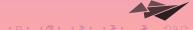


Simulation des Propriétés Radiatives du Plasma Entourant un Véhicule Traversant une Atmosphère Planétaire à Vitesse Hypersonique Application à la Planète Mars

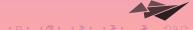
Thèse présentée par M. Lino da Silva


Centre National de Recherche Scientifique, Orléans Laboratoire d'Aérothermique

9 déc. 2004



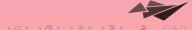
- 1 Cadre et Objectifs de l'Étude
- Simulation du Rayonnement d'un Plasma Martien
- 3 Étude Expérimentale du Rayonnement d'un Plasma Martien dans des Moyens d'Essai Complémentaires
- Étude de Plasmas de Type Martien dans le Moyen d'Essai SR5
- Conclusions et Perspectives



- 1 Cadre et Objectifs de l'Étude
- Simulation du Rayonnement d'un Plasma Martien
- Étude Expérimentale du Rayonnement d'un Plasma Martien dans des Moyens d'Essai Complémentaires
- 4 Étude de Plasmas de Type Martien dans le Moyen d'Essai SR5
- Conclusions et Perspectives

- 1 Cadre et Objectifs de l'Étude
- Simulation du Rayonnement d'un Plasma Martien
- 3 Étude Expérimentale du Rayonnement d'un Plasma Martien dans des Moyens d'Essai Complémentaires
- 4 Étude de Plasmas de Type Martien dans le Moyen d'Essai SR5
- 6 Conclusions et Perspectives

- 1 Cadre et Objectifs de l'Étude
- Simulation du Rayonnement d'un Plasma Martien
- Étude Expérimentale du Rayonnement d'un Plasma Martien dans des Moyens d'Essai Complémentaires
- 4 Étude de Plasmas de Type Martien dans le Moyen d'Essai SR5
- **5** Conclusions et Perspectives



- 1 Cadre et Objectifs de l'Étude
- Simulation du Rayonnement d'un Plasma Martien
- 3 Étude Expérimentale du Rayonnement d'un Plasma Martien dans des Moyens d'Essai Complémentaires
- 4 Étude de Plasmas de Type Martien dans le Moyen d'Essai SR5
- 5 Conclusions et Perspectives

- 1 Cadre et Objectifs de l'Étude
- Simulation du Rayonnement d'un Plasma Martien
- 3 Étude Expérimentale du Rayonnement d'un Plasma Martien dans des Moyens d'Essai Complémentaires
- 4 Étude de Plasmas de Type Martien dans le Moyen d'Essai SR5
- 5 Conclusions et Perspectives

- Programmes MARS PREMIER du CNES et AURORA de l'ESA
- Entrée atmosphérique à vitesse hypersonique d'un véhicule spatial
- Formation d'un plasma entourant le véhicule
- Importance des flux de chaleur convectifs et radiatifs
- Flux de chaleur convectifs et radiatifs du même ordre de grandeur pour des entrées superorbitales

Aérocapture de la sonde Mars Sample Return

- Programmes MARS PREMIER du CNES et AURORA de l'ESA
- Entrée atmosphérique à vitesse hypersonique d'un véhicule spatial
- Formation d'un plasma entourant le véhicule
- Importance des flux de chaleur convectifs et radiatifs
- Flux de chaleur convectifs et radiatifs du même ordre de grandeur pour des entrées superorbitales

Aérocapture de la sonde Mars Sample Return

- Programmes MARS PREMIER du CNES et AURORA de l'ESA
- Entrée atmosphérique à vitesse hypersonique d'un véhicule spatial
- Formation d'un plasma entourant le véhicule
- Importance des flux de chaleur convectifs et radiatifs
- Flux de chaleur convectifs et radiatifs du même ordre de grandeur pour des entrées superorbitales

Aérocapture de la sonde Mars Sample

- Programmes MARS PREMIER du CNES et AURORA de l'ESA
- Entrée atmosphérique à vitesse hypersonique d'un véhicule spatial
- Formation d'un plasma entourant le véhicule
- Importance des flux de chaleur convectifs et radiatifs
- Flux de chaleur convectifs et radiatifs du même ordre de grandeur pour des entrées superorbitales

Aérocapture de la sonde Mars Sample Return

- Programmes MARS PREMIER du CNES et AURORA de l'ESA
- Entrée atmosphérique à vitesse hypersonique d'un véhicule spatial
- Formation d'un plasma entourant le véhicule
- Importance des flux de chaleur convectifs et radiatifs
- Flux de chaleur convectifs et radiatifs du même ordre de grandeur pour des entrées superorbitales

Aérocapture de la sonde Mars Sample Return

- Atmosphère de Mars: 97% CO₂–3% N₂
 Rayonnement CO₂, CO, CN, C₂, C, O
- Derrière l'onde de choc : transfert de l'énergie de translation vers modes internes + processus chimiques
- Hautes températures et basses densités favorisent l'établissement d'un déséquilibre thermodynamique
- Besoin d'étudier les processus de peuplement des niveaux internes des espèces du plasma

- Atmosphère de Mars: 97% CO₂–3% N₂
 Rayonnement CO₂, CO, CN, C₂, C, O
- Derrière l'onde de choc : transfert de l'énergie de translation vers modes internes + processus chimiques
- Hautes températures et basses densités favorisent l'établissement d'un déséquilibre thermodynamique
- Besoin d'étudier les processus de peuplement des niveaux internes des espèces du plasma

- Atmosphère de Mars: 97% CO₂–3% N₂
 Rayonnement CO₂, CO, CN, C₂, C, O
- Derrière l'onde de choc : transfert de l'énergie de translation vers modes internes + processus chimiques
- Hautes températures et basses densités favorisent l'établissement d'un déséquilibre thermodynamique
- Besoin d'étudier les processus de peuplement des niveaux internes des espèces du plasma

- Atmosphère de Mars: 97% CO₂–3% N₂
 Rayonnement CO₂, CO, CN, C₂, C, O
- Derrière l'onde de choc : transfert de l'énergie de translation vers modes internes + processus chimiques
- Hautes températures et basses densités favorisent l'établissement d'un déséquilibre thermodynamique
- Besoin d'étudier les processus de peuplement des niveaux internes des espèces du plasma

- Cadre et Objectifs de l'Étude
- 2 Simulation du Rayonnement d'un Plasma Martien
 - Rayonnement d'un Gaz en Déséquilibre Thermodynamique
 - Développement du Code Raie-par-Raie SESAM
 - Propriétés Radiatives à l'Équilibre d'un Plasma Martien
- 3 Étude Expérimentale du Rayonnement d'un Plasma Martien dans des Moyens d'Essai Complémentaires
- 4 Étude de Plasmas de Type Martien dans le Moyen d'Essai SR5
- 5 Conclusions et Perspectives

Simulation du Rayonnement d'un Plasma Martien

L'équation suivante pose les problèmes fondamentaux du calcul de rayonnement :

$$I = N_u A_{ul} \Delta E_{ul}$$

- N_u: Calcul du peuplement des niveaux :
 Distributions de Boltzmann à l'équilibre, modèles "état par état" en déséquilibre
- A_{ul}: Calcul des probabilités de transition entre niveaux.
 D'après calculs "ab-initio" des moments de transition
- ΔE_{ul}: Calcul des énergies de niveaux:
 D'après données expérimentales, extrapolation problématique pour les hauts niveaux

Simulation du Rayonnement d'un Plasma Martien

L'équation suivante pose les problèmes fondamentaux du calcul de rayonnement :

$$I = N_u A_{ul} \Delta E_{ul}$$

- N_u: Calcul du peuplement des niveaux :
 Distributions de Boltzmann à l'équilibre, modèles "état par état" en déséquilibre
- A_{ul}: Calcul des probabilités de transition entre niveaux: D'après calculs "ab-initio" des moments de transition
- ΔE_{ul}: Calcul des énergies de niveaux:
 D'après données expérimentales, extrapolation problématique pour les hauts niveaux

Relations de Rayonnement d'un Gaz en Déséquilibre Thermodynamique

Transitions lié-lié

$$\frac{\varepsilon_{\nu}}{\alpha_{\nu}} = \frac{2h\nu^3}{c^2} \left(\frac{g_I n_u}{g_u n_I} - 1 \right)^{-1}$$

Transitions lié-libre

$$\frac{\sigma_{bf}(\nu)}{\sigma_{fb}(\nu)} = \frac{1}{2} \left(\frac{m_e v_e c}{h \nu} \right)^2 \frac{g_+ g_e}{g_n}$$

Transitions libre-libre

$$\frac{\varepsilon_{\nu}}{\alpha_{\nu}} = \frac{2h\nu^3}{c^2} \left[\exp\left(\frac{h\nu}{k_B T_e}\right) - 1 \right]^{-1}$$

Relations de Rayonnement d'un Gaz en Déséquilibre Thermodynamique

Transitions lié-lié

$$\frac{\varepsilon_{\nu}}{\alpha_{\nu}} = \frac{2h\nu^3}{c^2} \left(\frac{g_I n_u}{g_u n_I} - 1 \right)^{-1}$$

Transitions lié-libre

$$\frac{\sigma_{bf}(\nu)}{\sigma_{fb}(\nu)} = \frac{1}{2} \left(\frac{m_{e} v_{e} c}{h \nu} \right)^{2} \frac{g_{+} g_{e}}{g_{n}}$$

Transitions libre-libre

$$\frac{\varepsilon_{\nu}}{\alpha_{\nu}} = \frac{2h\nu^{3}}{c^{2}} \left[\exp\left(\frac{h\nu}{k_{B}T_{e}}\right) - 1 \right]^{-1}$$

Relations de Rayonnement d'un Gaz en Déséquilibre Thermodynamique

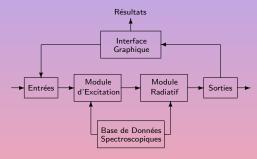
Transitions lié-lié

$$\frac{\varepsilon_{\nu}}{\alpha_{\nu}} = \frac{2h\nu^3}{c^2} \left(\frac{g_I n_u}{g_u n_I} - 1 \right)^{-1}$$

Transitions lié-libre

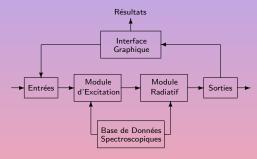
$$\frac{\sigma_{bf}(\nu)}{\sigma_{fb}(\nu)} = \frac{1}{2} \left(\frac{m_{e} v_{e} c}{h \nu} \right)^{2} \frac{g_{+} g_{e}}{g_{n}}$$

Transitions libre-libre


$$\frac{\varepsilon_{\nu}}{\alpha_{\nu}} = \frac{2h\nu^{3}}{c^{2}} \left[\exp\left(\frac{h\nu}{k_{B}T_{e}}\right) - 1 \right]^{-1}$$

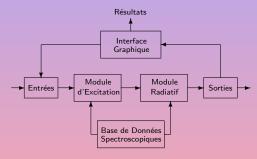
Présentation du Code Raie-par-Raie SESAM

- Module d'excitation et module radiatif
- Module radiatif valable en déséquilibre thermodynamique
- Utilisable seul ou en couplage avec un code de calcul hydrodynamique


Structure du code SESAM C, C $^+$, N, N $^+$, O, O $^+$, Ar, Ar $^+$, C $_2$, N $_2$, N $_2^+$, O $_2$, CN, CO, NO, CO $_2$

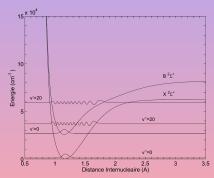
Présentation du Code Raie-par-Raie SESAM

- Module d'excitation et module radiatif
- Module radiatif valable en déséquilibre thermodynamique
- Utilisable seul ou en couplage avec un code de calcul hydrodynamique


Structure du code SESAM C, C $^+$, N, N $^+$, O, O $^+$, Ar, Ar $^+$, C $_2$, N $_2$, N $_2^+$, O $_2$, CN, CO, NO, CO $_2$

Présentation du Code Raie-par-Raie SESAM

- Module d'excitation et module radiatif
- Module radiatif valable en déséquilibre thermodynamique
- Utilisable seul ou en couplage avec un code de calcul hydrodynamique


Structure du code SESAM C, C $^+$, N, N $^+$, O, O $^+$, Ar, Ar $^+$, C $_2$, N $_2$, N $_2^+$, O $_2$, CN, CO, NO, CO $_2$

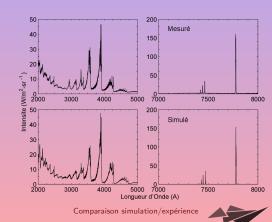
Calcul des Probabilités de Transition

- Calcul systématique des probabilités de transition par une méthode "ab-initio"
- Reconstruction des potentiels moléculaires et résolution de l'équation de Schrödinger

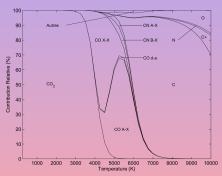
Exemple pour le système CN Violet

- Le code SESAM a été testé dans la gamme spectrale proche-UV-proche-IR sur un spectre d'air à pression atmosphérique et à l'équilibre
- Spectre à l'équilibre thermodynamique mesuré par C. Laux dans la torche ICP de Stanford (P=27 kW, m=95 slm)
- Calcul du rayonnement local de chaque tranche du plasma et resolution de l'equation radiale de transfert de rayonnement

- Le code SESAM a été testé dans la gamme spectrale proche-UV-proche-IR sur un spectre d'air à pression atmosphérique et à l'équilibre
- Spectre à l'équilibre thermodynamique mesuré par C. Laux dans la torche ICP de Stanford (P=27 kW, \dot{m} =95 slm)
- Calcul du rayonnement local de chaque tranche du plasma et resolution de l'equation radiale de transfert de rayonnement

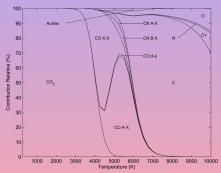


- Le code SESAM a été testé dans la gamme spectrale proche-UV-proche-IR sur un spectre d'air à pression atmosphérique et à l'équilibre
- Spectre à l'équilibre thermodynamique mesuré par C. Laux dans la torche ICP de Stanford (P=27 kW, \dot{m} =95 slm)
- Calcul du rayonnement local de chaque tranche du plasma et resolution de l'equation radiale de transfert de rayonnement



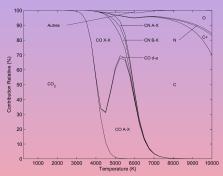
- P=1 atm, T(r) connus, calcul fractions molaires à l'équilibre chimique, peuplements de niveaux d'après distributions de Boltzmann
- Accord entre simulation et expérience permet de valider les routines de calcul du code et une partie de sa base de données spectrale

- Rayonnement CO₂
 dominant T < 5000 K
- Rayonnement CO dominant T = [5000 6500] K
- Rayonnement C dominant T > 6500 K



Contribution individuelle de chaque système au rayonnement

- Rayonnement CO₂
 dominant T < 5000 K
- Rayonnement CO dominantT = [5000 6500] K
- Rayonnement C dominant
 T > 6500 K



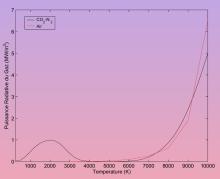
Contribution individuelle de chaque système au rayonnement

- Rayonnement CO₂
 dominant T < 5000 K
- Rayonnement CO dominantT = [5000 6500] K
- Rayonnement C dominant
 T > 6500 K



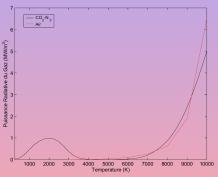
Contribution individuelle de chaque système au rayonnement

- Puissance radiative émise équivalente à haute température pour un plasma d'air et de CO₂-N₂
- Rayonnement de COg important autour de 2000 K
- Résultats pouvant être comparés avec des mesures expérimentales



Puissance radiative totale émise par un plasma d'air et de type Martien

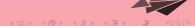
- Puissance radiative émise équivalente à haute température pour un plasma d'air et de CO₂-N₂
- Rayonnement de CO₂ important autour de 2000 K
- Résultats pouvant être comparés avec des mesures expérimentales



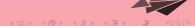
Puissance radiative totale émise par un plasma d'air et de

- Puissance radiative émise équivalente à haute température pour un plasma d'air et de CO₂-N₂
- Rayonnement de CO₂ important autour de 2000 K
- Résultats pouvant être comparés avec des mesures expérimentales

Puissance radiative totale émise par un plasma d'air et de type Martien



Plan

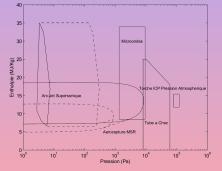

- Cadre et Objectifs de l'Étude
- 2 Simulation du Rayonnement d'un Plasma Martien
- Étude Expérimentale du Rayonnement d'un Plasma Martien dans des Moyens d'Essai Complémentaires
 - Mesures dans la Gamme du Proche-UV au Proche-IR
 - Processus d'Excitation des États Moléculaires Radiatifs
- 4 Étude de Plasmas de Type Martien dans le Moyen d'Essai SR5
- 5 Conclusions et Perspectives

- Torche ICP du LAEPT de Clermont–Ferrand (P=3 kW, $\dot{m}\sim 10$ slm, h=15 MJ/kg, p=1 bar, plasma haute pression à l'équilibre)
- Moyen d'essai microondes du LCSR d'Orléans (P=1 kW, m
 ~2 slm, h=15-30 MJ/kg, p=10³-10⁴ Pa, plasma basse pression en déséquilibre)
- Moyen d'essai arc-jet SR5 du Laboratoire d'Aérothermique d'Orléans (P=5-10 kW, m ~20 slm, h=5-35 MJ/kg, p=5-200 Pa, v~5 km/s, plasma très basse pression en déséquilibre)
- Tube à choc TCM2 de l'IUSTI de Marseille (h= 5-25 MJ/kg, p=0.1-0.5 Pa, v=5 km/s)

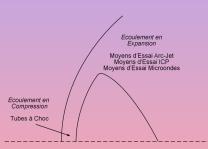
- Torche ICP du LAEPT de Clermont–Ferrand (P=3 kW, \dot{m} \sim 10 slm, h=15 MJ/kg, p=1 bar, plasma haute pression à l'équilibre)
- Moyen d'essai microondes du LCSR d'Orléans (P=1 kW, $\dot{m}\sim$ 2 slm, h=15–30 MJ/kg, p=10³–10⁴ Pa, plasma basse pression en déséquilibre)
- Moyen d'essai arc-jet SR5 du Laboratoire d'Aérothermique d'Orléans (P=5-10 kW, m ~20 slm, h=5-35 MJ/kg, p=5-200 Pa, v~5 km/s, plasma très basse pression en déséquilibre)
- Tube à choc TCM2 de l'IUSTI de Marseille (h= 5-25 MJ/kg, p=0.1-0.5 Pa, v=5 km/s)

- Torche ICP du LAEPT de Clermont–Ferrand (P=3 kW, \dot{m} \sim 10 slm, h=15 MJ/kg, p=1 bar, plasma haute pression à l'équilibre)
- Moyen d'essai microondes du LCSR d'Orléans (P=1 kW, $\dot{m}\sim$ 2 slm, h=15–30 MJ/kg, p=10³–10⁴ Pa, plasma basse pression en déséquilibre)
- Moyen d'essai arc-jet SR5 du Laboratoire d'Aérothermique d'Orléans (P=5-10 kW, m

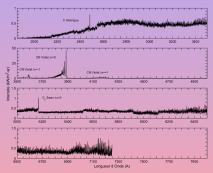
 ~20 slm, h=5-35 MJ/kg, p=5-200 Pa, v~5 km/s, plasma très basse pression en déséquilibre)
- Tube à choc TCM2 de l'IUSTI de Marseille (h= 5-25 MJ/kg, p=0.1-0.5 Pa, v=5 km/s)

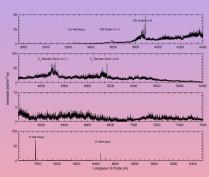

- Torche ICP du LAEPT de Clermont–Ferrand (P=3 kW, $\dot{m}\sim$ 10 slm, h=15 MJ/kg, p=1 bar, plasma haute pression à l'équilibre)
- Moyen d'essai microondes du LCSR d'Orléans (P=1 kW, $\dot{m}\sim$ 2 slm, h=15–30 MJ/kg, p=10³–10⁴ Pa, plasma basse pression en déséquilibre)
- Moyen d'essai arc-jet SR5 du Laboratoire d'Aérothermique d'Orléans (P=5-10 kW, m

 ~20 slm, h=5-35 MJ/kg, p=5-200 Pa, v~5 km/s, plasma très basse pression en déséquilibre)
- Tube à choc TCM2 de l'IUSTI de Marseille (h= 5-25 MJ/kg, p=0.1-0.5 Pa, v=5 km/s)

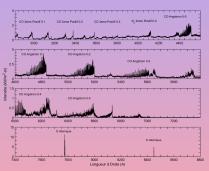


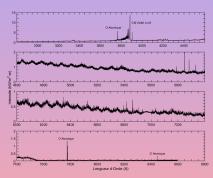
Classement des Différents Moyens d'Essai par Rapport à une Trajectoire d'Aérocapture


Domaine de fonctionnement des moyens d'essai étudiés et comparaison avec une trajectoire d'aérocapture sur Mars


Représentativité des différents moyens d'essai par rapport à un écoulement d'entrée atmosphérique

Mesures dans la Gamme du Proche-UV au Proche-IR


Spectre d'émission du plasma obtenu dans la torche ICP du LAEPT


Spectre d'émission du plasma obtenu dans le moyen d'essai arc-jet SR5

Mesures dans la Gamme du Proche-UV au Proche-IR

Spectre d'émission du plasma obtenu dans le moyen d'essai microondes du LCSR Basse puissance (800 W, 13 MJ/kg)

Spectre d'émission du plasma obtenu dans le moyen d'essai microondes du LCSR Haute puissance (1300 W, 20 MJ/kg)

- Émission du système CN Violet détectée et dominante dans tous les moyens d'essai
- Émission des Bandes de Swan de C₂ observée uniquement dans le plasma arc-jet de SR5
- Deux modes de comportement du plasma microondes :
 Haute enthalpie, émission du système CN Violet
 Basse enthalpie, émission des systèmes Angström et 3ième
 Positif de CO
- Émission du système Angström de CO observée dans le tube à choc TCM2

- Émission du système CN Violet détectée et dominante dans tous les moyens d'essai
- Émission des Bandes de Swan de C₂ observée uniquement dans le plasma arc-jet de SR5
- Deux modes de comportement du plasma microondes :
 Haute enthalpie, émission du système CN Violet
 Basse enthalpie, émission des systèmes Angström et 3ième
 Positif de CO
- Émission du système Angström de CO observée dans le tube à choc TCM2

- Émission du système CN Violet détectée et dominante dans tous les moyens d'essai
- Émission des Bandes de Swan de C₂ observée uniquement dans le plasma arc-jet de SR5
- Deux modes de comportement du plasma microondes :
 Haute enthalpie, émission du système CN Violet
 Basse enthalpie, émission des systèmes Angström et 3ième
 Positif de CO
- Émission du système Angström de CO observée dans le tube à choc TCM2

- Émission du système CN Violet détectée et dominante dans tous les moyens d'essai
- Émission des Bandes de Swan de C₂ observée uniquement dans le plasma arc-jet de SR5
- Deux modes de comportement du plasma microondes :
 Haute enthalpie, émission du système CN Violet
 Basse enthalpie, émission des systèmes Angström et 3ième
 Positif de CO
- Émission du système Angström de CO observée dans le tube à choc TCM2

- Les états excités de CO et de CN sont peuplés par des réactions de collision électroniques
- Les électrons jouent un rôle de réservoir d'énergie
- Les états excités de C₂ sont peuplés par des réactions de recombinaison de C ⇒ présence de déséquilibres

- Les états excités de CO et de CN sont peuplés par des réactions de collision électroniques
- Les électrons jouent un rôle de réservoir d'énergie
- Les états excités de C₂ sont peuplés par des réactions de recombinaison de C ⇒ présence de déséquilibres

- Les états excités de CO et de CN sont peuplés par des réactions de collision électroniques
- Les électrons jouent un rôle de réservoir d'énergie
- Les états excités de C₂ sont peuplés par des réactions de recombinaison de C ⇒ présence de déséquilibres

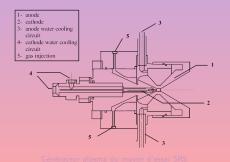
- Les états excités de CO et de CN sont peuplés par des réactions de collision électroniques
- Les électrons jouent un rôle de réservoir d'énergie
- Les états excités de C₂ sont peuplés par des réactions de recombinaison de C ⇒ présence de déséquilibres

Plan

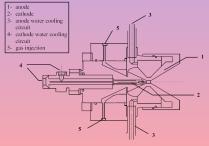
- 1 Cadre et Objectifs de l'Étude
- 2 Simulation du Rayonnement d'un Plasma Martien
- Étude Expérimentale du Rayonnement d'un Plasma Martier dans des Moyens d'Essai Complémentaires
- 4 Étude de Plasmas de Type Martien dans le Moyen d'Essai SR5
 - Étude Numérique de l'Écoulement dans le Générateur
 - Étude Expérimentale du Jet Libre de Plasma
- 5 Conclusions et Perspectives

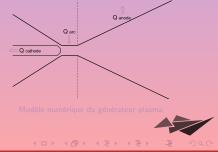
Étude de Plasmas de Type Martien dans le Moyen d'Essai SR5

- Quantification du degré de déséquilibre thermodynamique d'un plasma important pour le calcul de son rayonnement
- Application au moyen d'essai arc-jet SR5 où des forts degrés de déséquilibres thermodynamiques sont observés

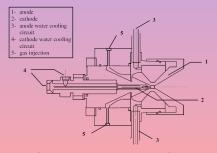

Étude de Plasmas de Type Martien dans le Moyen d'Essai SR5

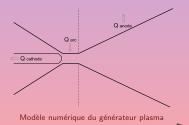
- Quantification du degré de déséquilibre thermodynamique d'un plasma important pour le calcul de son rayonnement
- Application au moyen d'essai arc-jet SR5 où des forts degrés de déséquilibres thermodynamiques sont observés


- Modèle quasi-1D multitempérature tenant compte des déséquilibres thermodynamiques
- Modèle Navier–Stokes tenant compte des effets dissipatifs

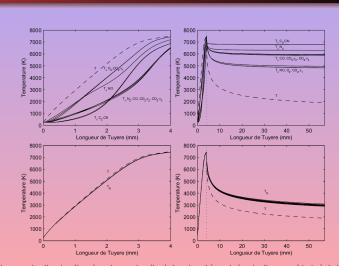


- Modèle quasi-1D multitempérature tenant compte des déséquilibres thermodynamiques
- Modèle Navier–Stokes tenant compte des effets dissipatifs



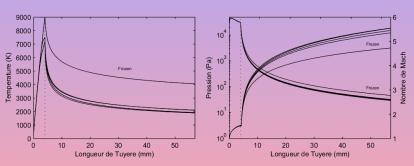


- Modèle quasi-1D multitempérature tenant compte des déséquilibres thermodynamiques
- Modèle Navier–Stokes tenant compte des effets dissipatifs


Générateur plasma du moyen d'essai SR5

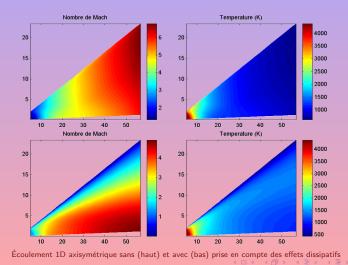
Modèle Multi-Température

chimie V-T V-V V-D R-T

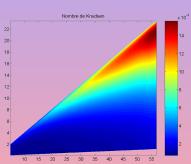


Températures de vibration (haut) et de rotation (bas) dans le col (gauche) et le divergent (droite) de la tuyère

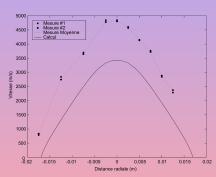
Modèle Multi-Température



Influence des différents processus thermodynamiques sur les paramètres macroscopiques de l'écoulement



Modèle Navier-Stokes



Nombre de Knudsen d'un écoulement Ar-No

Comparaison entre les profils radials de vitesse mesurés et calculés en sortie de tuyère

Propriétés de l'écoulement interne dans le générateur

- Forts déséquilibres des modes internes, mais seuls les processus chimiques influencent les paramètres macroscopiques de l'écoulement. Figeage des processus dans la section divergente de la tuyère
- Effets visqueux dominants dans la section divergente de la tuyère
- Plasma dans le régime transitionnel près de la sortie de la tuyère. Effet de glissement à la paroi

Propriétés de l'écoulement interne dans le générateur

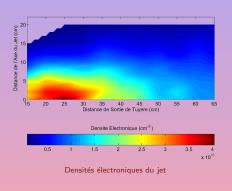
- Forts déséquilibres des modes internes, mais seuls les processus chimiques influencent les paramètres macroscopiques de l'écoulement. Figeage des processus dans la section divergente de la tuyère
- Effets visqueux dominants dans la section divergente de la tuyère
- Plasma dans le régime transitionnel près de la sortie de la tuyère. Effet de glissement à la paroi

Propriétés de l'écoulement interne dans le générateur

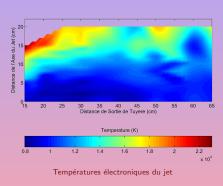
- Forts déséquilibres des modes internes, mais seuls les processus chimiques influencent les paramètres macroscopiques de l'écoulement. Figeage des processus dans la section divergente de la tuyère
- Effets visqueux dominants dans la section divergente de la tuyère
- Plasma dans le régime transitionnel près de la sortie de la tuyère. Effet de glissement à la paroi

Étude Expérimentale du Jet Libre de Plasma

- Etude des propriétés électroniques du plasma par sondes electrostatiques
- Etude locale du rayonnement du système CN Violet


Étude Expérimentale du Jet Libre de Plasma

- Etude des propriétés électroniques du plasma par sondes electrostatiques
- Etude locale du rayonnement du système CN Violet



Propriétés Électriques de la Plume de Plasma CO₂-N₂

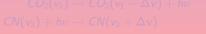
 Mise en évidence la présence de phénomènes de reflexion de chocs

 Présence d'électrons à haute énergie en bordure du jet

- Mesures locales de l'émission du Système CN Violet $\Delta v = 0$ par inversion d'Abel
- Insertion d'un obstacle sphérique pour l'étude de l'interaction plume/choc droi
- Étude d'un plasma CO₂-N₂ et N₂-CH₄

Interaction de la plume de plasma avec un obstacle sphérique

- Reconstruction des peuplements des états excités avec le code SESAN
- Mise en évidence d'un phénomene de pompage optique sur le CN pour le plasma CO₂-N₂
 - $CO_2(v_1) \rightarrow CO_2(v_1 \Delta v) + hv$ $CN(v_2) + hv \rightarrow CN(v_2 + \Delta v)$



- Mesures locales de l'émission du Système CN Violet $\Delta v = 0$ par inversion d'Abel
- Insertion d'un obstacle sphérique pour l'étude de l'interaction plume/choc droit
- Etude d'un plasma CO_2-N_2 et N_2-CH_4

Interaction de la plume de plasma avec un obstacle sphérique

- Reconstruction des peuplements des états excités avec le code SESAM
- Mise en évidence d'un phénomène de pompage optique sur le CN pour le plasma CO₂-N₂

- Mesures locales de l'émission du Système CN Violet $\Delta v = 0$ par inversion d'Abel
- Insertion d'un obstacle sphérique pour l'étude de l'interaction plume/choc droit
- Étude d'un plasma CO_2 – N_2 et N_2 – CH_4

Interaction de la plume de plasma avec un obstacle sphérique

- Reconstruction des peuplements des états excités avec le code SESAM
- Mise en évidence d'un phénomène de pompage optique sur le CN pour le plasma CO₂-N₂

$$CO_2(v_1) \rightarrow CO_2(v_1 - \Delta v) + h\nu$$

 $CN(v_2) + h\nu \rightarrow CN(v_2 + \Delta v)$

- Mesures locales de l'émission du Système CN Violet $\Delta v = 0$ par inversion d'Abel
- Insertion d'un obstacle sphérique pour l'étude de l'interaction plume/choc droit
- Étude d'un plasma CO_2 – N_2 et N_2 – CH_4

Interaction de la plume de plasma avec un obstacle sphérique

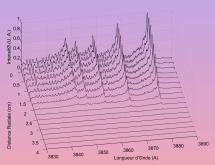
- Reconstruction des peuplements des états excités avec le code SESAM
- Misé en évidence d'un phénomène de pompage optique sur le CN pour le plasma CO₂-N₂

$$CO_2(v_1) \rightarrow CO_2(v_1 - \Delta v) + h\nu$$

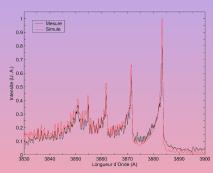
 $CN(v_2) + h\nu \rightarrow CN(v_2 + \Delta v)$

Etude Locale du Rayonnement du Système CN Violet

- Mesures locales de l'émission du Système CN Violet $\Delta v = 0$ par inversion d'Abel
- Insertion d'un obstacle sphérique pour l'étude de l'interaction plume/choc droit
- Étude d'un plasma CO₂–N₂ et N₂–CH₄


Interaction de la plume de plasma avec un obstacle sphérique

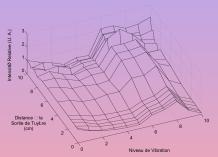
- Reconstruction des peuplements des états excités avec le code SESAM
- Mise en évidence d'un phénomène de pompage optique sur le CN pour le plasma $\rm CO_2$ – $\rm N_2$


$$CO_2(v_1) \rightarrow CO_2(v_1 - \Delta v) + h\nu$$

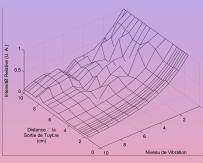
 $CN(v_2) + h\nu \rightarrow CN(v_2 + \Delta v)$

Etude Locale du Rayonnement du Système CN Violet

Exemple de transformée d'Abel en sortie de tuyère



Exemple de simulation du rayonnement mesuré avec le code SESAM



Etude Locale du Rayonnement du Système CN Violet

Peuplements relatifs des niveaux vibrationnels le long de la ligne d'arrêt (plasma CO₂–N₂)

Peuplements relatifs des niveaux vibrationnels le long de la ligne d'arrêt (plasma N_2 -CH $_4$)

 Le jet est suffisamment raréfié pour qu'aucun processus collisionnel soit apparent

Plan

- Cadre et Objectifs de l'Étude
- Simulation du Rayonnement d'un Plasma Martien
- 3 Étude Expérimentale du Rayonnement d'un Plasma Martien dans des Moyens d'Essai Complémentaires
- 4 Étude de Plasmas de Type Martien dans le Moyen d'Essai SR5
- **5** Conclusions et Perspectives

- Le code SESAM a été développé pour la simulation de l'émission radiative de plasmas d'entrée atmosphérique.
 Possibilité d'utilisation couplée à un code hydrodynamique
- Une base de données spectrale a été mise au point pour permettre de simuler des rentrées terrestres et Martiennes.
 Extension possible pour d'autres atmosphères (Jupiter, Saturne – H₂–He, Titan – N₂–CH₄)
- Validation du code par des mesures expérimentales sur des moyens d'essai complémentaires dans la gamme spectrale proche du visible pour des plasmas d'air et de type Martien
- Identification des principaux systèmes moléculaires émissifs et analyse théorique des processus de peuplement mis en jeu

- Le code SESAM a été développé pour la simulation de l'émission radiative de plasmas d'entrée atmosphérique.
 Possibilité d'utilisation couplée à un code hydrodynamique
- Une base de données spectrale a été mise au point pour permettre de simuler des rentrées terrestres et Martiennes.
 Extension possible pour d'autres atmosphères (Jupiter, Saturne – H₂–He, Titan – N₂–CH₄)
- Validation du code par des mesures expérimentales sur des moyens d'essai complémentaires dans la gamme spectrale proche du visible pour des plasmas d'air et de type Martien
- Identification des principaux systèmes moléculaires émissifs et analyse théorique des processus de peuplement mis en jeu

- Le code SESAM a été développé pour la simulation de l'émission radiative de plasmas d'entrée atmosphérique.
 Possibilité d'utilisation couplée à un code hydrodynamique
- Une base de données spectrale a été mise au point pour permettre de simuler des rentrées terrestres et Martiennes.
 Extension possible pour d'autres atmosphères (Jupiter, Saturne – H₂–He, Titan – N₂–CH₄)
- Validation du code par des mesures expérimentales sur des moyens d'essai complémentaires dans la gamme spectrale proche du visible pour des plasmas d'air et de type Martien
- Identification des principaux systèmes moléculaires émissifs et analyse théorique des processus de peuplement mis en jeu

- Le code SESAM a été développé pour la simulation de l'émission radiative de plasmas d'entrée atmosphérique.
 Possibilité d'utilisation couplée à un code hydrodynamique
- Une base de données spectrale a été mise au point pour permettre de simuler des rentrées terrestres et Martiennes.
 Extension possible pour d'autres atmosphères (Jupiter, Saturne – H₂–He, Titan – N₂–CH₄)
- Validation du code par des mesures expérimentales sur des moyens d'essai complémentaires dans la gamme spectrale proche du visible pour des plasmas d'air et de type Martien
- Identification des principaux systèmes moléculaires émissifs et analyse théorique des processus de peuplement mis en jeu

- Mise en évidence des processus physico-chimiques rencontrés dans le moyen d'essai arc-jet SR5
- Étude à poursuivre par la mise au point de codes prédictifs prenant en compte ces différents processus
- Efforts à porter prioritairement sur la mise au point d'une description adéquate du transfert d'énergie par l'arc, et par la mise au point d'un modèle state-to-state couplé à une description de type Navier-Stokes (cf. Izrar, RGD24 2004)

- Mise en évidence des processus physico-chimiques rencontrés dans le moyen d'essai arc-jet SR5
- Étude à poursuivre par la mise au point de codes prédictifs prenant en compte ces différents processus
- Efforts à porter prioritairement sur la mise au point d'une description adéquate du transfert d'énergie par l'arc, et par la mise au point d'un modèle state-to-state couplé à une description de type Navier-Stokes (cf. Izrar, RGD24 2004)

- Mise en évidence des processus physico-chimiques rencontrés dans le moyen d'essai arc-jet SR5
- Étude à poursuivre par la mise au point de codes prédictifs prenant en compte ces différents processus
- Efforts à porter prioritairement sur la mise au point d'une description adéquate du transfert d'énergie par l'arc, et par la mise au point d'un modèle state-to-state couplé à une description de type Navier-Stokes (cf. Izrar, RGD24 2004)

Perspectives

- Mise au point de modèles collisionnels-radiatifs (déséquilibre thermodynamique)
- Compléter la campagne expérimentale par des mesures dans la région UV et IR
- Mise au point de codes predictifs pour la simulation de plasmas dans des différents moyens d'essai, puis pour la simulation d'écoulements d'entrée atmosphérique

Perspectives

- Mise au point de modèles collisionnels-radiatifs (déséquilibre thermodynamique)
- Compléter la campagne expérimentale par des mesures dans la région UV et IR
- Mise au point de codes predictifs pour la simulation de plasmas dans des différents moyens d'essai, puis pour la simulation d'écoulements d'entrée atmosphérique

Perspectives

- Mise au point de modèles collisionnels-radiatifs (déséquilibre thermodynamique)
- Compléter la campagne expérimentale par des mesures dans la région UV et IR
- Mise au point de codes predictifs pour la simulation de plasmas dans des différents moyens d'essai, puis pour la simulation d'écoulements d'entrée atmosphérique

