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o Exploration: 6 missions
launched in 2020, 3 to land in
2021

Image credit: JPL, jpl.nasa.gov
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Motivation - Mars

o Exploration: 6 missions
launched in 2020, 3 to land in
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@ Mars is a challenging planet to
land: Thin atmosphere, mostly
composed of CO,
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Motivation - Mars

o Exploration: 6 missions
launched in 2020, 3 to land in
2021

@ Mars is a challenging planet to
land: Thin atmosphere, mostly
composed of CO,

@ Need to account for convective
and radiative heating

Image credit: JPL, jpl.nasa.gov

Jodo Vargas High-Temperature Non-Equilibrium CO 13th November, PhD 2/43



Heatshield design

Relevance of CO, IR radiative heating
only recognized in recent years

<
g
8
]

cocooooo
NornoNumo

»
1

x [m]

Image credit: Sahai, 2019

Jodo Vargas High-Temperature Non-Equilibrium CO,, 13th November, PhD 3/43



Heatshield design

Relevance of CO, IR radiative heating Radiation and kinetics are tightly
only recognized in recent years coupled in atmospheric entry flows
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Heatshield design

Relevance of CO, IR radiative heating Radiation and kinetics are tightly
only recognized in recent years coupled in atmospheric entry flows
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Detailed models are required which can be translated to engineering design tools
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State-to-State Models

State-to-State models potentially provide the greatest levels of detail

Macroscopic:

@ Assumed internal distribution
characterized by a temperature
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State-to-State Models

State-to-State models potentially provide the greatest levels of detail
Macroscopic: State-to-State
@ Assumed internal distribution

@ Internal states are treated
characterized by a temperature

individually
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Shortcomings of CO, models

State of the art state-to-state (StS) kinetic models of CO, are based on SSH:
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Shortcomings of CO, models

State of the art state-to-state (StS) kinetic models of CO, are based on SSH:
o Extrapolate badly
@ Do not allow multi-quantum jumps
o Dissociation is not handled in the most correct way
@ Questions regarding coupling of symmetric and bending mode

Recent works rely on SSH models, there is room for improvement.

The gold standard for high-T CO, IR radiation, CDSD4000:
o Large database
o Computationally prohibitive for full spectrum calculations
@ Cannot separate between vib. and rot. modes

A smaller, more compact database is desirable.

This presentation will showcase new models that curtail these shortcomings
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Kinetics
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CO, Kinetic Modelling - Assumptions

Bending - vl22 '
Symmetric - vy Asymmetric - vg
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CO, Kinetic Modelling - Assumptions

Bending - vl22 '
Symmetric - vy Asymmetric - vg

« — € > €

L 2 @90

Mode separability

No Potential Energy Surface (PES) of
CO, accurate up to dissociation. Each
mode breaks apart in different ways.

@ vi: CO, +1853eVv —-C+0+0
@ vo: CO, + 11.45eV — C + O2
@ v3: CO, +742e¢V - CO+ 0

Limits allows potential reconstruction
by extrapolation of NASA-Ames-2 PES
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CO, Kinetic Modelling - Assumptions

Bending - v2

Asymmetric - vg

< =<

L 2 2

Consider only extreme states

Symmetric - vq

“— >

06

Mode separability

No Potential Energy Surface (PES) of
CO, accurate up to dissociation. Each v10°0
mode breaks apart in different ways. !

@ vi: CO, +1853eVv —-C+0+0
@ vo: CO, + 11.45eV — C + O2
@ v3: CO, +742¢V—-CO+ 0 Mixed states — V1Vl22V3

Limits allows potential reconstruction
by extrapolation of NASA-Ames-2 PES

Extreme states = { Ov&
000V3

Also limit vo = [5, otherwise
computationally untenable
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Forced Harmonic Oscillator

The Forced Harmonic Oscillator (FHO) - 1D collision geometry, generalized to 3D
with steric factors
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The Forced Harmonic Oscillator (FHO) - 1D collision geometry, generalized to 3D
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@ Physically consistent extrapolation
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Forced Harmonic Oscillator

The Forced Harmonic Oscillator (FHO) - 1D collision geometry, generalized to 3D
with steric factors

CIM CM

|
00 00

@ Physically consistent extrapolation
e Handles multi quantum jumps
@ CO,4(X) and CO,(B) modeled through FHO
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Ground State Level Manifold

o Low lying levels are obtained
through Chédin (1984)
polynomial expansion

@ Sym. and Asym. stretch high
lying levels are obtained through
Schrédinger's equation

@ Bending levels can be "safely"
extrapolated, Quapp (1993)
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Ground State Level Manifold

o Low lying levels are obtained
through Chédin (1984)
polynomial expansion

@ Sym. and Asym. stretch high %
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3B, Level Manifold

In Grebenshchikov (2017) some vib. levels of CO,(®B5) are tabulated. These are
used to obtain the coefficients of the polynomial expression:

2
E(v1,v9,v3) = g w;v; + g TiV; + 120102 + 130103 + T23V2V3
i=1,2,3 i=1,2,3
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3B, Level Manifold
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VT and VVT

Including the first reactions

o Obtain semi-empirical parameters to fit FHO to known rates

@ Extrapolate to the whole level manifold
@ No rates for CO,(B), use the same parameters as CO,(X)
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VT and VVT

Including the first reactions

o Obtain semi-empirical parameters to fit FHO to known rates
@ Extrapolate to the whole level manifold
@ No rates for CO,(B), use the same parameters as CO,(X)
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2

SSH rates extr. from exp.
Blauer 1974

—— 010 + M-> 00°0 + M
—— 0220+ M->01'0+M
—— 03%0+M->0220+M
—— 04%0 +M->03°0 +M
—— 05°0 + M->04%0 + M
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Rate coefficient, cm?/mol/s
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Vibration-Translation
CO,(XV') + M +— CO,(XV)+ M
v' and v" belong to the same vib.
mode.
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VT and VVT

Including the first reactions

o Obtain semi-empirical parameters to fit FHO to known rates
@ Extrapolate to the whole level manifold
@ No rates for CO,(B), use the same parameters as CO,(X)

0% —— 03%0 + 0110 -> 0220 + 0220

—— 040 + 00°0 -> 03%0 + 01'0
—— 040 + 0220 -> 03% + 03%0

101

10

1013

2

SSH rates extr. from exp.
Blauer 1974
— 0110 + M-> 00° + M
—— 02720 + M-> 010 + M
—— 0330 + M-> 0220 + M

—— 04% + M ->03%0 + M Blauer 1974
—— 05°0 + M->04%0 + M

1010
1012

Rate coefficient, cm?/mol/s
Rate coefficient, cm?/mol/s

1
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Temperature, K 10? 10° 10*
Temperature, K

Vibration-Translation
CO,(XV') + M +— CO,(XV)+ M
v' and v" belong to the same vib.
mode.

Vibration-Vibration-Translation
COL(X,v) + COx(X,v) +—
CO,(X,v+1) + CO5(X,v-1)
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Model Schematic
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Including inter-mode (IVT) energy exchanges
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Model Schematic
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Energy, eV
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Singlet-Triplet Interaction

Including the interaction between
CO,(X) and CO,(B).
@ The ground and triplet state
cross

@ The crossing point cannot be
accurately determined

130
angle, o 140

@ Approximate region indicates B0 g 21
the crossing is dominated by the
ground state bending mode

Crossing is modeled through
Rosen-Zener theory.

*Upper figure is illustrative
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Model Schematic
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Pathways to dissociation

Three pathways for dissociation
-
? cofEn ¥ oUD =74 ev o Ladder climbing dissociation is
possible for the ground and triplet

CO(:+) + OCP) = 5.9V state

Potential, eV
N

Crossing to repulsive triplet state

15 2.0 25 3.0 3.5 4.0 4.5 5.0

5.5
reo, Bohr

*Red line empirical potential
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CO(:+) + OCP) = 5.9V state
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@ Another cross with a repulsive
configuration of a triplet state
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Pathways to dissociation

Three pathways for dissociation

-
CO(*z*) + O(*D) = 7.4 eV

o Ladder climbing dissociation is
possible for the ground and triplet

CO(:+) + OCP) = 5.9V state

Potential, eV
N

@ Another cross with a repulsive
configuration of a triplet state
occurs at 5.85 eV

Crossing to repulsive triplet state

15 20 25 30 35 40 45 50 55 @ First two Paths can be modelled
oo o using FHO, the third one through

*Red line empirical potential Rosen-Zener theory

Jodo Vargas High-Temperature Non-Equili 13th November, PhD 18 /43



Model Schematic
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Exchange Reactions

The exchange reaction CO, 4+ O «— CO + O, should be included. Dean (1973)
observed increased CO, dissociation with increased presence of O atoms.
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Exchange Reactions

The exchange reaction CO, 4+ O «— CO + O, should be included. Dean (1973)
observed increased CO, dissociation with increased presence of O atoms.

@ No available state to state
reaction rates

@ Macroscopic rates available
in literature

@ Redistribution of
macroscopic rate is
performed with J. Annaloro
(2013) method using
CO, ground state only
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Exchange Reactions

The exchange reaction CO, 4+ O «— CO + O, should be included. Dean (1973)
observed increased CO, dissociation with increased presence of O atoms.

@ No available state to state
reaction rates

@ Macroscopic rates available
in literature

Rate coefficient, m3/mol/s

@ Redistribution of aa T osional
macroscopic rate is P N o A R e s
performed with J. Annaloro —-= Sharipov 5t5 2

. —— Varga
(2013) method using 107 | . o Sulzmann
iy —A— Thielen
CO, ground state only ! —o Kwak
-10
N 0 re 10°

Temperature, K

Jodo Vargas High-Temperature Non-Equili 13th November, PhD 20/43



Exchange Reactions

The exchange reaction CO, 4+ O «— CO + O, should be included. Dean (1973)
observed increased CO, dissociation with increased presence of O atoms.

@ No available state to state
reaction rates i

e Macroscopic rates available £
in literature ;

@ Redistribution of £ 1™ T oragimosa
macroscopic rate is % SO I /2 A N 2:::23: w1
performed with J. Annaloro 7 Sherpov s 2
(2013) method using 107 | i o= Sulzmann

R —A— Thielen
CO, ground state only o i o Kwak
103 104 10°

Temperature, K

A set of state to state CO,(X,v) + O +— CO + O, reaction rates is included.
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Other Reactions

The set of reactions in Cruden et al. (2018) is also included.

Reaction A (m3/mol/s) n E. (K)
COrM«—C+O0+M 7.99E+32 550 1.29E+5
C,+0+—CO+C 3.61E+08 0.00  0.0E+0
CG+M«—CH+CHM 1.82E+09 0.00  6.40E+4
CO+0+—=C+0, 3.90E+07 -0.18 6.92E+4
0,+M+—0+0+M 1.20E+08 0.00 5.42E4+4
Ct+e +—CH4e +e” 3.70E+25 -3.00 1.30E+5
O+e +— 0t +e™ +e” 3.90E427 -3.78 1.58E45
CO+e™ +— COT +e fe” 4.50E+08 2.75  1.63E+5
O, +e  +— 0,  +e” +e” 2.19E4-04 1.16  1.30E+5
C+0+— COt +e” 8.80E+02 1.00 3.31E+4
CO+CH+—COt+C 1.10E+07 0.00 3.14E+4
0+0++— 0,7 e 7.10E-04 2.70  8.06E+4
0, +Cte— 0,7+ C 1.00E4-07 0.00  9.40E+3
0," +0+— 0, +0% 2.19E4-04 1.16  1.30E45

Set of reactions calibrated against EAST experiments
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Summary

Name Type #Reac.

coz(x,vi) + M coz(x,vi’) +™M VT 1770
CO,(X,vh) + M+ COz(X,v?,) + ™M vT 5050
CO,(X,v5) + M« COx(XvE) + M vT 861
CO,(X,v)) + COL(X,v) ) COx(X,v]+1) + CO,(X,v)-1) vVvT 58
CO,(X,vh) + CO,(X,v'p)er COL(X,vh+1) + CO5(X,vh-1) VT 99
CO,(X,v]) + CO5(X,v'5)+r COL(X,vi+1) + CO,(X,v]-1) VT a1
CO, (X)) + M« coz(x,v?’) +M™M T 5900

COL, (X)) + M+ coz(x,vﬁ’) +M™M T 2478
CO,(X,vh) + M+ coz(x,vﬁ') +M \Va 4200
CO,(BV)) + M« COZ(B,V}’) +M™M vT 78
CO,(B,v5) + M« coz(B,v?:) +M VT 325
/coz(B,vB) + Me COy(Byg) + M , VT 21
CO,(B.v)) + CO,(B,v'1 )+ CO,(B,v]|+1) + CO,(B.v)-1) VT 11
CO,(B,v5) + COL(B,v'3)« COz(B,v?+1) + CO,(B,v)-1) vvT 24
CO,(B,v3) + COL(Bv'3)« COZ(B,V§+1) + CO,(B,v3-1) vVvVT 6
CO,(Bv)) + Mo COZ(B,V?/) +M VT 300
COZ(B,V}) + M coz(B,vg_’) +M™M VT 84
COZ(B,V?) + M coz(B,vg_’) +M™M VT 175
CO,(X,v)) + M+ COZ(B,V}’) +M™M VE 103
CO,(X,v)) + M+ COZ(B,V?’) +M™M VE 311
CO,(X,v)) + M+ COZ(B,v:{) +M™M VE 163
CO,(X,v5) + M« CO + O('D) + M VD 42
CO,(X,v5) + M CO+O(3P) + M VD a2
CO,(Bv,) + M+ CO+0(3P) + M VD 7

€O, (Xv] 5 3) + O(*P)+ €O + O, Zeldov. 201
CO5(X,v] 5 3) + C> CO 4 CO Zeldov. 201
o(!D) + Mo O(3P) + M Quench. a
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A total of 22566 reactions (with only extreme states)
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Test Cases
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Case 1: Isothermal

0D Isotherm. in pure CO, (no dissociation), T, = 300 K and 2 kPa, T, = 10,000 K

Time = 8.52E-07s

10—3_
10—17 4
10—31 4
10—45 i

10—59 4

Mass Fraction

10—73 4
10—87 4
10—101 4

0 2 4 6 8
Energies, eV
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Case 1: Isothermal

0D Isotherm. in pure CO, (no dissociation), T, = 300 K and 2 kPa, T, = 10,000 K

Time = 2.92E-05s

10—2 i
10—11 i
10—20 i
10—29 i

10—38 p

Mass Fraction

10—47 i
10—56 p
10—65 i

0 2 4 6 8
Energies, eV
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Case 1: Isothermal

0D Isotherm. in pure CO, (no dissociation), T, = 300 K and 2 kPa, T, = 10,000 K

Time = 3.18E-04s

10724
10774
1012
10—17 i
10—22 i

Mass Fraction

10—27 p
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Energies, eV
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Case 1: Isothermal

0D Isotherm. in pure CO, (no dissociation), T, = 300 K and 2 kPa, T, = 10,000 K

Time = 1.14E-02s

Mass Fraction

Energies, eV

Jodo Vargas High-Temperature Non-Equilibrium CO 13th November, PhD 24 /43



Case 2: Dissociation

0D pure CO, at 300K and 2kPa
suddenly heated to 10,000K
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Case 2: Dissociation

0D pure CO, at 300K and 2kPa
suddenly heated to 10,000K

@ Temperature (Boltzmann fitted)
evolution indicates internal
modes follow isothermal case

e CO,+0+— CO+0,
dominates CO, decomposition

@ O atoms are created through
CO,+M+—=CO+0+M
which then accelerate the
CO, + O collision
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Case 2: Dissociation

0D pure CO, at 300K and 2kPa
suddenly heated to 10,000K

@ Temperature (Boltzmann fitted)
evolution indicates internal
modes follow isothermal case

e CO,+0+— CO+0,
dominates CO, decomposition

@ O atoms are created through
CO,+M+—=CO+0+M
which then accelerate the
CO, + O collision
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Case 3: Recombination

Dissociated 1000K CO, gas at 1 bar
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Case 3: Recombination

Dissociated 1000K CO, gas at 1 bar
@ Analogous to a recombination exp.

@ Typical recomb. time scale in exp.
measurements is ms

@ Depending on the chosen
CO, + O +— CO + O, rate,
recombination occurs at 10° or
1073 seconds
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Case 3: Recombination

=
15}
&
.
s

Dissociated 1000K CO, gas at 1 bar
@ Analogous to a recombination exp.

Mole Fractions

@ Typical recomb. time scale in exp.
measurements is ms

@ Depending on the chosen
CO, + O +— CO + O, rate,

10! 10° 10°

recombination occurs at 10° or W10 a0 a0 a0

-3
10~° seconds —— Ibragimova rate

—e— Varga rate
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Case 4: CO, Decomposition Time

@ Shots in VUT-1 shock tube at
MIPT (Moscow, Russia)

e ESA TRP CFD validation in a CO,
environment, 2008.

@ VUV lamp used to assess relative
concentration of CO,(X) by
absorption

035

0.30
~35 s
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Case 4: CO, Decomposition Time

@ Shots in VUT-1 shock tube at

) 120
MIPT (Moscow, Russia) o o
100 - 11?:3:( E
e Jelen
@ ESA TRP CFD validation in a CO, & | c bragmow
environment, 2008. 2 1o Sherovea,
. g O Sharipov StS.
@ VUV lamp used to assess relative g %] 2 Varsa a
_ £ |- cu . .
concentration of CO,(X) by B a0y, . oo
. £ 2
absorption 5 . g
L] ®
035 03003 3100 3200 3300 3400 - 3500 350;

Shock velocity, km/s

0.30
~35 s
0.25

@ Typical time scale 1-40 us

@ Macroscopic model always predicts
< 2us

Absorption signal, V.

@ StS model provides correct

000 /\/\/\M shock-velocity trends and

I S overpredicts decomposition times by
50-100%
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Radiation
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CO, IR Radiation Modelling

CDSD4000 will be used to refit a vibrationally specific CO, IR database

Dubbed CDSDv, this database will feature:
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CO, IR Radiation Modelling

CDSD4000 will be used to refit a vibrationally specific CO, IR database

Dubbed CDSDv, this database will feature:
@ Separation between rotational and vibrational modes

@ Can be coupled to kinetic solver

dgi - ZK”N"Nj - ZKjiNjNi - ZAijNi
J j 5
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CO, IR Radiation Modelling

CDSD4000 will be used to refit a vibrationally specific CO, IR database

Dubbed CDSDv, this database will feature:
@ Separation between rotational and vibrational modes

@ Can be coupled to kinetic solver

dé\tfi = ZKijNiNj - ZKjiNjNi — ZAijNi
J j ;

@ Reconstruction of ro-vibrational data
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CO, IR Radiation Modelling

CDSD4000 will be used to refit a vibrationally specific CO, IR database

Dubbed CDSDv, this database will feature:
@ Separation between rotational and vibrational modes
@ Can be coupled to kinetic solver

dé\tfi = ZKijNiNj - ZKjiNjNi — ZAijNi
J j ;

@ Reconstruction of ro-vibrational data

@ Will lose detail: not suitable for detailed spectroscopy, perturbations will not
be accounted for.
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Level Database

Fit ro-vibrational energy levels:

| By =Gy + BuJ(J + 1)] = DolJ(J + D + H,[1(J + D |
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Fit ro-vibrational energy levels:

| By =Gy + BuJ(J + 1)] = DolJ(J + D + H,[1(J + D |
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Fit ro-vibrational energy levels:
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x10* x104
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Level Database

Fit ro-vibrational energy levels:

| By =Gy + BuJ(J + 1)] = DolJ(J + D + H,[1(J + D |

x10* x104

0 100 200 300 0 100 200 300
J J

Extrapolation of J to 300 (or 301) or to Eyiss.
We now have a levels database.
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Fitting Transitions

, _
A?,, —Vibrational Einstein coefficients

° v
— @ Fj/ jy» —Herman-Wallis factors
J
’ A’U Ly’ . . . . . .
AV X Fyr g = Sil}'/i:f{” @ AV, —Ro-vibrational Einstein coefficients
Iy
v @ S}, —Hénl-London factors

@ RHS is obtained through reading databases

@ LHS is a polynomial expansion
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Fitting Transitions

, _
) AZ// —Vibrational Einstein coefficients

— @ Fj/ jy» —Herman-Wallis factors
J
’ A’U Ly’ . . . . . .
AV X Fyr g = 751;,':]{" @ AV, —Ro-vibrational Einstein coefficients
Iy
v @ S}, —Hénl-London factors

@ RHS is obtained through reading databases
@ LHS is a polynomial expansion

@ Ro-vibrational transitions have branches and polynomial coefficients are
shared

Each transition is fitted for every branch “simultaneously"
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Transition Fitting

Some examples of transition fitting.

@ Transitions 00011—00001 and
01111—01101 (e and f)

@ Perturbed data was removed
prior to fitting.

@ Data was truncated at
convenient J
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Some examples of transition fitting.
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Transition Fitting

Some examples of transition fitting.

@ Transitions 00011—00001 and
01111—01101 (e and f)

@ Perturbed data was removed
prior to fitting.

@ Data was truncated at
convenient J
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o CDSD P data

Einstein A coefficient / S}/, s™*

3401 5 CDSDR data
—— P branch fit
3201 __ R pranch fit
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o CDSD P data
o CDSD Q data
o CDSD R data
—— P branch fit
— Q branch fit
—— R branch fit
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Reconstruction of Einstein Coefficients

Reconstructed Einstein coefficients
of transitions 00011—00001 (top)
and 01111—01101 (bottom).

Comparison with CDSD4000 and
HITRAN values.

Perturbed data is not reproduced
and does not affect fitting
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Reconstruction of Einstein Coefficients
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Reconstruction of Einstein Coefficients
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Lorentz Broadening

In CDSD4000:
@ Semi empirical expressions
@ Only Air and Self broadening

@ From reference p and T values
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® Semi empirical expressions o Generalized expressions, effect
@ Only Air and Self broadening dependant

@ From reference p and T values @ Can be used for any mixture
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Lorentz Broadening

In CDSD4000: In CDSDv:
® Semi empirical expressions o Generalized expressions, effect
@ Only Air and Self broadening dependant
@ From reference p and T values @ Can be used for any mixture
1.0 —— 80% N2 - 20% CO2
—— 80% 02 - 20% CO2
=== 80% CH4 - 20% CO2
—— CDSD4000
0.8
%0.5
0.4
0.2

-100 -75 -50 -25 0.0 25 5.0 75 10.0
Position, a.u.
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Lorentz Broadening

In CDSD4000: In CDSDv:

® Semi empirical expressions o Generalized expressions, effect
@ Only Air and Self broadening dependant

@ From reference p and T values o Can be used for any mixture
1.0 —— 80% N2 - 20% CO2 —— 80% N2 - 20% CO2
—— 80% 02 - 20% CO2 0.0018 80% 02 - 20% CO2
=== 80% CH4 - 20% CO2 - 80% CH4 - 20% CO2
—— CDSD4000 —— CDSD4000
0.0016
0.8
% 0.0014
H 3
L 13
o6 g 00012
g g
qg? g 0.0010
- o
13
H
0.4 0.0008
0.0006
0.2 0.0004
-10.0 =75 =5.0 =25 0.0 25 5.0 75 10.0 -10.0 =75 =5.0 =25 0.0 25 5.0 75 10.0
Position, a.u. Position, a.u.

T =298 K and p = 50 atm
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Absorption Coefficient
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Absorption Coefficient
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Absorption Coefficient
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Absorption Coefficient
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Test Cases
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Case 1: JAXA Mars Entry

Measurements of IR radiation were carried out in JAXA facility by Takaynagi et al.
(2018). Pannier and Laux (2019) performed a numerical analysis repeated here.
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Case 1: JAXA Mars Entry

Measurements of IR radiation were carried out in JAXA facility by Takaynagi et al.
(2018). Pannier and Laux (2019) performed a numerical analysis repeated here.

e

4 Freeflow Forebody Freeflow
<
%
Vs
7
@ 4.3 um region

Line of sight 7 cm long simplified
into 3 zones

o 1st and 3rd cell are free flow zones,
low pressure, non-eq.

2nd cell is the forebody cell, high
pressure and temperature, no CO,
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Case 1: JAXA Mars En

Measurements of IR radiation were carried out in JAXA facility by Takaynagi et al.
(2018). Pannier and Laux (2019) performed a numerical analysis repeated here.

yJ_
4 Freeflow Forebody Freeflow
<<
Vz
—— CDSDv
0.4 Experiment
g CDSD4000
“ G203
€
L
’ 202
[
2
o
. T 0.1
@ 4.3 pm region g
@ Line of sight 7 cm long simplified 0.0
. 4000 4200 4400 4600 4800 5000
into 3 zones

Wavelength, nm

o 1st and 3rd cell are free flow zones,
low pressure, non-eq. Very good agreement

@ 2nd cell is the forebody cell, high
pressure and temperature, no CO,
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Case 2: EAST MSL Entry

Campaign at EAST - Mars Science
Laboratory conditions

@ Shock at 3.69 km/s

e 1 Torr, 97% CO,

@ 4.3 um spectral region

@ Peak Temperature at 3050 K

Simulation profile kindly shared by B.
Cruden.
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Case 2: EAST MSL Entry

Campaign at EAST - Mars Science
Laboratory conditions 2.0

@ Shock at 3.69 km/s

e 1 Torr, 97% CO,

@ 4.3 um spectral region

@ Peak Temperature at 3050 K

Simulation profile kindly shared by B.
Cruden.

Radiance, W.cm=2.sr™1
-
)

—— EAST data
—— CDSDv

0 2 4 6 8 10 12
Position, cm
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Case 3: Atmospheric Plasma Torch

CO, Atmospheric plasma torch at
1,000-5,000K, work of Depraz et al.
(2012)
@ 2.7 and 4.3 um regions probed
@ Measurements at h = 6, 20 mm

@ Torch radial profile is divided into
10 cells
Radiative Transfer with CDSDv + CO in
the central chord: line of sight is taken
as the full diameter of the torch.
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Case 3: Atmospheric Plasma Torch

—— CDSDvib
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CO, Atmospheric plasma torch at .
1,000-5,000K, work of Depraz et al. 2
(2012) 0
. 1800 1900 2000 2100 2200 2300 2400 2500
@ 2.7 and 4.3 um regions probed Wavenumber, cm-1
6 mm, 4.3um

@ Measurements at h = 6, 20 mm
@ Torch radial profile is divided into
10 cells

Radiative Transfer with CDSDv + CO in
the central chord: line of sight is taken
as the full diameter of the torch.
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Case 3: Atmospheric Plasma Torch
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CO, Atmospheric plasma torch at .
1,000-5,000K, work of Depraz et al. 2
(2012) of #meeRfii
@ 2.7 and 4.3 um regions probed D O emimber cm-t 0 500
6 mm, 4.3um
@ Measurements at h = 6, 20 mm
@ Torch radial profile is divided into 6 cosovs

10 ce||s o  Experimental

CDSD4000
Radiative Transfer with CDSDv + CO in
the central chord: line of sight is taken
as the full diameter of the torch.

[0
o

IS

Radiance, W/m?/sr/cm™t
N ow

-

o

2800 3000 3200 3400 3600 3800 4000
Wavenumber, cm~!

6 mm, 2.7um

Jodo Vargas High-Temperature Non-Equilibrium CO 13th November, PhD 39/43



Conclusions
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Accomplishments

@ A more physically consistent approach to CO, dissociation has been
presented
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o Inclusion of ®B; state
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Accomplishments

@ A more physically consistent approach to CO, dissociation has been
presented
o Step-up from SSH-based models
o Inclusion of ®B; state
o Displayed physically consistent though not 100% predictive results
o Lots of room for improvement

e A CO, IR radiation database was presented

Refitting method is universal

Broadening calculation is more flexible

In the 4.3 um region, reduction from 81M to 5M lines
CDSDv database is 16.6 MB compared to CDSD4000 16 GB
Reasonable agreement with experiments and calculations
Significant performance enhancement
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o Different collision partners
@ Improve intermode transition rates
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Kinetics

Different collision partners

Improve intermode transition rates
Inclusion of radiative processes
Uncertainty CO, + 0 +— CO + O,
Reduced order modelling

Experimental validation

Radiation
Adding a C/J or C/(J + 1) term on Herman-Wallis expressions

Add more transitions, 2.7 and 4.3 um regions

Apply CDSDv to cases with different mixtures of gases

Fitting of CDSDv to emission spectra
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Final Remarks

There is still a lot of multi-disciplinary work to be done. It is my hope this work
can be used as a reference point for further developments.
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Partition Function
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Dissociation of CO,

0D simulation, 3.69 km/s shock, 1 Torr in pure CO,
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More CO + O, +— CO, + O

Rates already included:
@ CO,(X,v) + O(3P) «— CO(X) + 0,(X)
e CO,(X,v) +O(*D) +— CO(X) + 0,(X)
o CO,(X,v) + C+— CO(X) + CO(X)

Other candidate rates to include:
CO(a) + 0,(X) «+— CO, + O(®P)
CO(X) + O,(a) «— CO, + O('D)
O5(a) + M +— O,(b) + M
O,(b) 4+ 0,(X) «— O,(a) + O,(a)
CO(a)+ CO+— CO,+C
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Radiative Power
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Performance

# 1 2
Parameters Tight Lax
Range 2100-2500 2000-2500
Database CDSDv CDSD4000 CDSDv CDSD4000
Time 1 (s) 30.98 85.18 20.11 174.95
Time 2 (s) 329.58 356.25 145.11 341.63
Time 3 (s) 2855.43 3891.64 1007.92 1773.45
Max RAM  446.3 MiB  3.830 GiB  607.75 MiB  7.985 GiB
# Lines 4,266,280 37,497,133 5,867,324 81,963,950
# 3 4
Parameters Lax Tight
Range 2100-2500 2000-2500
Database CDSDv CDSD4000 CDSDv CDSD4000
Time 1 (s) 17.09 65.53 39.95 181.62
Time 2 (s) 124.82 183.89 574.38 738.41
Time 3 (s) 613.40 791.06 6846.50 12253.16
Max RAM 4427 MiB  3.660 GiB  608.14 MiB  7.963 GiB
# Lines 4,266,280 37,497,133 5,867,324 81,963,950
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Some Transmittance Results
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Glow Discharge

Emission, a.u.
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Einstein Coefficients
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Prospective Shock-Tube Experiments

@ Good experimental data still needed
these days

o New experiments may bring more
insight. A mix of time-dependent
emission and absorption
spectroscopy is very promising.

e CO2 IR radiative emission

e CO IR radiative emission

o probing O(®*P);O(*D) from the
130nm O transition. Is this
possible?

e probing Os from
Schumann-Runge transition

@ Dissociation and incubation times
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More Experiments

@ Complementary to shock tubes,
microwave plasmas and plasma
torches can also contribute

@ In addition to previous diagnostics:

e CO, Chemiluminescence bands
e Raman spectroscopy (7)

@ Recombination experiments

@ Relative high-T and steady state

Jodo Vargas High-Temperature Non-Equilibrium CO 13th November, PhD 13 /13



	Introduction
	Kinetics
	Test Cases

	Radiation
	Test Cases

	Conclusions
	Appendix

