • • • • •

0D Isotherm. in pure CO₂ (no dissociation), $T_v = 300$ K and 2 kPa, $T_g = 10,000$ K

• • • • • • • • • • • •

0D Isotherm. in pure CO₂ (no dissociation), $T_v = 300$ K and 2 kPa, $T_q = 10,000$ K

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

0D pure $\rm CO_2$ at 300K and 2kPa suddenly heated to 10,000K

I= nac

Image: Image:

0D pure CO_2 at 300K and 2kPa suddenly heated to 10,000K

- Temperature (Boltzmann fitted) evolution indicates internal modes follow isothermal case
- $CO_2 + O \longleftrightarrow CO + O_2$ dominates CO_2 decomposition
- O atoms are created through $CO_2 + M \longleftrightarrow CO + O + M$ which then accelerate the $CO_2 + O$ collision

0D pure CO_2 at 300K and 2kPa suddenly heated to 10,000K

- Temperature (Boltzmann fitted) evolution indicates internal modes follow isothermal case
- $CO_2 + O \leftrightarrow CO + O_2$ dominates CO_2 decomposition
- O atoms are created through $CO_2 + M \longleftrightarrow CO + O + M$ which then accelerate the $CO_2 + O$ collision

A D > <
 A P >
 A

0D pure CO_2 at 300K and 2kPa suddenly heated to 10,000K

- Temperature (Boltzmann fitted) evolution indicates internal modes follow isothermal case
- $CO_2 + O \leftrightarrow CO + O_2$ dominates CO_2 decomposition
- O atoms are created through $CO_2 + M \longleftrightarrow CO + O + M$ which then accelerate the $CO_2 + O$ collision

Dissociated 1000K CO_2 gas at 1 bar

三日 のへの

Image: Image:

Dissociated 1000K CO_2 gas at 1 bar

- Analogous to a recombination exp.
- Typical recomb. time scale in exp. measurements is *ms*
- Depending on the chosen $CO_2 + O \longleftrightarrow CO + O_2$ rate, recombination occurs at 10^5 or 10^{-3} seconds

Dissociated 1000K CO_2 gas at 1 bar

- Analogous to a recombination exp.
- Typical recomb. time scale in exp. measurements is *ms*
- Depending on the chosen $CO_2 + O \longleftrightarrow CO + O_2$ rate, recombination occurs at 10^5 or 10^{-3} seconds

26 / 43

Case 4: CO₂ Decomposition Time

- Shots in VUT-1 shock tube at MIPT (Moscow, Russia)
- ESA TRP *CFD* validation in a CO₂ environment, 2008.
- VUV lamp used to assess relative concentration of CO₂(X) by absorption

Case 4: CO₂ Decomposition Time

- Shots in VUT-1 shock tube at MIPT (Moscow, Russia)
- ESA TRP *CFD* validation in a CO₂ environment, 2008.
- VUV lamp used to assess relative concentration of CO₂(X) by absorption

- Typical time scale 1-40 μ s
- Macroscopic model always predicts $< 2\mu s$
- StS model provides correct shock-velocity trends and overpredicts decomposition times by 50-100%

Radiation

三日 のへの

CDSD4000 will be used to refit a vibrationally specific CO_2 IR database

Dubbed CDSDv, this database will feature:

CDSD4000 will be used to refit a vibrationally specific CO_2 IR database

Dubbed CDSDv, this database will feature:

• Separation between rotational and vibrational modes

CDSD4000 will be used to refit a vibrationally specific CO₂ IR database

Dubbed CDSDv, this database will feature:

- Separation between rotational and vibrational modes
- Can be coupled to kinetic solver

$$\frac{dN_i}{dt} = \sum_j K_{ij} N_i N_j - \sum_j K_{ji} N_j N_i - \sum_j A_{ij} N_i$$
CDSD4000 will be used to refit a vibrationally specific CO₂ IR database

Dubbed CDSDv, this database will feature:

- Separation between rotational and vibrational modes
- Can be coupled to kinetic solver

$$\frac{dN_i}{dt} = \sum_j K_{ij} N_i N_j - \sum_j K_{ji} N_j N_i - \sum_j A_{ij} N_i$$

• Reconstruction of ro-vibrational data

CDSD4000 will be used to refit a vibrationally specific CO₂ IR database

Dubbed CDSDv, this database will feature:

- Separation between rotational and vibrational modes
- Can be coupled to kinetic solver

$$\frac{dN_i}{dt} = \sum_j K_{ij} N_i N_j - \sum_j K_{ji} N_j N_i - \sum_j A_{ij} N_i$$

• Reconstruction of ro-vibrational data

• Will lose detail: not suitable for detailed spectroscopy, perturbations will not be accounted for.

Fit ro-vibrational energy levels:

$$E_{vJ} = G_v + B_v[J(J+1)] - D_v[J(J+1)]^2 + H_v[J(J+1)]^3$$

三日 のへの

・ロト ・回ト ・ヨト・

Fit ro-vibrational energy levels:

$$E_{vJ} = G_v + B_v[J(J+1)] - D_v[J(J+1)]^2 + H_v[J(J+1)]^3$$

= nac

< <>>>

Fit ro-vibrational energy levels:

$$E_{vJ} = G_v + B_v[J(J+1)] - D_v[J(J+1)]^2 + H_v[J(J+1)]^3$$

< <>>>

= 990

Fit ro-vibrational energy levels:

$$E_{vJ} = G_v + B_v[J(J+1)] - D_v[J(J+1)]^2 + H_v[J(J+1)]^3$$

$$A_{v''}^{v'} \times F_{J',J''} = \frac{A_{v''J'}^{v'J'}}{S_{l''J''}^{l'J'}}$$

- $A_{v^{\prime\prime}}^{v^{\prime}}$ –Vibrational Einstein coefficients
- $F_{J',J''}$ –Herman-Wallis factors
- $A_{v^{\prime\prime}J^{\prime\prime}}^{v^{\prime}J^{\prime\prime}}$ –Ro-vibrational Einstein coefficients
- $S_{l^{\prime\prime}J^{\prime\prime}}^{l^{\prime}J^{\prime\prime}}$ –Hönl-London factors
- RHS is obtained through reading databases
- LHS is a polynomial expansion

$$A_{v''}^{v'} \times F_{J',J''} = \frac{A_{v''J'}^{v'J'}}{S_{l''J''}^{l'J'}}$$

- $A_{v^{\prime\prime}}^{v^{\prime}}$ –Vibrational Einstein coefficients
- $F_{J',J''}$ –Herman-Wallis factors
- $A_{v^{\prime\prime}J^{\prime\prime}}^{v^{\prime}J^{\prime\prime}}$ –Ro-vibrational Einstein coefficients
- $S_{l^{\prime\prime}J^{\prime\prime}}^{l^{\prime\prime}J^{\prime\prime}}$ –Hönl-London factors
- RHS is obtained through reading databases
- LHS is a polynomial expansion
- Ro-vibrational transitions have branches and polynomial coefficients are shared

$$A_{v''}^{v'} \times F_{J',J''} = \frac{A_{v''J'}^{v'J'}}{S_{l''J''}^{l'J'}}$$

- $A_{v^{\prime\prime}}^{v^{\prime}}$ –Vibrational Einstein coefficients
- $F_{J',J''}$ –Herman-Wallis factors
- $A_{v^{\prime\prime}J^{\prime\prime}}^{v^{\prime}J^{\prime\prime}}$ –Ro-vibrational Einstein coefficients
- $S_{l^{\prime\prime}J^{\prime\prime}}^{l^{\prime\prime}J^{\prime\prime}}$ –Hönl-London factors
- RHS is obtained through reading databases
- LHS is a polynomial expansion
- Ro-vibrational transitions have branches and polynomial coefficients are shared

Each transition is fitted for every branch "simultaneously"

Some examples of transition fitting.

- Transitions 00011 \rightarrow 00001 and 01111 \rightarrow 01101 (e and f)
- Perturbed data was removed prior to fitting.
- Data was truncated at convenient *J*

ELE NOR

A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Some examples of transition fitting.

- Transitions 00011 \rightarrow 00001 and 01111 \rightarrow 01101 (e and f)
- Perturbed data was removed prior to fitting.
- Data was truncated at convenient J

Some examples of transition fitting.

- Transitions 00011 \rightarrow 00001 and 01111 \rightarrow 01101 (e and f)
- Perturbed data was removed prior to fitting.
- Data was truncated at convenient J

A D > <
 A P >
 A

Some examples of transition fitting.

- Transitions 00011 \rightarrow 00001 and 01111 \rightarrow 01101 (e and f)
- Perturbed data was removed prior to fitting.
- Data was truncated at convenient J

420

400

380

360

340

CDSD P data

CDSD Q data

CDSD R data

P branch fit

O branch fit

R branch fit

Einstein A coefficient / $S_{pq,a}^{IJ}$, s⁻¹

Reconstructed Einstein coefficients of transitions $00011 \rightarrow 00001$ (top) and $01111 \rightarrow 01101$ (bottom).

Comparison with CDSD4000 and HITRAN values.

Perturbed data is not reproduced and does not affect fitting

Reconstruction of Einstein Coefficients

Reconstructed Einstein coefficients of transitions $00011 \rightarrow 00001$ (top) and $01111 \rightarrow 01101$ (bottom).

Comparison with CDSD4000 and HITRAN values.

Perturbed data is not reproduced and does not affect fitting

Reconstruction of Einstein Coefficients

Reconstructed Einstein coefficients of transitions $00011 \rightarrow 00001$ (top) and $01111 \rightarrow 01101$ (bottom).

Comparison with CDSD4000 and HITRAN values.

Perturbed data is not reproduced and does not affect fitting

In CDSD4000:

- Semi empirical expressions
- Only Air and Self broadening
- $\bullet\,$ From reference p and T values

-

A D > <
 A P >
 A

In CDSD4000:

- Semi empirical expressions
- Only Air and Self broadening
- From reference \boldsymbol{p} and \boldsymbol{T} values

In CDSDv:

- Generalized expressions, effect dependant
- Can be used for any mixture

In CDSD4000:

- Semi empirical expressions
- Only Air and Self broadening
- $\bullet\,$ From reference p and T values

In CDSDv:

- Generalized expressions, effect dependant
- Can be used for any mixture

In CDSD4000:

- Semi empirical expressions
- Only Air and Self broadening
- $\bullet\,$ From reference p and T values

In CDSDv:

- Generalized expressions, effect dependant
- Can be used for any mixture

ELE NOR

• • • • • • • • • • • • •

296K

三日 のへの

35 / 43

1000K

< E.

35 / 43

三日 のへの

2000K

|≡ ୬९. 35/43

3000K

|≡ ୬९. 35/43

Test Cases

三日 のへの

イロト イヨト イヨト イ

Measurements of IR radiation were carried out in JAXA facility by Takaynagi *et al.* (2018). Pannier and Laux (2019) performed a numerical analysis repeated here.

A D > <
 A P >
 A

Case 1: JAXA Mars Entry

Measurements of IR radiation were carried out in JAXA facility by Takaynagi *et al.* (2018). Pannier and Laux (2019) performed a numerical analysis repeated here.

- 4.3 μ m region
- Line of sight 7 cm long simplified into 3 zones
- 1st and 3rd cell are free flow zones, low pressure, non-eq.
- 2nd cell is the forebody cell, high pressure and temperature, no CO₂

Case 1: JAXA Mars Entry

Measurements of IR radiation were carried out in JAXA facility by Takaynagi *et al.* (2018). Pannier and Laux (2019) performed a numerical analysis repeated here.

- 4.3 μ m region
- Line of sight 7 cm long simplified into 3 zones
- 1st and 3rd cell are free flow zones, low pressure, non-eq.
- 2nd cell is the forebody cell, high pressure and temperature, no CO₂

Campaign at EAST - Mars Science Laboratory conditions

- Shock at 3.69 km/s
- 1 Torr, 97% CO₂
- 4.3 μ m spectral region
- Peak Temperature at 3050 K

Simulation profile kindly shared by B. Cruden.

= nac

Campaign at EAST - Mars Science Laboratory conditions

- Shock at 3.69 km/s
- 1 Torr, 97% CO₂
- 4.3 μ m spectral region
- Peak Temperature at 3050 K

Simulation profile kindly shared by B. Cruden.

CO₂ Atmospheric plasma torch at 1,000–5,000K, work of Depraz *et al.* (2012)

- 2.7 and 4.3 μm regions probed
- Measurements at h=6, $20~{\rm mm}$
- Torch radial profile is divided into 10 cells

Radiative Transfer with CDSDv + CO in the central chord: line of sight is taken as the full diameter of the torch.

Case 3: Atmospheric Plasma Torch

CO₂ Atmospheric plasma torch at 1,000–5,000K, work of Depraz *et al.* (2012)

- $\bullet~$ 2.7 and 4.3 μm regions probed
- Measurements at h=6, $20~{\rm mm}$
- Torch radial profile is divided into 10 cells

Radiative Transfer with CDSDv + CO in the central chord: line of sight is taken as the full diameter of the torch.

Case 3: Atmospheric Plasma Torch

CO₂ Atmospheric plasma torch at 1,000–5,000K, work of Depraz *et al.* (2012)

- 2.7 and 4.3 $\mu \rm{m}$ regions probed
- Measurements at h=6, 20 mm
- Torch radial profile is divided into 10 cells

Radiative Transfer with CDSDv + CO in the central chord: line of sight is taken as the full diameter of the torch.

Conclusions

∃|= •) < (~)</p>

< □ > < ^[] > <

 \bullet A more physically consistent approach to CO_2 dissociation has been presented

ELE NOR

• • • • • • • • • • • •

- \bullet A more physically consistent approach to CO_2 dissociation has been presented
 - Step-up from SSH-based models

= nac

A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
- \bullet A more physically consistent approach to CO_2 dissociation has been presented
 - Step-up from SSH-based models
 - Inclusion of ³B₂ state

= nac

A B A B
 A B
 A B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 B
 A
 A

- \bullet A more physically consistent approach to CO_2 dissociation has been presented
 - Step-up from SSH-based models
 - Inclusion of ³B₂ state
 - Displayed physically consistent though not 100% predictive results

= nac

A D > <
 A P >

- \bullet A more physically consistent approach to CO_2 dissociation has been presented
 - Step-up from SSH-based models
 - Inclusion of ³B₂ state
 - Displayed physically consistent though not 100% predictive results
 - Lots of room for improvement

= nac

A B A B
 A B
 A B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 B
 A
 A

- \bullet A more physically consistent approach to CO_2 dissociation has been presented
 - Step-up from SSH-based models
 - Inclusion of ³B₂ state
 - Displayed physically consistent though not 100% predictive results
 - Lots of room for improvement

- \bullet A more physically consistent approach to CO_2 dissociation has been presented
 - Step-up from SSH-based models
 - Inclusion of ³B₂ state
 - Displayed physically consistent though not 100% predictive results
 - Lots of room for improvement

- A CO₂ IR radiation database was presented
 - Refitting method is universal

A B A B
 A B
 A B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 B
 A
 A

- \bullet A more physically consistent approach to CO_2 dissociation has been presented
 - Step-up from SSH-based models
 - Inclusion of ³B₂ state
 - Displayed physically consistent though not 100% predictive results
 - Lots of room for improvement

- A CO₂ IR radiation database was presented
 - Refitting method is universal
 - Broadening calculation is more flexible

- \bullet A more physically consistent approach to CO_2 dissociation has been presented
 - Step-up from SSH-based models
 - Inclusion of ³B₂ state
 - Displayed physically consistent though not 100% predictive results
 - Lots of room for improvement

- Refitting method is universal
- Broadening calculation is more flexible
- In the $4.3~\mu{\rm m}$ region, reduction from 81M to 5M lines

- \bullet A more physically consistent approach to CO_2 dissociation has been presented
 - Step-up from SSH-based models
 - Inclusion of ³B₂ state
 - Displayed physically consistent though not 100% predictive results
 - Lots of room for improvement

- Refitting method is universal
- Broadening calculation is more flexible
- In the $4.3~\mu{\rm m}$ region, reduction from 81M to 5M lines
- CDSDv database is 16.6 MB compared to CDSD4000 16 GB

- \bullet A more physically consistent approach to CO_2 dissociation has been presented
 - Step-up from SSH-based models
 - Inclusion of ³B₂ state
 - Displayed physically consistent though not 100% predictive results
 - Lots of room for improvement

- Refitting method is universal
- Broadening calculation is more flexible
- In the $4.3~\mu{\rm m}$ region, reduction from 81M to 5M lines
- CDSDv database is 16.6 MB compared to CDSD4000 16 GB
- Reasonable agreement with experiments and calculations

• • • • • • • • • • • •

- \bullet A more physically consistent approach to CO_2 dissociation has been presented
 - Step-up from SSH-based models
 - Inclusion of ³B₂ state
 - Displayed physically consistent though not 100% predictive results
 - Lots of room for improvement

- Refitting method is universal
- Broadening calculation is more flexible
- In the $4.3~\mu{\rm m}$ region, reduction from 81M to 5M lines
- CDSDv database is 16.6 MB compared to CDSD4000 16 GB
- Reasonable agreement with experiments and calculations
- Significant performance enhancement

• • • • • • • • • • • •

Kinetics

Kinetics

• Different collision partners

三日 のへの

イロト イヨト イヨト イヨト

Kinetics

- Different collision partners
- Improve intermode transition rates

• • • • • • • • • • • •

三日 のへの

Kinetics

- Different collision partners
- Improve intermode transition rates
- Inclusion of radiative processes

三日 のへの

Kinetics

- Different collision partners
- Improve intermode transition rates
- Inclusion of radiative processes
- Uncertainty $CO_2 + O \longleftrightarrow CO + O_2$

三日 のへの

Kinetics

- Different collision partners
- Improve intermode transition rates
- Inclusion of radiative processes
- Uncertainty $CO_2 + O \longleftrightarrow CO + O_2$
- Reduced order modelling

ELE NOR

Kinetics

- Different collision partners
- Improve intermode transition rates
- Inclusion of radiative processes
- Uncertainty $CO_2 + O \longleftrightarrow CO + O_2$
- Reduced order modelling
- Experimental validation

Radiation

ELE NOR

Kinetics

- Different collision partners
- Improve intermode transition rates
- Inclusion of radiative processes
- Uncertainty $CO_2 + O \longleftrightarrow CO + O_2$
- Reduced order modelling
- Experimental validation

Radiation

 $\bullet\,$ Adding a C/J or C/(J+1) term on Herman-Wallis expressions

ELE NOR

Kinetics

- Different collision partners
- Improve intermode transition rates
- Inclusion of radiative processes
- Uncertainty $CO_2 + O \longleftrightarrow CO + O_2$
- Reduced order modelling
- Experimental validation

Radiation

- $\bullet\,$ Adding a C/J or C/(J+1) term on Herman-Wallis expressions
- $\bullet\,$ Add more transitions, 2.7 and 4.3 μm regions

ELE NOR

Kinetics

- Different collision partners
- Improve intermode transition rates
- Inclusion of radiative processes
- Uncertainty $CO_2 + O \longleftrightarrow CO + O_2$
- Reduced order modelling
- Experimental validation

Radiation

- $\bullet\,$ Adding a C/J or C/(J+1) term on Herman-Wallis expressions
- $\bullet\,$ Add more transitions, 2.7 and 4.3 μm regions
- Apply CDSDv to cases with different mixtures of gases

ELE NOR

Kinetics

- Different collision partners
- Improve intermode transition rates
- Inclusion of radiative processes
- Uncertainty $CO_2 + O \longleftrightarrow CO + O_2$
- Reduced order modelling
- Experimental validation

Radiation

- $\bullet\,$ Adding a C/J or C/(J+1) term on Herman-Wallis expressions
- $\bullet\,$ Add more transitions, 2.7 and 4.3 μm regions
- Apply CDSDv to cases with different mixtures of gases
- Fitting of CDSDv to emission spectra

ELE NOR

A B A B
 A B
 A B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 B
 A
 A

There is still a lot of multi-disciplinary work to be done. It is my hope this work can be used as a reference point for further developments.

I= nar

Image: A math a math

There is still a lot of multi-disciplinary work to be done. It is my hope this work can be used as a reference point for further developments.

Would like to finish by acknowledging the role of other people in this work, some of whom are here present. Thank you

There is still a lot of multi-disciplinary work to be done. It is my hope this work can be used as a reference point for further developments.

Would like to finish by acknowledging the role of other people in this work, some of whom are here present. Thank you

A D > <
 A P >

Partition Function

João Vargas

High-Temperature Non-Equilibrium CO

Partition function:

- Can be recovered from level database.
- Matches literature values for most of the temperature range.

Temperature, K

2000 2500 3000 3500 4000

Dissociation of CO_2

0D simulation, 3.69 km/s shock, 1 Torr in pure CO_2

$\mathrm{CO} + \mathrm{O}_2 \longleftrightarrow \mathrm{CO}_2 + \mathrm{O}$

Note that I only performed inversion on Sharipov and Varga_rates,

João Vargas

= 990

More $CO + O_2 \leftrightarrow CO_2 + O$

Rates already included:

•
$$CO_2(X,v) + O(^{3}P) \longleftrightarrow CO(X) + O_2(X)$$

•
$$CO_2(X,v) + O(^1D) \longleftrightarrow CO(X) + O_2(X)$$

•
$$CO_2(X,v) + C \longleftrightarrow CO(X) + CO(X)$$

Other candidate rates to include:

•
$$CO(a) + O_2(X) \longleftrightarrow CO_2 + O(^{3}P)$$

•
$$CO(X) + O_2(a) \longleftrightarrow CO_2 + O(^1D)$$

•
$$O_2(a) + M \longleftrightarrow O_2(b) + M$$

•
$$O_2(b) + O_2(X) \longleftrightarrow O_2(a) + O_2(a)$$

• $CO(a) + CO \longleftrightarrow CO_2 + C$

ELE NOR

A B > 4
 B > 4
 B

5,000 K

10,000 K

(日) (四) (三) (三) (三)

E 9900

∃ → < ∃</p>

三日 のへの

A B +
 A
 B +
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Performance

#	1		2	
Parameters	Tight		Lax	
Range	2100-2500		2000-2500	
Database	CDSDv	CDSD4000	CDSDv	CDSD4000
Time 1 (s)	30.98	85.18	20.11	174.95
Time 2 (s)	329.58	356.25	145.11	341.63
Time 3 (s)	2855.43	3891.64	1007.92	1773.45
Max RAM	446.3 MiB	3.830 GiB	607.75 MiB	7.985 GiB
# Lines	4,266,280	37,497,133	5,867,324	81,963,950
#	:	3	4	ļ
# Parameters	Ľ	3 ax	ے Tig	k ght
# Parameters Range	L 2100	3 ax -2500	2 Ti _ق 2000-	4 ght 2500
# Parameters Range Database	L 2100 CDSDv	3 ax -2500 CDSD4000	2 - Tig 2000- CDSDv	k ght 2500 CDSD4000
# Parameters Range Database Time 1 (s)	L 2100 CDSDv 17.09	3 ax -2500 CDSD4000 65.53	2 - Tig 2000 - CDSDv 39.95	k ght 2500 CDSD4000 181.62
# Parameters Range Database Time 1 (s) Time 2 (s)	L 2100 CDSDv 17.09 124.82	3 ax -2500 CDSD4000 65.53 183.89	2000- 2000- CDSD∨ 39.95 574.38	k ght 2500 CDSD4000 181.62 738.41
# Parameters Range Database Time 1 (s) Time 2 (s) Time 3 (s)	L 2100 CDSDv 17.09 124.82 613.40	3 ax -2500 CDSD4000 65.53 183.89 791.06	2000- 2000- CDSDv 39.95 574.38 6846.50	t 2500 CDSD4000 181.62 738.41 12253.16
# Parameters Range Database Time 1 (s) Time 2 (s) Time 3 (s) Max RAM	L 2100 CDSDv 17.09 124.82 613.40 442.7 MiB	3 ax -2500 CDSD4000 65.53 183.89 791.06 3.660 GiB	CDSDv 39.95 574.38 6846.50 608.14 MiB	t 2500 CDSD4000 181.62 738.41 12253.16 7.963 GiB

Some Transmittance Results

Wavenumber, cm⁻¹

15 μ m, T = 2300 K . If σ_{A}

João Vargas

三日 のへの

A B +
 A
 B +
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Einstein Coefficients

三日 のへの

Polyads

三日 のへの

11/13

Prospective Shock-Tube Experiments

- Good experimental data still needed these days
- New experiments may bring more insight. A mix of time-dependent emission and absorption spectroscopy is very promising.
 - CO2 IR radiative emission
 - CO IR radiative emission
 - probing O(³P);O(¹D) from the 130nm O transition. Is this possible?
 - probing O₂ from Schumann-Runge transition
- Dissociation and incubation times

- Complementary to shock tubes, microwave plasmas and plasma torches can also contribute
- In addition to previous diagnostics:
 - CO₂ Chemiluminescence bands
 - Raman spectroscopy (?)
- Recombination experiments
- Relative high-T and steady state

Image: Image: