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Preface

This textbook has been developed for supporting the teaching of undergraduate Thermodynamics and Statistical
Physics courses with typical duration of one quarter year, awarding 6 ECTS (European Credit Transfer and
Accumulation System). Typical courses are structured over 7/10 weeks, with a total time of 40–49 hours split
among theoretical lectures and problem-solving/laboratory classes.

The textbook is structured in a fashion that slightly differs from the popular textbooks on the topic.
Thermodynamics is a very peculiar discipline where one needs to delve into microscopic phenomena and the
fundamentals of the states of matter to fully understand macroscopic thermodynamic processes. However it is
often customary for courses and textbooks to give full emphasis to the microscopic aspects of thermodynamics
(in more physics-oriented courses) or instead to exclusively focus in the macroscopic aspects of the discipline
(in more engineering-oriented courses).

The author has instead striven to achieve a more syncretic approach for the teaching of the discipline,
inducing the students into the microscopic world of statistical physics before emerging into the macroscopic
world of Thermodynamics (hence why the textbook is named Statistical Physics and thermodynamics, mirroring
the typical names given to such courses). The problem is that existing textbooks, while extremely rich and
detailed, somewhat suffer from being more focused in just one of both aspects of this discipline.

This is why some effort was put into turning these initial lecture notes into a more proper textbook, although
in its current state, the teaching material is still a bit dry and synthetic, suited for a classical teaching approach
with the transcription of the governing equations and respective demonstrations on the board. This is bound
to evolve, as future revisions of the textbook will turn it into a richer resource, ultimately making this a
full-fledged textbook suited for the exposition of the discipline in the (differentiated) way it was structured
by the author.

Foreword to Students

This textbook provides the theoretical support to topical courses on Thermodynamics and Statistical Physics,
providing the core of the theoretical concepts that are taught in class (typically by the usual approach of
writing on the board, but sometimes supplemented by slideshows). As aforementioned, the textbook –in its
current revision– is written synthetically, and should not be considered by the student as the one and definite
theoretical resource for the course.

As such, three reference textbooks are suggested to supplement the different chapters of this textbook. These
include:

▶ Blundell, “Concepts in Thermal Physics” [1], for Chapters 1–4, providing additional theoretical support
on statistical physics, the structure of matter, and on microscopic thermodynamic aspects.

▶ Cengel, “Heat Transfer” [2], for Chapter 5, providing theoretical support on heat transfer phenomena
(conduction, convection and radiation).

▶ Moran & Shapiro, “Fundamentals of Engineering Thermodynamics” [3], for Chapters 6–10, providing
theoretical support on the macroscopic aspects of thermodynamics, in an engineer perspective.

A companion volume, including series of exercises for each chapter, as well as supplementary material for the
course (both technical or societal), is also made available for supporting the students study. Thermodynamic
tables, generated with the recourse to the latest international standards, are also made available for problem
solving exercises.



Foreword to Teachers/Instructors

Thermodynamics is a peculiar discipline in the sense that practical applications predate the foundational
definition of the discipline theoretical background, which owes much to the development of statistical physics
in the second half of the XIXth Century. It has been since somewhat customary for thermodynamic courses
and textbooks to adhere to this somewhat historical precedent, introducing the teaching of thermodynamic
processes, cycles and machines, before moving further to the teaching of the statistical physics aspects of
thermodynamics, often induced by the introduction of the concept of entropy.

This textbook instead follows a pedagogical approach where thermodynamics are taught following a more
organic approach stemming from the description of microscopic phenomena related to statistic physics and
how these microscopic process shape our macroscopic world.

To do so, the textbook firstly considers the definition of all key variables that define matter microscopically
and macroscopically, such as mass, volume, density, pressure, and temperature, among others. More
specifically, the first three lectures are mostly dedicated to the definition of the concept of temperature,
painstakingly approached with the introduction of all the relevant tools used to statistically describe matter
at the microscopic level.

The second part of the textbook (from Chapter 6 onwards) approaches the teaching of thermodynamics
in a more classic fashion, with a description of fundamental thermodynamic processes, followed by an
introduction of thermodynamic cycles and completed by a description of popular cycles in real-world
machines.

Prospective teachers/instructors wishing to use this resource should only consider it in case they are willing
to follow a teaching approach wherein statistical physics concepts are to be introduced before the discussion
of macroscopic thermodynamic processes (and chiefly, fully describing concepts such as temperature at a
microscopic level). Otherwise, the textbook is ill-adapted for the more traditional teaching of thermodynamics,
where other textbooks will excel at this.

Besides the finer theoretical details that every course of this kind necessarily encompasses, care has been
exerted in providing examples of real-life phenomena or applications in relation to the discipline. Namely,
societal challenges related to Thermodynamics are discussed in many parts of the course. Also, History is
particularly integral to the development of this discipline and as such takes a big part in the additional notes
and historical comments that are added around the lecture notes for this Academic Unit.

I have also striven to adhere to the best practices in the contemporary teaching of STEM units, with the
liberal sprinkling of themes in relation with Arts and Humanities. Last but not least, some bits of humor, and
some anecdotes are liberally sprinkled all around these notes. This fosters student’s engagement with the
discipline and mitigates some more strenuous parts of the course linked to mathematical derivations and
demonstrations.

This textbook is augmented with companion volume, collecting a significant amount of disparate supple-
mentary material, ranging from the more hard topics related to difficult mathematical demonstrations, to the
more softer topics on literature and even philosophy.

Material sourcing

A great deal of the theoretical demonstrations and examples for this textbook are borrowed from the
comprehensive lecture notes produced and kindly shared by Prof. Vasco Guerra, which has been teaching
the same course to Physics Engineering students.

Many figures for these lecture notes have been produced by the author, using the outstanding libre vector
editing software inkscape. Many other figures have been retrieved from online sources available around the
World. A few figures are temporarily referenced and taken from other textbooks and will be replaced by



newly produced figures in an upcoming revision.

The author wishes to express a heartfelt thank you to all the authors that produced and made freely available
these high-quality resources which have enriched these lecture notes, and to further express its apologies
for not individually crediting every single one of the many authors. Notably, many figures have been
retrieved from several wikipedia articles on Thermodynamics [4], the tikz.net website [5], and the book
“Thermodynamique de l’Ingénieur” by Olivier Cleynen [6]. A series of animations were also taken from the
excellent site animatedengines.com [7].

All the text and native figures of this textbook may be freely reused, adapted and remixed, without any
restriction, and without the need to credit the initial author.

Additional acknowledgements

I further wish to express my gratitude to Prof. Vasco Guerra for firstly sharing his lecture notes that helped
shaping the core of this textbook, as well as Dr. António Figueiredo, which has been assisting me with the
preparation of the course exercise lists. Last but not least, I wish to express my heartfelt gratitude to all the
TA’s that helped with the formatting/translation and improvement of many parts of these lecture notes,
namely Diogo Costa (2022/2023), Oscar Alves (2023/2024), José Mariano (2023/2025), and Pedro Teigão
(2024/2025).
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Organization of this Textbook. Teaching Theory
and Practice

Thermodynamics, as a discipline, is at the same time inherently practical,
providing a set of relationships that govern the behavior of systems
and their surroundings, and how those systems may convert heat into
work/motion and motion/work into heat. Concurrently, it is also deeply
rooted in intricate fundamental concepts (particularly at the microscopic
level) which are essential for a broader understanding of the discipline
and our Universe at large.

Therefore, any pedagogical approach needs to strike a balance between
the necessary abstractions and complex derivations required for the
derivation and presentation for some of the fundamental Laws of the
discipline, and the more practical applications of these laws in our
everyday life.

A question often forwarded by frustrated students, particularly during the
first chapters dealing with statistical physics, is: “What is the relevance
of going through a series of complicated mathematical manipulations
to derive ultimately simple expressions for Thermodynamic Laws like
for example the ideal gas Law? What does a student gain from learning
a demonstration he/she will never apply in his/her practical life?”

The practical application of all this theoretical “mumbo-jumbo” may
seem scarce at first look, with concepts like disembodied forces acting
on frictionless pistons appearing as excessively abstract and divorced
from engineering applications in everyday life. The astute student could
reasonably argue that they will soon forget most of this course materials
upon completing it 1

1: The popular saying that “One will for-
get up to 90% of what he learned in the
past” stems from the discredited “learn-
ing pyramid” model, see Masters [1]

[1]: Masters (2020), Edgar Dale’s Pyramid
of Learning in medical education: Further
expansion of the myth

. A
recent review work has reported that for
studies that do look at longer spans of
time, people can lose anywhere between
14% and 85% of their knowledge in just
a few years, see Custers [2]

[2]: Custers (2010), Long-term retention of
basic science knowledge: a review study

, and that there are plenty of available handbooks
with a robust set of fundamental and semi-empirical relationships that the
professional engineer may quickly consult for his daily problem-solving
tasks,

However, reasonable as it may seem, this argument omits the fundamental
differences with vocational training such as taught on technical high
schools or polytechnic institutes. Whereas the former directly train the
student for a specific craft, engineering schools provide a more generic
and well rounded formation on general scientific disciplines. More
emphasis is put into the more “academic” aspects of teaching, including
mathematical formalism and fundamental physical principles. An often
used quote is that “Engineering schools and universities train students on
how to learn how to learn”. By looking at complicated derivations of simple
equations, even if just once, one delves on the mindsets and thought
processes that shape this discipline. In other terms, it is not the result
that is important, it is the thought process.

As a future engineer with a solid theoretical background, you will be
brought to familiarize yourself with never technologies as progress
marches on. And you will able to do this extra training by yourself. You
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will read the new books/technical manuals and self-educate yourself on
these new technologies, accounting for the fundamentals you will have
learned during your University years.

If you were taught exclusively technical skills from the start of your
degree, there would be a strong possibility that your schooling would
become obsolete by the time you finished the degree. One great example
is Chapter 12 of this textbook, which deals with the thermodynamics of
Internal Combustion Engines (ICE), a technology that is quickly becoming
obsolete as the result of the ongoing electrification of our economies. The
theory that precedes this chapter remains nevertheless perennial, ready
to stand the test of Time.

As stated by another author [3]: “The fundamental principles do not cease to [3]: Tatum (2020), Heat and Thermodynam-
icsapply in the practical world!”,

or better yet:

Technologies are ephemeral, Science is eternal.

Source: g051051 /r/learnprogramming

Problem-Solving Techniques

An engineer is tasked with solving problems and coming up with new
and innovative designs for systems and machines. Accordingly it shall
come as no surprise that the student will be evaluate on his/her capability
of applying the theoretical concepts and laws of the discipline towards
problem-solving exercises. As with other courses you will be taking
concurrently to this one, you will spend most of the time solving several
series of exercises in anticipation for those that will be handled to you
during the different examination periods for the class. It is therefore
important for the instructor to provide some elementary guidelines and
techniques for this specific skillset.

A large number of example problems are provided in Volume 2 of
this textbook, in the form of seven series of exercises. A great deal of
these exercises are provided with detailed solutions, including all the
necessary intermediate steps. It is very important that the student does
not succumb to tentation and review the solutions straightaway, saying
to himself/herself “This makes sense” and calling it a day. Instead try to
work out the problem in a blank page, following the problem-solving
steps that are outlined below. If you are still finding it difficult to solve
the exercises, then re-check the summaries of the theoretical lectures first,
and then the lectures themselves if necessary, alone or with your study
group, whatever fits your studying habits best. Refer to the solutions
only when you get stuck and have put in a reasonable amount of effort.

Each student will have different personal habits for studying, and that is
fine, so I am usually loathe to provide generic advice to students, since its
relevance will strongly depend on the person in question. This is perhaps
the only exception I will make: Do try to solve as much exercises as
possible, and do it as much as possible without checking the solutions
beforehand.

/r/learnprogramming
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Problem-solving steps Worked example:
Lhasa is a city in Tibet, China, located at
an altitude of 3600 m. Find the density
of air in Lhasa, if the temperature is
𝑇 = 10 ◦C.

1: Problem statement:
Given: Air temperature in Lhasa
To be found: Density of air
2: Schematic:

Figure 1: Not all problems will require a
schematic, and this is the case here. Lets
put a nice picture of Lhasa instead

3: Assumptions and Approximations:
Missing information: Atmospheric
pressure
Assumption # 1: Take 𝑝 = 1 atm (Inap-
propriate. Ignores effect of altitude. Will
cause more than 30% error.)
Assumption # 2: Consider variable 𝑝 as
a function of height ℎ, with ℎ = 3600 m.
(Appropriate. Ignores only minor effects
such as weather.)
4: Engineering Model:
Use barometric formula incorporating
pressure and temperature changes with
altitude, see Lente and Ősz [4]

[4]: Lente et al. (2020), Barometric formu-
las: various derivations and comparisons to
environmentally relevant observations

:

𝑝 = 𝑝0

(
1 − 𝛼

𝑇0
ℎ

) 𝑔𝑀
𝛼𝑅

with 𝛼 = 6.49 K/km and
𝑀 = 28.96 g/mol.
Use ideal gas law as a function of density:

𝜌 =
𝑝

𝑅𝑠𝑝𝑒𝑇

5: Calculations:
Convert 𝑇 to kelvins: 𝑇 = 10 + 273.15 =

283.15 K and calculate 𝑝 using baromet-
ric formula: 𝑝 = 66 413 Pa.
Finally calculate 𝜌 = 0.817 kg/m3 using
the ideal gas law.
6: Result assessment:
As expected, the density is much lower
than the standard density, given the
lower pressures (𝑝 = 66.4 kPa instead
of 101.3 kPa), even though the tempera-
ture is slightly lower than the reference
temperature (𝑇 = 10 ◦C instead of 15 ◦C).
Assuming the pressure is the same that
at sea level (ℎ = 0 km) leads to an unac-
ceptable 34% error.

The 6 steps outlined below are a rough description of the general
methodology that is adopted for engineering problem-solving, and may
be found described in the roughly same fashion in all major engineering
textbooks. These include:

1. Problem Statement:
a) Known quantities/variables: Identify and summarize on your

blank page the known quantities/variables that are provided.
b) Quantities/variables to be determined: What are the objec-

tives of the problem? Identify the quantities/variables to be
determined.

2. Schematic of the Problem: Draw a sketch of the physical system
under study, determine if it has any physical boundaries (closed
system) or if it is defined as a control volume. Identify any interac-
tions with its surroundings (energy and/or mass exchange). Check
for the properties that remain constant/change during a process
and identify them on the sketch. Draw any associated diagrams
associated to the system, locating key state points (e.g. p–V or T–S
thermodynamic diagrams with the initial/final states reported for
each individual process).

3. Assumptions and Approximations: State any appropriate assump-
tions and approximations that may allow simplifying the problem
and turn it into a tractable exercise. Assume reasonable form
missing quantities that might be necessary (write 𝑝 = 101.325 kPa
if atmospheric pressure conditions are assumed). Check for any
acronyms for reference states and report the corresponding val-
ues (e.g. Standard temperature and pressure STP: [0 ◦C/1 bar];
Standard sea-level conditions SSL: [15 ◦C/101.325 kPa]; etc...).

4. Engineering Model: Describe a model that is appropriate for
solving the problem.

a) Physical Laws: Apply the relevant physical laws and princi-
ples, writing them with the assumptions and approximations
previously listed, crossing out negligible terms. Check that
the physical laws are being used in their appropriate range of
applicability.

b) Properties: Determine unknown properties at known states
from property relations/tables made available to you. Indicate
the source for those property relations/tables.

5. Analysis and Calculations: Using your Engineering model reduce
the appropriate governing equations to forms that will produce the
required results. Work as long as possible with analytic expressions,
without substitution by their numerical values.

a) Rounding: Round the results to an appropriate number of
significant digits (see next section discussion on significant
digits).

b) Dimensional Analysis: Carefully check that the set of units
being employed is consistent (Verify that you are not com-
paring “apples to oranges”, that you have dimensionless
quantities inside ln, exp terms, etc...), and always represent a
dimensional quantity with its corresponding unit (else it is
meaningless).
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6. Verify and Assess the Results: Make sure that the obtained results
obtained are reasonable, with the appropriate algebraic sign (+/-)
and order of magnitude, and verify the validity of the questionable
assumptions. Repeat the calculations that resulted in unreasonable
values. For example, if you found out that a 1 m long metal bar
expands by 0.3 m then you might have made a mistake since
thermal expansion of common solids assumes small changes to the
reference length.
State the conclusions and recommendations that can be drawn
from the results. Critically assess the significance of the obtained
results, and if the assumptions ans approximations applied in 2)
are reasonable. If possible, try inferring the relevant trends of the
problem through additional “what-if” and parameter sensitivity
calculations. Assess any economical and societal impacts of your
obtained results (for example how much savings in money/energy
may be achieved by insulating some kind of heat reservoir).

Significant digits

Lets say that you have been delivered a cube which has been cut by a very
advanced precision machine, and with an unknown side length2. You 2: Usually these precision-machined

parts come with their own metrology
certificate, indicating the exact dimen-
sions to many significant digits and one
wouldn’t need to measure its dimen-
sions.

only have a ruler (graded every mm for determining the side length, and
you find out that the cube side lies between the 56 mm and the 57 mm
mark. Accordingly you assume the length to be 𝐿 = 56.5 ± 0.5 mm.

8
7

5
4

6
3

2
1

1 2 4 53 6 7 8cm

cm

Now you want to determine the cube volume, which is simply given by
the cube of its side or in other terms:

𝑉 = 𝐿3 = (56.5 mm)3 = 56.5 mm×56.5 mm×56.5 mm = 180 362.125 mm3.

However when you measured the cube side, you only knew its side length
was between 56 mm and 57 mm or in other terms 𝐿 = 56.5 ± 0.5 mm
and there will be an uncertainty in your volume which will correspond
to the differences between the volume of a cube with 𝐿 = 56 mm and
𝐿 = 57 mm:

Δ𝑉 = |563 − 573 | = 9577 mm3 ,
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which corresponds to the fractional uncertainty

𝛿𝑉

|𝑉 | ≃
𝛿𝑥

|𝑥 | +
𝛿𝑦

|𝑦 | +
𝛿𝑧

|𝑧 | =
3𝛿𝐿
|𝐿| .

Therefore, the uncertainty of the cube volume is almost 10 000 mm3 and
it becomes evident that it is meaningless to report the volume of the cube
as𝑉 = 180 362.125 mm3 when Δ𝑉 = 9577 mm3. Instead, since the orders
of magnitude 𝑏 for the volume and the uncertainty are, respectively
𝑏1 = 5 and 𝑏2 = 2, it makes sense to report the volume with the same
significant digits (𝑏1 − 𝑏2), that is:

𝑉 = 180 ± 10 × 103 mm3.

As a rule of thumb, when presenting final results, you should keep the
same significant digits than the input variable with the least number
of significant digits. Naturally, it is appropriate to retain all the digits
during intermediary calculations, avoiding the propagation of rounding
errors, and to only round the final result.

General rules for expressing quantities
s.d. refers to “significant digits”

1. Zero digits on the left do not count for the number of s.d.
Example: 0.00044 (2 s.d.)

2. Zero digits on the right count for the number of s.d.
Example: 12.00 (4 s.d.)

3. Digits 1–9 and zeros among them are always s.d.
Example: 1203.4 (5 s.d.)

4. Powers of 10 are ambiguous and should be represented using
scientific notation
Example: 800 is ambiguous, 8.00 × 102 is correct (3 s.d.)

5. Constants have an arbitrary number of s.d.
6. Addition and Subtraction: The result should have the same s.d.

that the operand with the least s.d.
Example: 105.4 + 0.2869 + 34.27 = 139.9569 = 140.0 = 1.400 × 102.

7. Multiplication and Division: The result should also have the same
s.d. that the operand with the least s.d.
Example: 7.325 × 8.14 = 59.6255 = 59.6.

8. Square Roots, Exponentials amd Logarithms: The result should
also have the same s.d. that the operand.
Example:

√
92 = 9.59166 = 9.6.
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Introduction

Thermodynamics is the study of the relations between heat, work, temperature,
and energy. The laws of thermodynamics describe how the energy in a system
changes and whether the system can perform useful work on its surroundings.

Encyclopedia Britannica

Thermodynamics and You

Why it is relevant to You:

▶ A discipline as fundamental to a scientist/engineer as mathematics
and general physics

▶ Thermodynamic laws govern all the scales of the universe (from
macroscopic to microscopic)

▶ As engineers, you will apply this discipline for solving many
real-life problems/designing cool stuff
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Thermodynamics is a discipline whose Laws apply to all the scales of our Universe:

Macroscopic Scales

Thermodynamics govern the whole Universe The Sun-Earth pair is a thermodynamic system

Mesoscopic Scales

Thermal regulation of buildings Life is also a thermodynamic system

Microscopic Scales

gas liquid solid

The fabric of matter is also defined by the Laws of Thermodynamics in their statistical interpretation.
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Thermodynamics and Statistical Physics

A complete understanding of thermodynamic processes cannot be achieved without delving into the
microscopic properties and dynamics of matter.

▶ When observing the behavior and motion of macroscopic objects (ball, car, bullet, etc. . . ), we may
describe them as discrete objects and use the Newton laws of motion.

▶ This is no longer true for modeling the microscopic motion of particles. The large number of elements
(1L of gas contains 2.7 × 1022 particles in standard conditions) mandate a statistical treatment for their
motion.

We will use statistical physics to describe the microscopic world and we will understand how this translates
into the macroscopic world.

Throughout the course we will be traveling between worlds of different sizes, just like Gulliver...

...and we will unravel the underlying fabric of our physical world
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How did Thermodynamics came to be?
▶ Traditional paradigm: basic-to-applied. Flow of concepts from basic science to applications

• Theory of relativity→ atomic bombs→ nuclear energy
• Solid-state physics→ transistors→ electronics/informatics

▶ The discipline of thermodynamics is remarkable in that if followed the opposite concept: applied-to-basic.

• Thermodynamic machines were firstly invented (18th-early 19th Century), and thermodynamic
laws were firstly formulated as empirical laws.

• The rigorous theoretical framework was developed later through the development of statistical
physics (second half of 19th Century).

See Berry, Three Laws of Nature, Chap. 3, 2019

History of Thermodynamics – Concepts

History of Thermodynamics – Engines

Hero’s engine Newcomen engine Watt engine Stirling engine

(Aeolipile)
1st Century 1772 1784 1816

Steam Engines heralded Thermodynamics and the Industrial revolution in the 19th Century
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Thermodynamics – Principles, Properties and Processes
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Thermodynamics: Studies the movement (flow) of energy, and how
energy may create movement.

It is an universal theory (unlike for example Newton Laws which only
apply for non-relativistic velocities), whose laws are applicable from
sub-microscopic scales until the scale of the Universe (see slides from
Lecture 1a).

With this said, thermodynamics does not deal with anything properly
“tangible". The objects of study are systematically idealized as “systems”
with a given Energy 𝐸, which is quantified (with the units Joules 𝐽),
and which may be transferred or transformed inside the system, or
alternatively exchange with the surroundings of the system (for the
example of a heater inside a room, the heater represents the system, and
the room the surroundings of the system).

Energy exchanges takes on two different forms:

▶ Heat 𝑄 which corresponds to the flowing Energy 𝐸. This energy is
exchanged in a disordered fashion between two systems.

▶ Work𝑊 which corresponds to energy is exchanged in an ordered
fashion between two systems.
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1.1 Mechanical Energy Conservation

Mechanical Energy 𝐸𝑚 : Sum of the potential𝑈 and kinetic 𝐾 energies
of a mechanical system: 𝐸𝑚 = 𝑈 + 𝐾.

For an isolated system only actioned by conservative forces, the mechani-
cal energy remains constant (𝐸𝑚 = const).

Conservative Forces: The total work done in moving an object between
two points is independent of the taken path.

Figure 1.1: Example for a gravitational
potential with 𝐸𝑚 = 𝑚𝑔ℎ

Non-Conservative Forces: The total work done will depend on the taken
path.

Example: Friction. If we take the shortest route, we lose the less energy
through friction forces.

! : Key concept that will be revisited
more ahead.

Kinetic Energy K: Energy that an object possesses due to its motion.

𝐾 =
1
2
𝑚𝑣2 (1.1)

Demonstration:

The Work𝑊 of a Force 𝐹 exerted at a distance l parallel to 𝐹 is:

𝑊 = 𝐹 · 𝑙 (1.2)

From Newton’s 2nd Law:
𝐹 = 𝑚𝑎 (1.3)

We consider the relationships between distance 𝑙, speed 𝑣, and accel-
eration 𝑎:

𝑑2𝑙

𝑑𝑡2 =
𝑑𝑣

𝑑𝑡
= 𝑎 (1.4)

Integrating eq. 1.4 we have:

𝑑2𝑙 = 𝑎𝑑𝑡2

𝑙 = 𝑎
𝑡2

2
𝑣 = 𝑎𝑡

(1.5)
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We may now rework eq. 1.2:

𝑊 = 𝐹 · 𝑙
= 𝑚𝑎 · 𝑙

= 𝑚𝑎 · 𝑎 𝑡
2

2

= 𝑚
(𝑎𝑡)2

2

(1.6)

since 𝑣 = 𝑎𝑡 we may write:

𝑊 = 𝑚
(𝑣)2

2
= 𝐾 (1.7)

For a rotating object, the kinetic energy is written as:

𝐾 =
1
2
𝐼𝜔2 (1.8)

With 𝐼 the rotational moment of inertia and 𝜔 the angular velocity.

Potential Energy𝑈 : Energy that an object possesses owing to its position
relative to other objects, stresses within itself, its electric charge, or other
factors.

Example for a gravitic potential:

𝐹grav = 𝑚𝑔

𝑊 = 𝐹 · 𝑙

}
𝑊 = 𝑚𝑔ℎ = 𝑈 (1.9)

(here we consider 𝑙 = ℎ where ℎ is the height difference between the
initial and final position.)

Internal Energy 𝐸𝑖𝑛𝑡 : Energy contained within the system, measured as
the quantity of energy necessary to bring the system from its standard
internal state to its present internal state of interest, accounting for the
gains and losses of energy due to changes in its internal state.

Examples: Energy in a deformed elastic medium (spring); chemical
energy (fuel).

Mechanical energy conservation example:

Figure 1.2: Energy balance for a car driv-
ing up and down a hill

We assume:
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▶ The car maintains constant velocity over the climb to the mountain.
▶ No losses from friction.
▶ Perfect efficiency (100%) in the conversion of internal energy into

kinetic/potential energy1
1: Thermodynamics teaches us that this
is totally wrong as we will see during the
course

.

Applying the previous relationships one may determine the values for
the different energies of the car at locations 𝑥0, 𝑥1 and 𝑥2, as well as its
velocity. These are summarized in table 1.1. The vehicle spends part of its
internal energy (fuel) that is converted into potential energy as it climbs
the hill. The potential energy is then converted into additional kinetic
energy as the car descends the hill.

𝐸𝑖𝑛𝑡 𝐸𝑝𝑜𝑡 (𝑈) 𝐸𝑘𝑖𝑛 (𝐾) 𝑣 (m/s)

𝑥0 𝑋 0 𝑚
𝑣2

0
2

𝑣0

𝑥1 𝑋 − 𝑚𝑔ℎ 𝑚𝑔ℎ 𝑚
𝑣2

0
2

𝑣0

𝑥2 𝑋 − 𝑚𝑔ℎ 0 𝑚
𝑣2

0
2
+ 𝑚𝑔ℎ 𝑣0 +

√
2𝑔ℎ

Table 1.1: Energy balance for the car

Another example: marble bouncing on a wall

Figure 1.3: a marble moving with initial
velocity parallel to the floor will bounce
back to the same height (assuming no fric-
tion losses in its trajectory), but a marble
moving with an initial negative vertical
component of velocity will bounce to a
higher height, again assuming that there
are no friction losses.

1.2 Energy Dissipation

Friction: this is an example of a dissipative phenomena, and a reason
why mechanical energy is lost (it is said that the energy is degraded).

! : Dissipation processes like friction
are key to the understanding of thermo-
dynamics and will again be discussed
more ahead.We will see more ahead that Thermodynamics allows reconciling these

inconsistencies of classical mechanics.

▶ Historically, James Prescott Joule first discovered in 1843 that me-
chanical energy lost through friction was converted in heat.

▶ The concept of energy degradation (entropy increase) will be more
rigorously discussed later in the course.

We now can return to the concept of Energy 𝐸, Heat 𝑄, and Work 𝑊
in the thermodynamic sense. Namely, we can now understand that the
concept of energy 𝐸 is more general in the thermodynamic sense and
encompasses the concept of Mechanical Energy 𝐸𝑚 derived from classical
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mechanics. Further, since Work𝑊 corresponds to an ordered exchange
of energy between systems, we can correlate𝑊 with 𝐸𝑚 , and intuitively
introduce the concept of Heat 𝑄 as somewhat being related to the losses
in mechanical systems (for example, our hands heat-up if we friction
them in a vigorous fashion, or bicycle/car brakes heat-up when we are
braking the vehicle).

Since we know that 𝑄 and𝑊 correspond to different forms of flowing
energy, we may define the appropriate dimensions for such variables:

[𝑄] ⇔ [𝑊] ⇔ [1/2𝑚𝑣2](Kinetic energy) ⇔ [J] (1.10)

Heat 𝑄 and Work𝑊 are therefore two forms of energy associated to a
process of energy exchange. They are called Process Variables. Other
variables are then needed to define the states of the different systems
exchanging energy. These are called State Variables.

1.3 Equilibrium

Definition of a system in equilibrium: The properties of the system are
invariant over the timescale into consideration.

Example: A volume of air outside can be considered in equilibrium
over a short 10 min timescale (if meteoreological conditions allow so).
The Temperature 𝑇, Pressure 𝑝 won’t change significantly over the time
period between 12:00 and 12:10.

However, if we consider a larger 12 h timescale (from 12:00 to 00:00) one
may no longer consider this system to be in equilibrium, as the day/night
cycles will alter significantly the properties of the atmospheric air (among
other possible phenomena).

We may still consider an averaged day/night value for those variables over
say one wheel. We then have another condition for equilibrium, which
again won’t be valid if we further extend the timescale to a full month, as
seasonal changes will contribute to changing the average properties of
outside air. However, we may again average those properties over a year
and so on...

One needs to point out that Thermodynamics may also be used for
describing the time-dependent behavior of systems in non-equilibrium,
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but the underlying relations are significantly more complicated. In the
scope of this course, we will restrict ourselves to equilibrium/steady-state
systems.

This so-called “Classical Thermodynamics” provides us with a set of
rigorous rules about what kind of processes may be allowed for a
system evolving from an equilibrium state to another, and those who are
disallowed.

1.4 State Variables

We discriminate between extensive and intensive variables:

▶ Extensive variables have well-defined frontiers. Examples: Mass 𝑚
and Volume 𝑉

▶ Intensive variables do not rely on well-defined frontiers. Examples:
Pressure 𝑝, Density 𝜌, and Temperature 𝑇

Figure 1.4: Water in a glass (left) has
a well-defined Volume 𝑉 and Mass 𝑚,
whereas outside air (right) does not have
a defined Volume 𝑉/Mass 𝑚, however,
it has a defined Temperature 𝑇, Pressure
𝑝, and Density 𝜌

▶ In the Macroscopic world we use extensive (𝑚, 𝑉) and intensive
variables (𝑇, 𝑝, 𝜌)

▶ In the Microscopic world we use additional extensive variables
(𝑚, 𝑉 and 𝑥𝑥,𝑦,𝑧 ; 𝑣𝑥,𝑦,𝑧 ; 𝜔𝑥,𝑦,𝑧 corresponding, respectively to the
position, velocity and angular velocity in 3D coordinates). No
intensive variables exist.

1.4.1 State Variables Definitions

Mass 𝑚: 2 Defined in kg. Fundamental measure of how much matter an 2: ! Mass ≠ Weight.

Example:

𝐹Earth
gravity = 9.81 m/s2

𝐹Mars
gravity = 3.71 m/s2

A 1 kg object on Earth will also have a
mass of 1 kg on Mars. Such an object will
weight 9.81 N on Earth, but only 3.72 N
on Mars.

object contains.

Mole: Quantity of matter which contains as much objects (atoms,
molecules, etc...) as the number of atoms contained in exactly 12 g of 12C
carbon.

1 mole has the Avogadro number 𝑁𝑎 of atoms/molecules such that
𝑁𝑎 = 6.02214076 × 1023. The molar mass 𝑀 is defined as the mass of a
mole of a substance such that 𝑀 = 𝑚 × 𝑁𝑎 .

Volume 𝑉 : Self-explanatory. The Density 𝜌 is defined as:

𝜌 =
𝑚

𝑉
=
[kg]
[m3] (1.11)
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Pressure 𝑝: Force applied perpendicular to the surface of an object per
unit area over which that force is distributed.

▶ Solid object: 𝑝 = 𝐹/𝐴 = 𝑚𝑔/𝐴. Units: [Pa] = [N]/[m2].

▶ Colum of water: Hydrostatic pressure: 𝑝 = 𝜌𝑔ℎ.3 3: with ℎ the height of the column of
water above the object(Associated concept: Pascal’s principle, see appendix 1.A of this

chapter)

▶ Gases: Thermodynamic limit: 4. The gases produce pressure akin 4: see also Blundell, “Concepts in Thermal
Physics”, pp. 4 section 1.2to heavy rain pouring on a rooftop.
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Temperature 𝑇: There is more than meets the eye...

We have discussed the concept of Heat 𝑄 who corresponds to Energy 𝐸
in transit, but then what does “Temperature” exactly mean? Intuitively,
we can assume that a given object with a temperature 𝑇1 is going to have
more energy 𝐸 than the same object at a lower 𝑇2 temperature.

A Temperature can therefore define the “intensity of Heat”, but this
doesn’t explain how we can quantitatively define and measure Tempera-
ture.

With this said, if we grab a metal bar at ambient temperature, we will
feel more cold than if we grab a wooden bar. On the same reasoning, if
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we drop the same amount of water/alcohol in our hands, we will feel
more cold with alcohol.

see also video of people grabbing a red
hot Space Shuttle tile with their bare
hands

Something is up! Although the examples above are intriguing, we do have
thermometers (and very simple ones) which are capable of measuring
temperatures...

What is happening is that when we grab a metal bar at ambient tem-
perature 20 ◦C, and with metal being a good heat conductor, the heat
from our body (at 34 ◦C) will flow to the metal bar up and until this
one reaches the same temperature as our body. The cold sensation is
therefore nothing more than the Heat 𝑄 exiting our body!

Heat flows from a hotter to a colder body

Now if we place another metal bar in our other hand, heat will identically
flow from our body towards the metal bar, up and until it reaches our
body temperature.

The two metal bars will reach the same temperature, in equilibrium with
our body temperature.

This concept stands for the Law 0 of Thermodynamics

https://www.ixigua.com/7357598511241626139
https://www.ixigua.com/7357598511241626139
https://www.ixigua.com/7357598511241626139
https://www.ixigua.com/7357598511241626139
https://www.ixigua.com/7357598511241626139
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Remember: Heat flows from the hotter body towards the colder
body, it is NOT cold that moves from the colder body towards the
hotter body
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1.A Pascal’s principle

We may show5
5: Demonstration: ∑

𝐹𝑧 = 𝑚𝑎𝑧 = 0
since the flow element is in equilibrium:
Accordingly, the force exerted on the bot-
tom of the fluid element is in equilibrium
with the force exerted on top of the fluid
element plus the gravity force of the fluid
element: 𝑝downΔ𝑥−𝑝topΔ𝑥−𝜌𝑔Δ𝑥Δ𝑧 =
0, where𝑊 = 𝑚𝑔 = Δ𝑥Δ𝑧.

through a force balance analysis that the hydrostatic
pressure for a fluid element is

Δ𝑝 = 𝑝2 − 𝑝1 = 𝜌𝑔Δ𝑧

Consequently, pressure in a fluid does not change over the horizontal
direction. In the vertical direction, as a consequence of the gravitational
pull, the pressure difference between two points is proportional to their
vertical distance Δ𝑧 and the fluid density 𝜌.6

6: Example: For air, which has a den-
sity of about 1 kg/m3, the Δ𝑝 for a
1 m column height will be negligible
(9.8 Pa) whereas the Δ𝑝 for a 1 m column
height of water will be 1,000 times higher
(9.8 kPa), since the density of water is
1,000 times higher (about 1000 kg/m3).

1.A.1 Definition

We have shown that pressure in a fluid remains constant in the horizontal
direction. We may accordingly state the principle of transmission of fluid
pressure, named after Blaise Pascal (1623–1662). It states that:

“Pressure applied to an incompressible fluid is transmitted equally to all points
in all directions throughout the whole fluid, and that the force due to the pressure
acts at right angles to the enclosing walls.”

This principle has very useful engineering applications such as hydraulic
jacks, which allow multiplying applied forces (for example if we apply
a small force 𝐹1 over a small area 𝐴1, we may retrieve a large force 𝐹2
elsewhere if we put this fluid in contact with a large area 𝐴2 since 𝑝1 = 𝑝2
and 𝑝 = 𝐹/𝐴, which yields 𝐹1/𝐴1 = 𝐹2/𝐴2.
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Nomenclature

Variables:

▶ 𝐸: Energy [J]
▶ 𝑄: Heat [J]
▶ 𝑊 : Work [J]
▶ 𝐸𝑚 : Mechanical energy [J]
▶ 𝐾: Kinetic energy [J]
▶ 𝑈 : Potential Energy [J]
▶ 𝐹: Force [N]
▶ 𝑡: Time [s]
▶ 𝑙: Length [m]
▶ 𝑥: Position [m]
▶ 𝑣: Velocity [m/s]
▶ 𝑎: Acceleration [m/s2]
▶ 𝑔: Acceleration of gravity [m/s2]
▶ 𝐼: Moment of rotational inertia [kg ·m2]
▶ 𝑚: Mass [kg]
▶ 𝑀: Molar Mass [g/mol]
▶ 𝑉 : Volume [m3]
▶ 𝜌: Density [kg/m3]
▶ 𝑝: Pressure [Pa]
▶ 𝑇: Temperature [K]

Constants:

▶ 𝑁𝐴 = 6.02214076 × 1023 [mol−1]: Avogadro Number/Constant

Acronyms, subscripts and superscripts

▶ 𝑖𝑛𝑡: Internal
▶ 𝑘𝑖𝑛: Kinetic
▶ 𝑝𝑜𝑡: Potential
▶ 𝑐𝑜𝑛𝑠𝑡: Constant
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Chapter Summary

▶ Heat 𝑄 and Work𝑊 : Energy𝑈 in transit.
▶ 𝑄: Energy 𝐸 exchanged between systems in a disordered fash-

ion.
▶ 𝑊 : Energy 𝐸 exchanged between systems in an ordered fashion.
▶ System Variables:
▶ Mechanical Energy 𝐸𝑚 = Kinetic Energy 𝐾 + Potential Energy
𝑈 .

▶ Mechanical Energy𝐸𝑚 is conserved if the forces are conservative
(e.g. no friction, etc...).

▶ Thermodynamic Equilibrium: System is invariant in time (may
be an instantaneous time or a time average).

• Process variables: Energy transport (+mass transport for
control volumes, discussed in lecture more ahead).

• State Variables: Define the characteristics of the system.
• Definitions for 𝑚,𝑉 (extensive varibles) and 𝑝, 𝜌, 𝑇 (inten-

sive variables).

▶ Zero Law of Thermodynamics: If the systems (A–B) and (A–C)
are in equilibrium, then systems (B–C) are in equilibrium too.

Recommended readings
▶ Blundell, “Concepts in Thermal Physics”, Chapters 1, 2, 3 (partially).
▶ Moran & Shapiro, “Fundamentals of Engineering Thermodynamics”,

Chapters 1, 2.1.
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Thermodynamics and Culture: Relevant Works

Chapter 1 discusses the universality of the foundations of Thermody-
namics, which are equally applicable at large macroscopic scales down to
microscopic scales, unlike other disciplines like for example classical me-
chanics which is only valid at macroscopic scales, or quantum mechanics,
only valid at microscopic scales. A relevant literary work is

Jonathan Swift, “Gulliver Travels”, 1726,

a novel about a man named Gulliver and his voyages to Lilliput (a land
populated by tiny people, 15 cm tall on average) and Brobdingnag (a
land populated by huge people, over 20 m tall).

Gulliver enjoying a meal on Lilliput

https://www.rigb.org/

explore-science/explore/video/

gullivers-travels-world-captain-gulliver-1968

“It was the marvellous imaginary voyages of Lemuel Gulliver which made us see a world of petty
six-inch patriots, or of sixty-foot people, large-minded and generous. Dean Swift was not writing
science, but he lighted for our minds the meaning of size in our perception and in all human
affairs.

In science the scale of things is often decisive. We human beings can view the world from one scale
only, our own. But in that world are ants and whales, mountains and seas, planets, stars and atoms.
A great deal of their nature is explainable as the consequence of their magnitude, for the fundamental
building bricks of all the world, the particles of the physicist, fix a size built somehow into everything
material.”

Philip Morrison, Physicist, Royal Institution Lectures, 1968

https://www.rigb.org/explore-science/explore/video/gullivers-travels-world-captain-gulliver-1968
https://www.rigb.org/explore-science/explore/video/gullivers-travels-world-captain-gulliver-1968
https://www.rigb.org/explore-science/explore/video/gullivers-travels-world-captain-gulliver-1968
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We have learned from the previous lecture that the concept of Temperature
𝑇 “is complicated”.

Many textbooks refer to 𝑇 as the “heat intensity” since we know that a
body at high 𝑇 is “very intense” (or in other terms, we burn ourselves).
However, if we touch a body which is very cold instead (say 𝑇 = −100 ◦C)
we also get burned! We call this “frostbite”1

1: we acknowledge burning as coming
from very hot as well as very cold objects
as these have “extreme” Temperatures
compared to our 34 ◦C body surface tem-
perature, leading to excessive Heat trans-
fer 𝑄 in one or another direction

.

To clearly grasp the concept of Temperature, we have no other choice but
to “go down the rabbit hole”...

... and land in the microscopic world (either Lilliput, or the world from
Alice in Wonderland, as the microscopic world does not follow the same
set of rules than our macroscopic world).

To get our bearings in this very special place, we are going to resort to
the powerful tool which is Statistical Physics...
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... a Powerful, yet Dangerous tool!

Perhaps it would be wise to approach the subject cautiously...

In preparation of our trip to the microscopic world, lets (re-)introduce
the binomial distribution (which the student has probably already been
induced to in a more detailed and rigorous fashion in the probability
and statistics unit).

The binomial distribution corresponds to the probability of obtaining
a given outcome by performing a series of tests to which there are
only two possible results.

The example of the repeated tossing of a coin in the air𝑁 times (which we
will use more ahead), and the analysis for the odds of having 𝑥 outcomes
of heads/tails, is obtained utilizing the binomial distribution2

2: reminder: 𝑁 ! = 𝑁 × (𝑁 − 1) × (𝑁 −
2) × . . . × 2 × 1

for large 𝑁 one may use the Stirling ap-
proximation

𝑁 ! ∼ 𝑁𝑁e−𝑁
√

2𝜋𝑁 ,
or its slightly less accurate version
ln(𝑁 !) ∼ 𝑁 ln(𝑁) − 𝑁
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Figure 2.1: Error plot (in %) for the Stir-
ling approximation, as a function of 𝑁 .

:

𝑃(𝑥) =
(
𝑁

𝑥

)
𝑝𝑥𝑞(𝑁−𝑥) =

𝑁 !
(𝑁 − 𝑥)!𝑥!

𝑝𝑥𝑞(𝑁−𝑥). (2.1)

Here the term
(
𝑁

𝑥

)
=

𝑁 !
(𝑁 − 𝑥)!𝑥!

corresponds to all the possible

combinations of heads/tails tosses.

For the case of equivalent outcome probabilities 𝑝 = 𝑞 = 1/2 such as a
coin toss, we have 𝑝𝑥𝑞(𝑁−𝑥) = 𝑝𝑁 .

This particular case was studied by Blaise Pascal (1623–1662), who
provided tabulated values of the corresponding binomial coefficients in
what is now recognised as “Pascal’s Triangle”. A ludical/pedagogical
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illustration of the binomial distribution is the Galton board, devised in
1873.3

3: See the online Galton board simula-
tion (link in text & image)

Some mathematical terms for the binomial distribution are:

▶ Average: 𝜇 = 𝐸(𝑥) = 𝑁𝑝.
▶ Variance: 𝜎2 = 𝑁𝑝(1 − 𝑝)
▶ Standard Deviation: 𝜎 =

√
𝑁𝑝(1 − 𝑝)

In physics the binomial distribution is applied to many relevant cases.
This will also apply to the object of our study (Thermodynamics).

Figure 2.2: Left: Galton board. Right:
Knowledge of Pascal’s triangle has also
been shown to have existed in China cen-
turies before Pascal. Drawing of Pascal’s
Triangle published in C.E.1303 by Zhu
Shĳie. It was called Jia Xian triangle or
Yanghui Triangle by the Chinese, after
the mathematician Jia Xian & Yang Hui.

2.1 Microstates, Macrostates, Canonical
Ensembles, Boltzmann distribution, and a
statistical definition of Temperature

Let’s go back to our coin-tossing exercise.

This chapter part is adapted from Blun-
dell, “Concepts in Thermal Physics”, 2nd

Ed., Part 1, Chap. 4, pp. 35–45).

We toss 100 coins on a table. A few will randomly land as heads, other as
tails. Let us examine the possible combinations (here we will just draw
10 coins for the sake of simplicity), representing heads as red and tails as
blue.

(there are obviously plenty more combinations possible)

https://phet.colorado.edu/sims/html/plinko-probability/latest/plinko-probability_all.html
https://phet.colorado.edu/sims/html/plinko-probability/latest/plinko-probability_all.html
https://phet.colorado.edu/sims/html/plinko-probability/latest/plinko-probability_all.html
https://phet.colorado.edu/sims/html/plinko-probability/latest/plinko-probability_all.html
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Each of the boxes (A, B, C, D, ...) is an unique state which is labelled a
microstate.

However we may notice a particular case presented by states/boxes B
and C which both have 6 heads and 4 tails. If we ignore the spatial
arrangement of the coins and only consider if they are showing heads or
tails, then states B and C are indistinguishable and are combined into
an unique macrostate.

Coming back to our 100-coin tossing example, we have 2100 ≃ 1.2677×1030

possible box arrangements (or in other terms 1.2677 × 1030 microstates),
but only 100 possibilities of 𝑁 heads and 𝑁 − 100 tails (or in other terms
100 macrostates), whose odds follow a binomial distribution.
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Figure 2.3: Number of heads obtained
for 2100 ≃ 1.2677 × 1030 coin tosses

Now we move from our macroscopic world to the microscopic world
proper.

→

Figure 2.4: Left: Macroscopic properties:
Mass 𝑚, Volume 𝑉 , Density 𝜌, Pressure
𝑝, Temperature 𝑇. Right: Microscopic
properties: Mass 𝑚, Position 𝑥, Velocity
𝑣, Angular Velocity 𝜔

2.1.1 A statistical definition of Temperature

Let us now consider two systems with coins/particles. Keeping our
heads/tails analogy, we will consider that the coin/particle with the
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state heads has a larger energy than the state tails. Inside each box, the
coins are constantly flipping between heads/tails, but with the overal
ratio of heads/tails constant (energy is conserved).

Box 1 and box 2 have quantified and constant Energies 𝐸1 and 𝐸2,
respectively. They also have a certain amount of microstates Ω1(𝐸1) and
Ω2(𝐸2).

We now join the boxes:

This larger ensemble will have an energy 𝐸 = 𝐸1 + 𝐸2. However this
system also has much more accessible microstates, each with the same
probability of occurring.

The system will occupy all the possible microstates, remaining the same
amount of time in each of them. This is called the ergodic hypothesis.

Macroscopically, the most probable state inside the new box will be
the macrostate that encompasses the larger number of microstates.

Example: Sum of two independent binomial distributions
Let us now “cheat” a little bit in our coin toss exercise and procure
two “biased” coins: one which is “biased” towards heads, yielding
heads 3 tosses out of 4, and one which is “biased” towards tails, only
yielding heads 1 toss out of 4. We sequencially toss each coin 50 times
and report the overall outcomes (e.g. how much times we got heads
and tails during the 50+50 coin toss exercise).
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Figure 2.5: Individual probability distribution functions for the 50 coin tosses with a
bias towards heads (red) and the 50 coin tosses with a bias towards tails (blue) (top)
and compounded probability distribution function for the sum of the two coin toss
events (orange) with a binomial distribution for an unbiased (𝑝 = 1/2) 100 coin toss
exercise displayed for comparison purposes.

The energy (in this example assimilated to the number of heads
vs. tails where we arbitrarily assume that heads (red) have are
high energy states and tails (blue) are low energy states) is in
the middle (with 𝑁 = 50 being the most probable outcome),
as would be expected since the two sequencial coin tossing
exercises had opposite bias towards heads and tails. One may
also note that the maximum number of idential microstates has
increased dramatically, from 250 ≃ 1.1259×1015 to 2100 ≃ 1.2677×1030.

Note that the convolution of the two binomial distributions would
only be a binomial distribution itself in case both would have the
same probability 𝑝 which is not the case, and hence this result is to be
expected. One may intuitively understand this outcome if we consider
the more extreme case of 50 coin tosses with a coin fully biased to
heads (𝑝 = 1), followed by 50 coin tosses with a coin fully biased to
tails (𝑝 = 0). One would always retrieve 50 heads and 50 tails at the
end of the exercise and the probability distribution function would
be the shape of a dirac with 𝑃(𝑁 = 50) = 1 and 𝑃(𝑁 ≠= 50) = 0

We will now mathematically determine the most probable macrostate.

If we consider the macrostates as in the binomial distribution (see Fig.
2.3) and we consider the function to be continuous, the maximum of the
function will correspond to its zero derivative:

𝑑

𝑑𝐸1
[Ω1(𝐸1)Ω2(𝐸2)] = 0 (2.2)

We now differentiate the product ( 𝑓 𝑞)′ = 𝑓 𝑔′ + 𝑓 ′𝑔:

Ω2(𝐸2)
𝑑Ω1(𝐸1)
𝑑𝐸1

+Ω1(𝐸1)
𝑑Ω2(𝐸2)
𝑑𝐸2

𝑑𝐸2
𝑑𝐸1

= 0

Since 𝐸 = 𝐸1 + 𝐸2 = constant we have 𝑑𝐸1 = −𝑑𝐸2 and:

𝑑𝐸2
𝑑𝐸1

= −1 (2.3)
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We now simplify Eq. 2.2 using Eq. 2.3:

1
Ω1

𝑑Ω1
𝑑𝐸1
− 1

Ω2

𝑑Ω2
𝑑𝐸2

= 0. (2.4)

Since 1/𝑥d𝑥 = d𝑙𝑛(𝑥)we have

𝑑 lnΩ1
𝑑𝐸1

=
𝑑 lnΩ2
𝑑𝐸2

, (2.5)

the condition which defines the most probable division of energy between
two systems which are able to exchange energy. We also have by definition
𝑇1 = 𝑇2 since the two systems exchange energy and achieve an identical
temperature4. If we define a constant 𝑘𝐵 (the meaning of we will explain 4: remember the two-swords ninja from

lecture 1blater on), we may simplify the above expression to

1
𝑘𝐵𝑇1

=
1

𝑘𝐵𝑇2
.

If we further consider Eq. 2.4 we can write:

𝛽

{
1

𝑘𝐵𝑇1
=
𝑑 lnΩ

𝑑𝐸
(2.6)

which provides us with a clear physical meaning of Temperature.

(well, not really. Yet, although it may sound confusing now, it will make
sense soon enough! Meanwhile, we need a few more definitions...)

2.1.2 The Boltzmann distribution

We define:

▶ The Micro-canonical ensemble: Statistical ensemble of systems
with the same fixed energy.

▶ The Canonical ensemble: Statistical ensemble of systems which
can all exchange energy with a large reservoir of heat.

▶ The Grand Canonical ensemble: Statistical ensemble of systems
which can all exchange energy and particles with a large reservoir.

We will now introduce the Boltzmann distribution definition:

The probability for a canonical system having an energy 𝜖 is given by the
Boltzmann distribution:

𝑃(𝜖) ∝ exp (−𝜖/𝑘𝐵𝑇) , (2.7)

with 𝛽 = 1/𝑘𝐵𝑇 (see Eq. 2.6).

In this chapter, we will derive this distribution in an intuitive fashion,
playing a little game. The corresponding mathematical demonstration is
also presented next below.

Note to instructors: Play the game of
an Karl–Marx-to-Boltzmann distribution
on the board, and run the correspond-
ing Matlab/Python simulation. See Ap-
pendix E.1 for the script printout.
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Derivation of the Boltzmann distribution:

We will make use of a few simplifying assumptions:

▶ Each allowed energy of the system contains only a single mi-
crostate (Ω = 1).

▶ The total Energy of the system & reservoir is 𝐸, with 𝜖 the
energy of the system and 𝐸 − 𝜖 the energy of the reservoir.

The probability 𝑃(𝜖) that the system has energy epsilon 𝜖 is propor-
tional to the product of microstates accessible to the reservoir and the
system:

𝑃(𝜖) ∝ Ω(𝐸 − 𝜖) × 1 (2.8)

Taking Eq. 2.6, and considering that 𝜖 ≪ 𝐸, we may perform a Taylor
expansion of lnΩ(𝐸 − 𝜖) around 𝜖 = 0, such that

lnΩ(𝐸 − 𝜖) = lnΩ(𝐸) − 𝑑 lnΩ(𝐸)
𝑑𝐸

𝜖 + · · · ,

Substituting Eq. 2.6 into the equation above we have

lnΩ(𝐸 − 𝜖) = lnΩ(𝐸) − 𝜖
𝑘𝐵𝑇

, (2.9)

where 𝑇 is the Temperature of the reservoir.
Higher-order terms of the Taylor expansion may be neglected (see
Exercise 4.4 in Blundell)

𝑑2 lnΩ(𝐸)
𝑑𝐸2 𝜖2 ≪ 𝑑 lnΩ(𝐸)

𝑑𝐸
𝜖,

and Eq. 2.9 becomes

Ω(𝐸 − 𝜖) = Ω(𝐸) exp (−𝜖/𝑘𝐵𝑇) .

Considering Eq. 2.8 we can derive the probability distribution de-
scribing the system, given by

𝑃(𝜖) ∝ exp (−𝜖/𝑘𝐵𝑇) (2.10)

2.2 The Maxwell–Boltzmann distribution

Let us now apply the Boltzmann distribution to the movement of a
particle5: 5: The term “particle” refers to gaseous

particles only (atoms or molecules) in
this contextWe first consider that the particle moves at a velocity 𝑣 and has the

corresponding kinetic energy 𝐸 = 1/2𝑚𝑣2.

We may decompose the velocity onto its different components such
as 𝑣2 = 𝑣2

𝑥 + 𝑣2
𝑦 + 𝑣2

𝑧 (Pythagorean theorem), and we may accordingly
write:

𝐸 =
1
2
𝑚𝑣2 =

1
2
𝑚𝑣2

𝑥 +
1
2
𝑚𝑣2

𝑦 +
1
2
𝑚𝑣2

𝑧

We will now apply Boltzmann’s equation to each of the components for
the velocity, starting with 𝑣𝑥 .
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As the velocity is directly correlated with the energy, we have

𝑃(𝜖) ∝ e−𝛽𝜖

For the coordinate 𝑥 we have 𝐸𝑥 = 1
2𝑚𝑣

2
𝑥 and we also have 𝛽 = 1/𝑘𝐵𝑇.

If we substitute (𝜖, 𝛽) by (𝐸𝑥 , 1/𝑘𝐵𝑇), respectively, we then have:

𝑃(𝐸𝑥) ∝ exp
(
− 𝑚𝑣

2
𝑥

2𝑘𝐵𝑇

)
Since a particle with the energy 𝐸𝑥 will have the corresponding velocity
𝑔(𝑥)we may write

𝑔(𝑣𝑥) ∝ exp
(
− 𝑚𝑣

2
𝑥

2𝑘𝐵𝑇

)
We now normalize the expression above using the Gaussian Integral (see
appendix A.2, eq. A.3), with 𝛼 = 𝑚/2𝑘𝐵𝑇:∫ +∞

−∞
e−𝛼𝑥

2
d𝑥 =

√
𝜋
𝛼

and we now may write exactly:

𝑔(𝑣𝑥) =
√

𝑚

2𝜋𝑘𝐵𝑇
exp

(
− 𝑚𝑣

2
𝑥

2𝑘𝐵𝑇

)
(2.11)

with
√

𝑚
2𝜋𝑘𝐵𝑇 the normalization function.

We may naturally proceed in an equal fashion for the functions 𝑔(𝑣𝑦)
and 𝑔(𝑣𝑧).

Let us now determine the fractions of particles with velocities comprised
between (𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧) and (𝑣𝑥 +d𝑣𝑥 , 𝑣𝑦 +d𝑣𝑦 , 𝑣𝑧 +d𝑣𝑧),6 using 𝑔(𝑣𝑥,𝑦,𝑧) ∝ 6: This will correspond to the product

of the fractions of particles in each sub-
dimension velocity space 𝑔(𝑣𝑖)d𝑣𝑖 , with
𝑖 = (𝑥, 𝑦, 𝑧)

exp
(
−𝑚𝑣

2
𝑥,𝑦,𝑧

2𝑘𝐵𝑇

)
.

We may write (considering 𝑣2 = 𝑣2
𝑥 + 𝑣2

𝑦 + 𝑣2
𝑧):

𝑔(𝑣𝑥)d𝑣𝑥 𝑔(𝑣𝑦)d𝑣𝑦 𝑔(𝑣𝑧)d𝑣𝑧

∝ exp
(
− 𝑚𝑣

2
𝑥

2𝑘𝐵𝑇

)
d𝑣𝑥 exp

(
−
𝑚𝑣2

𝑦

2𝑘𝐵𝑇

)
d𝑣𝑦 exp

(
− 𝑚𝑣

2
𝑧

2𝑘𝐵𝑇

)
d𝑣𝑧

∝ exp
(
− 𝑚𝑣

2

2𝑘𝐵𝑇

)
d𝑣𝑥d𝑣𝑦d𝑣𝑧

Let us now replace d𝑣𝑥d𝑣𝑦d𝑣𝑧 by d𝑣. We may do so through the repre-
sentation of the 3D velocity space as a sphere. In such a representation,
d𝑣𝑥d𝑣𝑦d𝑣𝑧 corresponds to an “onion peel” of the sphere’s exterior.
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Figure 2.6: Left: Velocity space; Right:
Onion peel

This volume may be written as:

𝑉 =
4
3
𝜋(𝑣 + 𝑑𝑣)3 − 4

3
𝜋(𝑣)3

=
4
3
𝜋

[
(𝑣 + 𝑑𝑣)3 − 𝑣3]

⟨expansion of (𝑣 + 𝑑𝑣)3⟩

= 4𝜋
[
𝑣2𝑑𝑣 + 3𝑣𝑑𝑣2 + 𝑑𝑣

3

3

]
We now may resort to infinitesimal approximations, as d𝑣 → 0, we have
d𝑣 ≫ d𝑣2 ≫ d𝑣3, and we may ignore the two last terms:

𝑉 = 4𝜋𝑣2d𝑣, (2.12)

and
d𝑣𝑥d𝑣𝑦d𝑣𝑧 = 4𝜋𝑣2d𝑣.

If we now absorb the constant 4𝜋 in the proportionality coefficient, we
have:

𝑓 (𝑣)d𝑣 ∝ 𝑣2d𝑣 exp
(
− 𝑚𝑣

2

2𝑘𝐵𝑇

)
, (2.13)

where 𝑓 (𝑣)d𝑣 corresponds to the fraction of particles with velocities
comprised between 𝑣 and 𝑣 + d𝑣.

We again normalize this function using the integral (see appendix A.2,
eq. A.9): ∫ +∞

−∞
𝑥2e−𝛼𝑥

2
d𝑥 =

1
2

√
𝜋

𝛼3

and we may again write exactly:

𝑓 (𝑣)d𝑣 =
4√
𝜋

(
𝑚

2𝑘𝐵𝑇

)3/2
𝑣2 exp

(
− 𝑚𝑣

2

2𝑘𝐵𝑇

)
d𝑣 (2.14)

with 4√
𝜋

(
𝑚

2𝑘𝐵𝑇

)3/2
the normalization function.

Eq. 2.14 corresponds to the Maxwell–Boltzmann distribution, which
correlates Temperature T and the Velocity Distribution 𝑓 (𝑣)𝑑𝑣 of a gas.

We see that the velocity distribution function of a gas will depend not
only on the particles Mass 𝑚, but also the factor 𝑘𝐵𝑇 = 1/𝛽 which was
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previously introduced and corresponds to a measure of the system
energy.

If we define several values for 𝑘𝐵𝑇, the corresponding function 𝑓 (𝑣) will
have the following shapes:
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Figure 2.7: Sample Maxwell–Boltzmann
distributions

with 𝛽1 > 𝛽2 > 𝛽3 (or 𝑇1 < 𝑇2 < 𝑇3).

See the online simulation of a gas as a
collection of small hard-sphere particles
colliding with each other (link in text &
image)

Why is the probability of having a particle with zero velocity zero?
Several reasonings:

▶ Mathematically-speaking, this is because the integral of Eq. 2.12
tends to 0 as 𝑣 → 0.

▶ One may also superpose funtions 𝑔(𝑣𝑥) and 𝑔(𝑣𝑦) in a 2D space.
Even if the probability of having 𝑣𝑥 is maximal, the probability
of having 𝑣𝑦 = 0 at the same time is infinitesimally small.

▶ We may reason in terms of macrostates and microstates: if
we sample the space of velocities 𝑣𝑥 as [0, 1, 2, ...] and do so
also for 𝑣𝑦 and 𝑣𝑧 we see that there is only one microstate for
𝑣 = 0, whereas the number of possible microstates for increasing
velocities increases exponentially.

▶ Still not convinced? Try colliding two moving balls and have
one of them fully stop post-collision...

2.2.1 A few useful properties of the Maxwell-Boltzmann
distribution

▶ Most probable velocity: 𝑣𝑝 ⇒
d 𝑓 (𝑣)

d𝑣
= 0

d 𝑓 (𝑣)
d𝑣

= −8𝜋
(

𝑚

2𝜋𝑘𝐵𝑇

)3/2
𝑣

(
𝑚𝑣2

𝑘𝐵𝑇
− 1

)
exp

(
−𝑚𝑣2

2𝑘𝐵𝑇

)
= 0

which admits the solution: 𝑚𝑣2

𝑘𝐵𝑇
= 1.

𝑣𝑝 =

√
2𝑘𝐵𝑇
𝑚

(2.15)

▶ Average velocity: ⟨𝑣⟩ =
∫ +∞

0 𝑣 𝑓 (𝑣)d𝑣. If we hold 𝑏 = 𝑚
2𝑘𝐵𝑇 ;

https://phet.colorado.edu/sims/html/gas-properties/latest/gas-properties_all.html
https://phet.colorado.edu/sims/html/gas-properties/latest/gas-properties_all.html
https://phet.colorado.edu/sims/html/gas-properties/latest/gas-properties_all.html
https://phet.colorado.edu/sims/html/gas-properties/latest/gas-properties_all.html
https://phet.colorado.edu/sims/html/gas-properties/latest/gas-properties_all.html
https://phet.colorado.edu/sims/html/gas-properties/latest/gas-properties_all.html
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and we again consider the analytical integral (see appendix A.2,
eq. A.13): ∫ +∞

−∞
𝑥3e−𝛼𝑥

2
d𝑥 =

1
2𝛼2

We obtain:

⟨𝑣⟩ = 4𝜋
(
𝑏

𝜋

)3/2 ∫ +∞

0
𝑣3e−𝑏𝑣

2
d𝑣

= 4𝜋
(
𝑏

𝜋

)3/2 1
2𝑏2 =

√
4
𝜋𝑏

=

√
8𝑘𝐵𝑇
𝜋𝑚

⟨𝑣⟩ =
√

8𝑘𝐵𝑇
𝜋𝑚

(2.16)

▶ Average quadratic velocity: 𝑣𝑟𝑚𝑠 =
√
⟨𝑣2⟩ =

[∫ +∞
0 𝑣2 𝑓 (𝑣)d𝑣

]1/2
.

Holding again 𝑏 = 𝑚
2𝑘𝐵𝑇 ;

and again considering the analytical integral (see appendix A.2, eq.
A.10): ∫ +∞

−∞
𝑥4e−𝛼𝑥

2
d𝑥 =

3
8

√
𝜋

𝛼5

We obtain:

√
⟨𝑣2⟩ =

[
4𝜋

(
𝑏

𝜋

)3/2 ∫ +∞

0
𝑣4e−𝑏𝑣

2
d𝑣

]1/2

=

[
4𝜋

(
𝑏

𝜋

)3/2 3
8

√
𝜋

𝑏5

]1/2

=

√
3

2𝑏
=

√
3𝑘𝐵𝑇
𝑚

𝑣𝑟𝑚𝑠 =

√
3𝑘𝐵𝑇
𝑚

(2.17)
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Figure 2.8: 𝑣𝑝 , ⟨𝑣⟩ and 𝑣𝑟𝑚𝑠 for a
Maxwell–Boltzmann distribution of O2
at 𝑇 = 300 K
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Nomenclature

Variables:

▶ 𝑛: Number of coin tosses
▶ 𝑥: Number of coin heads outcomes
▶ 𝑝: Probability for an outcome
▶ 𝜇: Probability average
▶ 𝜎: Probability standard deviation
▶ 𝜎2: Probability variance

▶ 𝐸: Energy of a system (macroscopic energy) [J]
▶ 𝜖: Energy of a particle (microscopic energy) [J]
▶ Ω: Microstate
▶ 𝑇: Temperature [K]
▶ 𝛽: 𝛽 = 1/𝑘𝐵𝑇

▶ 𝑚: Mass [kg]
▶ 𝑣: Velocity [m/s]
▶ ⟨𝑣⟩: Average velocity for a set of particles [m/s]

Constants:

▶ 𝑘𝐵: Some constant yet to be defined

Acronyms, subscripts and superscripts

▶ 𝑥: 𝑥 coordinate [m]
▶ 𝑦: 𝑦 coordinate [m]
▶ 𝑧: 𝑧 coordinate [m]
▶ 𝑟𝑚𝑠: Root mean square
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Chapter Summary

▶ Definition of Macrostates and microstates, definition of binomial
distribution.

▶ Boltzmann distribution for the occupation probability of the
different energy states of a system.

𝑃(𝜖𝑖) ∝ 𝑒𝑥𝑝(−𝜖𝑖/𝑘𝐵𝑇)

▶ Maxwell-Boltzmann distribution for the particle velocities with
an average energy < 𝐸 >; Statistical definition of temperature
𝑇.

𝑓 (𝑣)d𝑣 = 4√
𝜋

(
𝑚

2𝑘𝐵𝑇

)3/2
𝑣2 exp

(
− 𝑚𝑣2

2𝑘𝐵𝑇

)
d𝑣

Recommended readings
▶ Blundell, “Concepts in Thermal Physics”, Chapters 4–5
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Thermodynamics and Culture: Relevant Works

Chapter 2 discusses the motion of gas particles at microscopic level.
The movements of individual particles are seemingly chaotic, and there
aree too many particles for one to be able to describe the movements of
all particles using discrete equations of motion. A statistical analysis is
required, which then yields meaningful averaged properties for these
chaotic movements when particles are observed individually. It may
seem at first sight disconcerting that structure and rules may arise from
such chaotic movements, and as such a very relevant literary work is

Lewis Carroll, “Alice Adventures in Wonderland”, 1865,

a novel about Alice, a young girl who, while falling asleep outside on
a golden afternoon, sees a white rabbit and follows it into a rabbit hole.
When she falls down the rabbit hole, she begins her fantastical adventures
in Wonderland.

Her adventures include distortions of time and proportion. Throughout
the story she shrinks and grows repeatedly as she meets characters of all
kinds and sizes, including the Caterpillar who asks “Who are you?” and
Cheshire Cat who asks her “Where do you want to go?”

Alice in Wonderland, digital paint-
ing by Daniel Revoy, 2010. see
https://simple.wikipedia.org/

wiki/File:Alice-in-Wonderland_

by-David-Revoy_2010-07-21.jpg

All the worlds/universes, real or imaginary, macroscopic or microscopic, are governed by
a set of rules/laws. These may make sense to the observer or not, but they do exist and
should be observed at all times!

https://simple.wikipedia.org/wiki/File:Alice-in-Wonderland_by-David-Revoy_2010-07-21.jpg
https://simple.wikipedia.org/wiki/File:Alice-in-Wonderland_by-David-Revoy_2010-07-21.jpg
https://simple.wikipedia.org/wiki/File:Alice-in-Wonderland_by-David-Revoy_2010-07-21.jpg
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https://www.newyorker.

com/science/elements/

why-do-we-obey-rules

“Alice’s Wonderland is a place where the only rule is that the rules will keep changing. One offering
makes you larger, another makes you small; it’s always teatime because there’s no time; and the
rabbit, with his broken watch, is always late. The rules of Wonderland fail to offer what is so beloved
about rules, which is the increase of what Daston terms the “radius of predictability.” This may not
be equivalent to the good. But the predictable is as much a human need as are ruptures from the
predictable.”

Rivka Galchen, The New Yorker, 6th July 2022.

“Down the Rabbit Hole” is nowadays a synonym of “ending up in a strange place”. On the 1999
movie “The Matrix”, Morpheus gifts Neo the red pill and adds: “You stay in Wonderland,
and I show you how deep the rabbit hole goes.”

https://www.newyorker.com/science/elements/why-do-we-obey-rules
https://www.newyorker.com/science/elements/why-do-we-obey-rules
https://www.newyorker.com/science/elements/why-do-we-obey-rules
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3.1 The Equipartition theorem

In the previous class, we have determine that the particles moving in a
box with a given energy 𝐸, follow a Maxwell–Boltzmann distribution,
randomly moving in a 3D space.

Let us now constrain a particle in a small corridor, effectively rendering
its movement one-dimensional. This corridor is connected to the afore-
mentioned particle reservoir with a total energy 𝐸 much larger than the
energy of the individual particle:

Let us also assume that this particle remains confined to this tube, collid-
ing at its border with the volume of energy 𝐸. The particles of this volume
will randomly collide with ths particle, randomly adding/subtracting
energy to it.
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After a given amount of time, the average energy ⟨𝜖⟩ of the particle will
be in equilibrium with the average energy of the particles in the volume
⟨𝐸⟩.

We may accordingly determine this value of ⟨𝜖⟩: The average velocity of
the particle will be ⟨𝑣𝑥⟩ and its kinetic energy 𝜖 = 1/2𝑚𝑣2

𝑥 .

The probability for the particle having a given energy 𝜖𝑖 is given by the
Boltzmann distribution (using 𝛽 = 1/𝑘𝐵𝑇):

𝑃(𝜖) ∝ exp (−𝛽𝜖) = exp
(
−1/2𝑚𝑣2

𝑥

𝑘𝐵𝑇

)
We now normalize this probability1 1: we consider the intervals [−∞↔ +∞]

for 𝑣𝑥 as it can have a negative value
in this system of coordinates (in other
terms the particle might be travelling left
or right)

:

𝑃(𝜖) =
exp

(
− 1/2𝑚𝑣2

𝑥

𝑘𝐵𝑇

)
∫ +∞
−∞ exp

(
− 1/2𝑚𝑣2

𝑥

𝑘𝐵𝑇

)
d𝑣𝑥

The average energy ⟨𝐸⟩ is by definition:

⟨𝜖⟩ =
∫ +∞

−∞
𝜖𝑃(𝑣𝑥)d𝑣𝑥

=

∫ +∞
−∞ 1/2𝑚𝑣2

𝑥 exp
(
− 1/2𝑚𝑣2

𝑥

𝑘𝐵𝑇

)
d𝑣𝑥∫ +∞

−∞ exp
(
− 1/2𝑚𝑣2

𝑥

𝑘𝐵𝑇

)
d𝑣𝑥

‘ Defining 𝑎 = 1/2𝑚 and 𝑏 = 𝑚/2𝑘𝐵𝑇, and using two of the integrals
introduced in chapter 2:2

2: See also appendix A.2, eqs. A.3 and
A.7)∫ +∞

−∞
e−𝛼𝑥

2
d𝑥 =

√
𝜋
𝛼∫ +∞

−∞
𝑥2e−𝛼𝑥

2
d𝑥 =

1
2

√
𝜋

𝛼3 ,

we may write

⟨𝜖⟩ =
∫ +∞
−∞ 𝑎𝑣2

𝑥 exp
(
−𝑏𝑣2

𝑥

)
d𝑣𝑥

exp
(
−𝑏𝑣2

𝑥

)
=
𝑎/2

√
𝜋/𝑏3

𝜋/𝑏 =
𝑎/2√
𝑏2

=
1
2
𝑘𝐵𝑇

The average energy of a particle with one degree of freedom is 1
2 𝑘𝐵𝑇.

We may extend this result to other degrees of freedom:

(a) 2 degrees of freedom: 𝑥, 𝑦
⟨𝜖⟩ = 2

2 𝑘𝐵𝑇

(b) 3 degrees of freedom: 𝑥, 𝑦, 𝑧
⟨𝜖⟩ = 3

2 𝑘𝐵𝑇
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This defines the Equipartition Theorem

The energy of a classical system with𝑁 degrees of freedom, in contact
with a reservoir at Temperature 𝑇, is 𝐸 = 𝑁 × 1

2 𝑘𝐵𝑇

3.1.1 Applications for the Equipartition Theorem

There are different kinds of gases:

▶ Atomic (ex: He, Ar, Kr, ...)

▶ Diatomic (ex: N2, O2, CO, ...)

▶ Polyatomic (ex: CH4, O2, H2O, ...)

All gaseous species have 3 translational (𝑥, 𝑦, 𝑧) degrees of freedom.

Diatomic and Polyatomic molecules have additional degrees of freedom:
Rotation and Vibration3

3: There are additional degrees of free-
dom associated to the electron cloud of
the chemical species but these are “quan-
tum things” that only apply at very high
temperatures, and which we will leave
“untouched” in the scope of this textbook.

Example for a diatomic molecule fully excited rotationally and vibra-
tionally:

𝑥

𝑦

𝑧

𝐼𝑧

𝐼𝑦

Rotational motion

𝑟1

𝑚1

𝑟2

𝑚2

0

¤𝑟1¤𝑟2 𝑘

Vibrational motion

The total energy for the molecule is:

𝐸 =
1
2
𝑚𝑣2

𝑥+
1
2
𝑚𝑣2

𝑦+
1
2
𝑚𝑣2

𝑧+
𝐿2

1
2𝐼1
+
𝐿2

2
2𝐼2
+ 1

2
𝜇 ( ¤𝑟1 − ¤𝑟2)+

1
2
𝑘 (𝑟1 − 𝑟2) (3.1)

and its average energy:

⟨𝐸⟩ = (3 + 2 + 2) × 1
2
𝑘𝐵𝑇 =

7
2
𝑘𝐵𝑇, (3.2)

(since the equipartition theorem only cares about the number of modes
in the system)

A walk on the wild side, some more “quantum things”, and how
there’s more than meets the eye:

The so-called “Quantum revolution” was initiated around 1905, when
it was first acknowledged by Einstein (following the ground-lying
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work of Planck) that the energy states of a particle are quantified,
which means that particles (in fact any body) jump from a state to
another by discrete jumps instead of a continuum.

The microscopic quantum world is hidden from us living at the
macroscopic level, since typical energy jumps are of the order of
magnitude of 5 × 10−23 J for jumps between adjacent rotational
levels, and 5 × 10−20 J for jumps between adjacent vibrational levels.
However, at the microscopic level, the energy transferred by a particle
during a collision with another one is of this order of magnitude:
𝐸 = 𝑁

2 𝑘𝐵𝑇 (with 𝑁 = −3 − 7). For low enough Temperatures 𝑇, this
energy exchange becomes too low to trigger a quantum jump.

⇒ it stems from the above that a minimum temperature is required
to excite the rotational and vibrational modes of a molecule (typically
2–90 K for rotation and 3,000–6000 K for vibration - Note: We will see
more ahead that 0 ◦C=273.15 K)

Figures 3.3 and 3.4 show the temperature dependence of the energy
capacity for the N2 and O2 molecules, respectively. We transition from
molecules wich are only capable of moving in the 3D coordinates
with an average energy ⟨𝐸⟩ = 3/2𝑘𝐵𝑇 up to 2 − 100 K, after which
rotational motion is unfrozen, with the average energy becoming
⟨𝐸⟩ = 5/2𝑘𝐵𝑇. Then, around 1500− 5000 K, vibrational motion is also
frozen, with the average energy becoming ⟨𝐸⟩ = 7/2𝑘𝐵𝑇
We may note that the rotational and vibrational modes are excited
at different critical temperatures, depending on the molecule. This
is because the atomic masses and electronic configurations differ
for both molecules (the latest being particularly important for the
vibrational excitation temperature).
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Figure 3.3: Temperature-dependent Average energy for molecular nitrogen N2
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Figure 3.4: Temperature-dependent Average energy for molecular oxygen O2

In practical terms, and in the scope of this academic unit which will
treat thermal engines whose minimum temperatures are usually
above 𝑇 = −100 ◦C and below 𝑇 = 1000 ◦C, we will consider that the
rotation of molecules is always activated whereas the vibration of
molecules is never activated.

We therefore always consider:

▶ ⟨𝐸⟩ for an atomic particle: 3
2 𝑘𝐵𝑇

▶ ⟨𝐸⟩ for a diatomic particle: 5
2 𝑘𝐵𝑇

3.1.2 Degrees of freedom for liquids

Too complicated for this course. Lets skip this...

3.1.3 Degrees of freedom for solids

In a solid, the atoms are embedded into a lattice which disallows free
motion. However the atoms may vibrate over their equilibrium position.

The atom in the lattice may move in 6 directions, therefore a solid has 6
degrees of freedom and ⟨𝐸⟩ = 6

2 𝑘𝐵𝑇.
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⇒

3.2 Where we finally get to define what
Temperature really stands for

We have been arguing since chapter 1 that the concept of Temperature “is
complicated”. We arbitrarily introduced the variable 𝛽 = 1/𝑘𝐵𝑇 during
our discussion about microstates and macrostates, and the Boltzmann
distribution.

If we finally want to settle this matter once and for all, properly defining
Temperature 𝑇 (and by the way what does the constant 𝑘𝐵 stands for),
we need to go back to our history books:

The concept of Temperature was devised much before the development
of statistical physics, with the development of the first thermometers
where a liquid (usually mercury) dilates/contracts (more onto this in the
next class) in a vertical column.

The unit of 1 ◦C (or 1 K) stems from the definition of a temperature scale
where the most precious chemical element in the World (Water H2O)
was used as a standard, with 0 ◦C set as the Temperature below which
water is frozen (at standard atmospheric pressure, more on this in a
future lecture), and 100 ◦C set as the Temperature above which water is
vaporized4

4: we note that there are other possible
scales proposed in the past (and used
up until today) such as Fahrenheit and
Rankine units, however these are not
accepted as standard units - SI units

.

Later on, the constant volume heat capacity 𝐶𝑣 = 𝜕⟨𝐸⟩/𝜕𝑇 of water was
approximately determined as being 4.186 J/(g K). Knowing that a mole
of H2O has a mass of 18.015 g, and that liquid water has 9 degrees of
freedom (don’t ask), we may write for the heat capacity of one molecule
of liquid water:

𝐶𝑣 = 4.186[J/(g K)]

=
4.186[J/(g K)] × 18.015[g/mol]

9𝑁𝐴[1/mol]
≃ 1.391 × 10−23[J/K]

which is approximately5 the value for the Boltzmann constant 𝑘𝐵 = 5: The value is not exact as the 𝐶𝑣 value
for water is slightly dependent on Tem-
perature 𝑇, even in the liquid state

1.3806488 × 10−23.

We may therefore acknowledge the Boltzmann constant as a simple
conversion factor which correlates Temperature 𝑇 which was originally
scaled against the properties of water and the Joule energy units.

We now put to rest our debate concerning temperatures:
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A volume of gas comprised of a given amount of particles with 𝑁

degrees of freedom will have an average energy for each particle equal to
⟨𝐸⟩ = 𝑁

2 𝑘𝐵𝑇, and a velocity distribution function following the Maxwell–
Boltzmann equation, depending on the mass 𝑚 of the particles and the
macroscopic Temperature 𝑇 of the gas.

or in simpler terms:

The Temperature 𝑇 of a gas is a measure of its “intensity of energy”,
and its value allows us to determine the velocity distribution of its
constituent particles through the Maxwell–Boltzmann distribution.

We may now conceptually describe heat flowing from higher tempera-
tures to lower temperatures as heat spreading out from higher to lower
concentrations. Similarly to Temperature being described as the “inten-
sity of energy/heat” we may also describe pressure as the intensity of
force applied by matter to another matter (𝑝 = 𝐹/𝐴). Then, for a fluid
in movement, we may observe the same spreading out of regions with
higher intensities of force (higher pressures) to the regions with lower
intensities of force (lower pressures).

To summarize these important definition for Temperature 𝑇 and pressure
𝑝:

▶ Temperature 𝑇 is the “intensity of energy/heat”;
▶ Pressure 𝑝 is the “intensity of force”.

3.3 Ideal gas law

Now that we have appropriate microscopic definitions for Pressure 𝑝
and Temperature 𝑇, we may try to correlate both these identities in the
scope of gaseous interactions.

Let us again consider an arbitrary Volume 𝑉 with a series of moving gas
particles, but this time with a spherical form:

We may start by defining the solid angle in its usual fashion:

We consider the movement of the particles to be isotropic (independent
of the angle). Then the fraction of trajectories in an elementary solid angle
dΩ is equal to dΩ/4𝜋 (since the full solid angle is 4𝜋).
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Ω = 𝐴
𝑟2

Next the quantity of particles which move with angles comprised between
𝜃 and 𝜃 + d𝜃 relative to the wall normal in this solid angle Ω is:

dΩ = 2𝜋 sin𝜃d𝜃
⇒

dΩ
4𝜋

=
1
2

sin𝜃d𝜃

and we may determine the number of particles with velocity [𝑣, 𝑣 + d𝑣]
moving with angles [𝜃, 𝜃 + d𝜃]:

𝑛 𝑓 (𝑣)d𝑣 1
2

sin𝜃d𝜃 (3.3)

If we now consider the collisions of the particles impacting the wall, we
firstly verify that the particles who travel at an angle 𝜃 from the wall
normal, in a time interval d𝑡, cross the volume

𝐴𝑣d𝑡 cos𝜃

If we multiply this expression by Eq. 3.3, we find the number of particles
which hit the wall of area 𝐴 during the time interval d𝑡:

𝐴𝑣d𝑡 cos𝜃𝑛 𝑓 (𝑣)d𝑣 1
2

sin𝜃d𝜃

and the number of particles with velocity [𝑣, 𝑣 +d𝑣]moving with angles
[𝜃, 𝜃 + d𝜃]which hit an unit area 𝐴 over an unit time 𝑑𝑡 is given by:

𝑣 cos𝜃𝑛 𝑓 (𝑣)d𝑣 1
2

sin𝜃d𝜃 (3.4)

We finally account that a particle hitting a wall has a momentum change
of 2𝑚𝑣 cos𝜃

and we integrate6: 6: the 𝜃 integral is only carried in the
region [0 − 𝜋/2] since the particles with
𝜃 = [𝜋/2−𝜋] are moving away from the
wall and will not collide with it

{
𝑣 from 0 to∞
𝜃 from 0 to 𝜋/2
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This finally allows us to derive the pressure as:

𝑝 =

∫ ∞

0

∫ 𝜋/2

0
variation of moment × number of particles d𝑣d𝜃

𝑝 =

∫ ∞

0

∫ 𝜋/2

0
2𝑚𝑣 cos𝜃 × 𝑣 cos𝜃𝑛 𝑓 (𝑣)d𝑣 1

2
sin𝜃d𝜃

𝑝 = 𝑚𝑛

∫ ∞

0
𝑣2 𝑓 (𝑣)d𝑣

∫ 𝜋/2

0
cos2 𝜃 sin𝜃d𝜃.

Acknowledging that
∫ ∞

0 𝑣2 𝑓 (𝑣)d𝑣 = ⟨𝑣2⟩ and considering the exact

solution for the second term:
∫ 𝜋/2

0 cos2 𝜃 sin𝜃d𝜃 = 1
3 we may write:

𝑝 =
1
3
𝑚𝑛⟨𝑣2⟩ (3.5)

Finally, considering the overall number of particles 𝑁 on the Volume 𝑉
(𝑁 = 𝑛𝑉), and the Maxwell–Boltzmann relationship for a three degrees-
of-freedom particle movement 1

2𝑚⟨𝑣2⟩ = 3
2 𝑘𝐵𝑇, we have:

𝑝𝑉 = 𝑁𝑘𝐵𝑇 (3.6)

The Ideal Gas Law!

Equivalent forms of the Ideal Gas Law

Dividing both sides of Eq. 3.6 by Volume 𝑉 we have

𝑝 = 𝑛𝑘𝐵𝑇 (3.7)

where 𝑛 = 𝑁/𝑉 is the number of particles per unit volume.
We may wish to define the number of particles in its molar form
(more adapted to our macroscopic world) with 𝑛𝑚 = 𝑛/𝑁𝑎 . The
corresponding version of Eq. 3.6 is:

𝑝𝑉 = 𝑛𝑚𝑅𝑇, (3.8)

with 𝑅 = 𝑁𝐴𝑘𝐵 = 8.314 47 J/(K mol) the Universal Gas Constant.
If we want to express the Ideal Gas Law in terms of Mass, we may
write 𝑛𝑚 = 𝑚/𝑀 where 𝑚 is the mass of the gas and 𝑀 its molar
mass. Replacing 𝑛𝑚 by 𝑚/𝑀 in Eq. 3.8, and introducing the density
𝜌 = 𝑚/𝑉 (in [Kg/m3], we get

𝑝 = 𝜌𝑅𝑚𝑇, (3.9)

with 𝑅𝑚 = 𝑅/𝑀 the Specific Gas Constant.
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Nomenclature

Variables:

▶ 𝐸: Energy of a system (macroscopic energy) [J]
▶ 𝐼: Rotational momentum of Inertia [kg m2]
▶ 𝐿: Angular momentum [kg m2/s]
▶ 𝑘: Spring constant [N/m]
▶ 𝑚: Mass [kg]
▶ 𝑀: Molar Mass [g/mol]
▶ 𝑁 : Number of particles [-]
▶ 𝑛: Number of particles per unit Volume 𝑛 = 𝑁/𝑉 [m3]
▶ 𝑛𝑚 : Number of moles per unit Volume 𝑛𝑚 = 𝑛/𝑁𝐴 [mol/m3]
▶ 𝜇: Reduced mass: 𝜇 =

𝑚1𝑚2
𝑚1+𝑚2

[kg]
▶ 𝑝: Pressure [Pa]
▶ 𝜌: Density [kg/m3]
▶ 𝑟: Distance [m]
▶ 𝑇: Temperature [K]
▶ 𝑡: Time [s]
▶ 𝑣: Velocity [m/s]
▶ 𝑉 : Volume [m3]
▶ 𝑓 (𝑣): Maxwell–Boltzmann velocity distribution function
▶ 𝑅𝑚 : Specific Gas Constant 𝑅𝑚 = 𝑅/𝑀 [J/(kg K)]

▶ 𝐶𝑣 : Heat Capacity [J/(kg K)]

▶ 𝛽: 𝛽 = 1/𝑘𝐵𝑇
▶ 𝜖: Energy of a particle (microscopic energy) [J]

▶ 𝜃: Angle [rad]
▶ Ω: Solid Angle [sr]

Constants:

▶ 𝑘𝐵 = 1.3806488 × 10−23 [J/K]: Boltzmann Constant
▶ 𝑁𝐴 = 6.02214076 × 1023 [1/mol]: Avogadro Number/Constant
▶ 𝑅 = 8.31447 [J/(mol K)]: Universal Gas Constant

Acronyms, subscripts and superscripts

▶ 𝑥: 𝑥 coordinate [m]
▶ 𝑦: 𝑦 coordinate [m]
▶ 𝑧: 𝑧 coordinate [m]
▶ 𝑟𝑚𝑠: Root mean square
▶ ⟨𝑋⟩: Average value of variable 𝑋 for a set of particles
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Chapter Summary

▶ Equipartition Theorem: < 𝐸 >= 𝑁 × 1/2𝑘𝐵𝑇
• 𝑁 : system degrees of freedom

▶ Particle degrees of freedom:

• Atomic: 𝑁 = 3
* 3 translational degrees of freedom 𝑥, 𝑦, 𝑧.

• Diatomic: 𝑁 = 5
* 3 translational degrees of freedom 𝑥, 𝑦, 𝑧.
* 2 rotational degrees of freedom.
* 2 vibrational degrees of freedom inactive at low tem-

peratures
* also additional degree of freedom for the electron

cloud, also inactive at low temperatures

x

y

z

x

y

z

translational mode rotational mode

x

y

z

x

y

z

b

b

b

vibrational mode electronic mode

▶ Degrees of freedom for a solid: 𝑁 = 6 (Law of Dulong–Petit).

▶ Statistical definition of temperature 𝑇 (continued.) and defini-
tion of the Boltzmann constant 𝑘𝐵.

▶ Perfect Gas Law: 𝑝𝑉 = 𝑁𝑘𝐵𝑇.

Recommended readings
▶ Blundell, “Concepts in Thermal Physics”, Chapters 19 and 6.
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Thermodynamics and Culture: Relevant Works

Chapter 3 continues our travels through the microscopic world of particles,
with an outlook on their internal properties and the behaviour of their
movement. We are still in the world of Wonderland and as such the
chapter literary work is

Lewis Caroll, “Through the Looking-Glass”, 1871,

a sequel of Alice’s Adventures in Wonderland, written and published in
part because of the widespread success the former novel garnered.

The book is comprised of a series of dream-like fantasy episodes. The
theme which ties them together is Alice’s journey as a pawn from the
start of a fantasy game of chess until she reaches the eighth rank and
becomes a queen.

Alice again enters a fantastical world, this time by climbing through a
mirror into the world that she can see beyond it. There she finds that,
just like a reflection, everything is reversed, including logic (for example,
running helps one remain stationary, walking away from something
brings one towards it, chessmen are alive, nursery rhyme characters exist,
and so on).

Alice entering the looking-glass.
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In this Chapter we will continue our walk through the microscopic
world...

with an emphasis on chemistry and an outlook into intramolecular and
intermolecular forces.

Figure 4.1: Schematic view of a diatomic
molecule and its cloud of electrons

We will briefly discuss the interactions and forces (a) inside a molecule,
and (b) between two molecules.



4 Microscopic Behavior of Solids, Liquids, and Gases 55

Force interactions within a molecule (intramolecular forces):

What happens when

▶ Case A : When pushing the two atoms of a molecule together,
the electrostatic forces of both nuclei repel themselves.

▶ Case B : The repulsive electrostatic forces of the two nuclei are
offset by the attractive forces of their electron cloud, which maintain
an equilibrium between these forces.

▶ Case C : When stretching the nuclei we also stretch the electron
cloud up an until the electrons “choose” one of both nuclei for orbit-
ing around. The molecule is said to be “broken”, e.g. it dissociated
into two atoms: N2 −−−→ N +N.

Force interactions between two molecules (intermolecular forces):
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We have the same pattern of forces.

Why is that? Aren’t non-ionized molecules electrostatically neutral be-
yond some point? (this is the so-called Debye length)

Indeed! Yet the issue lies that for some molecules, the spatial distribution
of its charges may differ. Let us examine again the case of the most
important chemical component in the Universe (Water H2O):

For water, the electron cloud tends to be denser around its O constituent
atom and scarcer around both its constituent H atoms. These are called
polar molecules (in opposition to non-polar molecules) as their electron
charge is anisotropic (it will depend on the orientation of the molecule).

It is precisely this anisotropic distribution of charges which is going to
allow for molecules to have small long-distance attractive forces, while
remaining repulsive at short distance.

Let us keep with the example of H2O. We see that the O atom ( +
charge) of H2O will be attracted to another H2O molecule H atom ( −
charge):

These intermolecular forces allow for phase transitions and for the liquid
and solid states of matter. If particles move at low enough speeds, during
a collision process between two of them, these forces may interact long
enough that they may prevent departure after the encounter. We then
have the formation of a liquid or a solid where the molecules will find
optimal geometrical arrangements among them. An example for the
liquid and solid phases for H2O at molecular level are presented in the
figure below.
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Figure 4.2: O-H bonds in liquid water
(left), and in frozen water (ice, right)

Attractive forces work as sticky glue in our billiard balls model.

see also the online simulation of phase
transitions between solids, liquids, and
gases at microscopic level (link in text &
image)

▶ In the gaseous phase (high Temperatures), the impulse of a collision
is much stronger than attractive forces, and these may be neglected
(on a first approach), considering a full “rigid spheres” collision
model.

▶ In the liquid phase (intermediate Temperatures), the average
speeds are lower, and the attractive forces “dampen” movement in
a more noticeable fashion. We may say that particles “slide” among
them.

▶ In the solid phase (low Temperatures), the particles no longer
have a significant movement and attractive forces get to shape the
structure of the formed solid.

Definition of impulse:

Impulse = 𝐹𝑎𝑣𝑔Δ𝑡 = 𝑚Δ𝑣

⇒
𝐹𝑎𝑣𝑔 = 𝑚

Δ𝑣

Δ𝑡

with Δ𝑣 = ®𝑣 𝑓 − ®𝑣𝑖 of the particle.

Note: intramolecular attractive forces are typically stronger than intermolecular
attractive forces.

Lets see an example, again for H2O:

▶ energy for melting a mole of ice: 6010 J
▶ energy for vaporizing a mole of water: 40 700 J

https://iwant2study.org/lookangejss/03thermalphysics_08kineticmodel/ejss_model_MolecularDynamicsJSPerformanceweesolid/MolecularDynamicsJSPerformanceweesolid_Simulation.xhtml
https://iwant2study.org/lookangejss/03thermalphysics_08kineticmodel/ejss_model_MolecularDynamicsJSPerformanceweesolid/MolecularDynamicsJSPerformanceweesolid_Simulation.xhtml
https://iwant2study.org/lookangejss/03thermalphysics_08kineticmodel/ejss_model_MolecularDynamicsJSPerformanceweesolid/MolecularDynamicsJSPerformanceweesolid_Simulation.xhtml
https://iwant2study.org/lookangejss/03thermalphysics_08kineticmodel/ejss_model_MolecularDynamicsJSPerformanceweesolid/MolecularDynamicsJSPerformanceweesolid_Simulation.xhtml
https://iwant2study.org/lookangejss/03thermalphysics_08kineticmodel/ejss_model_MolecularDynamicsJSPerformanceweesolid/MolecularDynamicsJSPerformanceweesolid_Simulation.xhtml
https://iwant2study.org/lookangejss/03thermalphysics_08kineticmodel/ejss_model_MolecularDynamicsJSPerformanceweesolid/MolecularDynamicsJSPerformanceweesolid_Simulation.xhtml
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▶ energy for dissociating a mole of vapour: 425 900 J

Water melts at 0 ◦C, vaporizes at 100 ◦C, and dissociates at 2000–3000 ◦C.

4.1 Expansion of solids, liquids, and gases

We saw in Chapter 3 that the constituent particles of a solid will vibrate
with a given amplitude. This is true for any state of matter, and the
amplitude of vibration will be a function of the solid’s temperature
(intensity of energy). Let us examine the intramolecular potential of a
pair of isolated atoms (essentially a diatomic molecule). This potential
has the following functional shape:

The average intranuclear separation between the constituent atoms of
a molecule increases with its energy of vibration 𝐸, which increases
as a function of Temperature 𝑇 (owing to the equipartition theorem
𝐸 = 𝑁/2𝑘𝐵𝑇):

𝑟
𝑎𝑣𝑔

2 =
𝑟𝑚𝑖𝑛2 + 𝑟𝑚𝑎𝑥2

2
> 𝑟

𝑎𝑣𝑔

1 =
𝑟𝑚𝑖𝑛1 + 𝑟𝑚𝑎𝑥1

2

Consequences for the different phases (again using the water molecule
as example):

▶ Solids: The vibrating atom of a solid will occupy more space⇒
The solid expands at higher Temperatures
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▶ Liquids: The moving molecules will also occupy more space⇒
The liquid expands at higher Temperatures

▶ Gases: There is plenty of room between molecules, therefore the
increase in molecule occupation volume is irrelevant. There is
only a slight increase of the collision cross-section between two
molecules.

4.1.1 Macroscopic relationships

Figure 4.3: A thermometer makes use of
the 1D thermal expansion of a liquid to
display temperatures.

Linear Thermal Expansion (1D case):

𝛼 =
1
𝐿

d𝐿
d𝑇
≃ Δ𝐿

𝑇0

1
Δ𝑇

, if Δ𝐿 ≪ 𝐿 (4.1)

with Δ𝐿 = 𝐿1 − 𝐿0; Δ𝑇 = 𝑇1 − 𝑇0

𝛼𝐿 ∝ 𝐿0Δ𝑇 → 𝐿1 ≃ 𝐿0 + 𝛼𝐿0(𝑇1 − 𝑇0)
𝐿1 ≃ 𝐿0 + [1 + 𝛼(𝑇1 − 𝑇0)]
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Derivation of the Linear Expansion Relation:

More rigorously, from 𝛼 = 1
𝐿

d𝐿
d𝑇 we have d𝐿

d𝑇 = 𝛼𝐿.

d𝐿
𝐿

= 𝛼d𝑇;
∫ 1

0

d𝐿
𝐿

= 𝛼

∫ 1

0
d𝑇; ln

(
𝐿1
𝐿0

)
= 𝛼(𝑇1 − 𝑇0)

𝐿1 = 𝐿0 exp [𝛼(𝑇1 − 𝑇0)] = 𝐿0 exp (𝛼Δ𝑇)

Note that alternatively we could have solved:

d𝐿
d𝑇

= 𝛼𝐿 → 𝐿(𝑇) = 𝐶 exp(𝛼𝑇),

𝐿(𝑇0) = 𝐿0 → 𝐶 exp(𝛼𝑇0) = 𝐿0; 𝐶 = 𝐿0 exp(−𝛼𝑇0)

𝐿𝑇 = 𝐿0 exp [𝛼 (𝐿 − 𝐿0)𝑇]

for small 𝑥 we have e𝑥 ≃ 1 + 𝑥:

𝐿1 = 𝐿0 exp (𝛼Δ𝑇) ≃ 𝐿0 (1 + 𝛼Δ𝑇)

For a thin sheet of an isotropic solid (2D case):

Δ𝐴

𝐴
=

Δ (𝑙1𝑙2)
𝑙1𝑙2

=
(𝑙1 + Δ𝑙1) (𝑙2 + Δ𝑙2) − 𝑙1𝑙2

𝑙1𝑙2

=
𝑙1𝑙2 + 𝑙1Δ𝑙2 + Δ𝑙1𝑙2 + Δ𝑙1Δ𝑙2 − 𝑙1𝑙2

𝑙1𝑙2

ignoring the terms in (Δ𝑙)2 since Δ𝑙 ≪ 𝑙:

Δ𝐴

𝐴
≃ Δ𝑙1

𝑙1
+ Δ𝑙2

𝑙2
= 2𝛼Δ𝑇

with Δ𝑙1
𝑙1

= 𝛼Δ𝑇 and Δ𝑙2
𝑙2

= 𝛼Δ𝑇.

Some properties of 𝛼:

▶ 𝛼 may vary with temperature 𝑇, but usually we can neglect this
over a large range of 𝑇.

▶ For anisotropic solids (crystals), 𝛼 may vary with orientation
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▶ For some materials, we may have 𝛼𝑥 positive and 𝛼𝑦 negative
(example: Calcite expands in one direction and contracts in the
opposite when the Temperature 𝑇 increases

For thermal expansion in a volume (3D case):

𝛽 =
1
𝑉

d𝑉
d𝑇

,

with 𝛽 the volumetric expansion coefficient.

𝛽 =
1
𝑉

d𝑉
d𝑇
≃ 1
𝑉0

d𝑉
d𝑇

=
Δ𝑉

𝑉0

1
𝑑𝑇

= 3𝛼
Δ𝑇

Δ𝑇
= 3𝛼

Generally 𝛽 > 0.

Expression for gases

Unlike liquids and solids, which may be mostly assumed as incompress-
ible1

1: for solids this excludes elastomers,
and liquids are still slightly compressible
if you significantly increase the pressure

, gases are strongly compressible.

It is also unusual to apply the expressions for thermal expansion for
gases (since these do not assume a given volume, instead filling all the
space available). One may still define the isobaric thermal expansion
coefficient as

𝛽 =
1
𝑉

(
d𝑉
d𝑇

)
𝑝

, (4.2)

where the subscript 𝑝 stands for constant pressure.

If we assume an ideal gas then we obtain 2
2: We differentiate the ideal gas expres-
sion to 𝑝d𝑉 +𝑉d𝑝 = 𝑛𝑘𝐵d𝑇, then sim-
plify it since we are isobaric (𝑉d𝑝 = 0),
and replacing d𝑉/d𝑇 by 𝑁𝑘𝐵/𝑝 in Eq.
4.2. We finally recognize that𝑁𝑘𝐵/𝑝𝑉 =

1/𝑇 and simplify the expression.
𝛽 =

1
𝑇

Water and Ice: A special case, and why it matters in the Grand
scheme of things.

The hexagonal arrangement of water ice is “wasteful in terms of space,
since it leaves hexagonal gaps large enough to potentially contain
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additional molecules of water. This is what happens when increasing
temperature in the range 0–4 ◦C. The breaking of hydrogen bonds
on melting allows for a denser molecular packing in which some of
the lattice cavities are filled by water molecules, hence increasing
the density up to 4 ◦C. Above this value, thermal expansion effects
become dominant again.
As a result of this more sparse arrangement of the solid, Ice is about
9% less denser than liquid water, which is why ice rocks float over
water.

This is a key feature for Life on our planet since these peculiar
properties of water allow for lakes and the bottom of the sea
maintaining a constant temperature of 4 ◦C, allowing for the
insulation of life from harsher meteorological conditions at its surface.
Water also has a very large volumetric heat capacity, larger than most
common metals, and it acts as a very efficient heat reservoir (which is
why coastal areas near the sea have more temperate temperatures).

It is believed that without these very favorable thermodynamic proper-
ties of water, it would have been impossible for complex and ultimately
intelligent life to appear on Earth.

Historical note: The determination of the “absolute zero”.

As we previously discussed, the temperature scale was initially
defined through the energy differences of solid/liquid equilibrium
for water (0 ◦C), and the corresponding liquid/vapor equilibrium
(100 ◦C).

Between 1787 and 1802, Jacques Charles in France, John Dalton in the
United Kingdom, and Joseph Louis Gay–Lussac in France discovered
that ideal gases expand/contract in a linear fashion (Charle’s Law) by
approximately 1/273 parts per Celsius (with measurements carried
out between 0 ◦C and 100 ◦C).

This would imply that the volume of a gas frozen down to −273 ◦C
would have a Volume 𝑉 = 0, which was remarkably close to the real
value (−273.15 ◦C).
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We note that it was acknowledged by Gay–Lussac that Charles Law
would need to be extrapolated down to absolute zero, since the
measured gases would inevitably liquefy before reaching this point.
Later in 1848, William Thomson (Lord Kelvin) defined in a more
rigorous fashion the temperature scale which would bear his name:
The Kelvin

𝑇(◦C) = 𝑇(K) + 273.15 (4.3)

(Note that Kelvin units omit the symbol (o) in the temperature (K)

4.2 Specific Heat, Latent Heat, Heat Capacity

Reminder:

Specific Heat: Heat quantity necessary for increasing by 1 ◦C the temper-
ature of 1 g of a given substance.

𝐶 = lim
Δ𝑇→0

Δ𝑄

Δ𝑇
[J/K]]

(for an object with 𝑚 mass) see the online simulation of specific heat
(link in text & image)

and the online simulation of heat capac-
ity (link in text & image)

We may then define the heat capacity of a substance.

We start by defining 𝑐 as: 𝐶[J/K] = 𝑚[kg] × 𝑐[J/kg/K].

We then have:

𝐶 = 𝑚𝑐
Δ𝑄

Δ𝑇
→ Δ𝑄 = 𝑚𝑐Δ𝑇 = 𝐶Δ𝑇

or
d𝑄 = 𝑚𝑐d𝑇 = 𝐶d𝑇 (4.4)

If 𝑐 is not constant in the temperature interval Δ𝑇 we have, considering
Eq. 4.4:

Δ𝑄 = 𝑚

∫ 𝑇𝑓

𝑇𝑖

𝑐(𝑇)d𝑇 = 𝑚𝑐
(
𝑇𝑓 − 𝑇𝑖

)
,

where 𝑐 is the average specific heat.

https://javalab.org/en/specific_heat_en/
https://javalab.org/en/specific_heat_en/
https://javalab.org/en/specific_heat_en/
https://javalab.org/en/specific_heat_en/
https://javalab.org/en/heat_capacity_en/
https://javalab.org/en/heat_capacity_en/
https://javalab.org/en/heat_capacity_en/
https://javalab.org/en/heat_capacity_en/
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Figure 4.4: Substance phases seen at mi-
croscopic level

Latent Heat: When we are in transition between phases (see Fig. 4.4, cases
B and D ), the temperature (agitation energy) remains constant and

the process of heating/cooling destroys/creates chemical bonds between
the particles which release/constrain their movements melting/freezing
solids or vaporizing/condensing liquids.

Δ𝑄 = 𝑚𝜆 (4.5)

with 𝜆[J/kg]: latent heat.
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4.3 Real Gas Law (van der Waals equation)

We have seen in the previous class that the Ideal Gas Law is written as
𝑝𝑉 = 𝑁𝑘𝐵𝑇, which entails a “hard-sphere/billiard balls”-like collision
model, where the collisions are fully elastic and the particles are treated
as point sources.

This is a simplistic model since:

1. Particles occupy a certain amount of space: •

2. There are short-range attractive forces

Case 1 (occupation of the space): Let us calculate the exclusion vol-
ume.

The minimum distance between particles is 𝑑 = 2𝑟0:
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Which corresponds to an “exclusion volume” 𝑉 = 4
3𝜋𝑑

3 = 8 4
3𝜋𝑟

3
0 =

8𝑉0.

If we have 𝑁 molecules in a volume 𝑉 , the available volume for the path
of the center mass of a particle is: 𝑉 − 8(𝑁 − 1)𝑉0 ≃ 𝑉 − 8𝑁𝑉0.

If we define 8𝑉0 = 𝑏 we then have 𝑉 → 𝑉 − 𝑛𝑏, where 𝑝𝑉 = 𝑁𝑘𝐵𝑇 →
𝑝(𝑉 − 𝑁𝑏) = 𝑁𝑘𝐵𝑇 .

Case 2 (attractive interactions):

The attractive effects between molecules average themselves in the gas
(they are roughly isotropic resulting in no net force). This is no longer
valid near the walls:

For a fixed 𝑉 , the number of particles in the volume is proportional to
𝑁/𝑉 , which means 𝐹𝑣𝑑𝑊 ∝ 𝑁/𝑉 .

The number of molecules that are affected by this attraction is also∝ 𝑁/𝑉 ,
which results in a decrease of pressure ∝ (𝑁/𝑉)2, Δ𝑝 = −𝑎 𝑁2

𝑉2 , 𝑎 > 0.

We finally may write the Real Gas (van der Waals) Equation as:[
𝑝 + 𝑎

( 𝑛
𝑉

)2
] (
𝑉

𝑛
− 𝑏

)
= 𝑅𝑇 (4.6)
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Nomenclature

Variables:

▶ 𝐴: Area [m2]
▶ 𝑎: van der Waals constant [Pam6/mol2]
▶ 𝑏: van der Waals constant [m3/mol]
▶ 𝐹: Force [N]
▶ 𝐿: Length [m]
▶ 𝑚: Mass [kg]
▶ 𝑀: Molar Mass [g/mol]
▶ 𝑛: Number of particles per unit Volume 𝑛 = 𝑁/𝑉 [1/m3]
▶ 𝑛𝑚 : Number of moles per unit Volume 𝑛𝑚 = 𝑛/𝑁𝐴 [mol/m3]
▶ 𝑁 : Number of particles [-]
▶ 𝑝: Pressure [Pa]
▶ 𝜌: Density [kg/m3]
▶ 𝑅𝑚 : Specific Gas Constant 𝑅𝑚 = 𝑅/𝑀 [J/(kg K)]
▶ 𝑇: Temperature [K]
▶ 𝑡: Time [s]
▶ 𝑣: Velocity [m/s]
▶ 𝑉 : Volume [m3]

▶ 𝐶: Heat Capacity [J/K]
▶ 𝑐: Specific Heat of a substance [J/(kg K)]
▶ 𝜆: Latent Heat [J/kg]

▶ 𝛼: Linear expansion coefficient [1/K]
▶ 𝛽: Volumetric expansion coefficient [1/K]

Constants:

▶ 𝑘𝐵 = 1.3806488 × 10−23 [J/K]: Boltzmann Constant
▶ 𝑁𝐴 = 6.02214076 × 1023 [1/mol]: Avogadro Number/Constant
▶ 𝑅 = 8.31447 [J/(mol K)]: Universal Gas Constant

Acronyms, subscripts and superscripts

▶ 𝑖: initial
▶ 𝑓 : final
▶ 𝑎𝑣𝑔: Average
▶ 𝑣𝑑𝑊 : van der Waals
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Chapter Summary

▶ Intermolecular Potentials.
▶ Microscopic concepts of Solids, Liquids, and Gases.
▶ Microscopic concept of Solids and Liquids Thermal Expansion.
▶ Thermal expansion laws for solids:

• 1D: Linear Expansion Coefficient:
𝛼 = 1/𝐿 × d𝐿/d𝑇

• 2D: Sheet/Plate/Area Expansion Coefficient:
𝛼′ = 1/𝐴 × d𝐴/d𝑇, 𝛼′ = 2𝛼

• 3D: Volumetric Expansion Coefficient:
𝛽 = 1/𝑉 × d𝑉/d𝑇, 𝛽 = 3𝛼

▶ Specific Heats, Latent Heats, Heat Capacities.
▶ Real Gas Law (van der Waals Law).

•
[
𝑝 + 𝑎

( 𝑛
𝑉

)2
] (
𝑉

𝑛
− 𝑏

)
= 𝑅𝑇

Recommended readings
▶ Blundell, “Concepts in Thermal Physics”, Chapters 26 and 28 (par-

tially).
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Thermodynamics and Culture: Relevant Works

Chapter 4 discusses how individual particles (atoms and molecules)
interact to form compounds, giving rise to the more well known states of
matter (solid, liquid and gaseous), owing to electrostatic forces and inter-
actions which are extensively studied in physical chemistry disciplines.
A relevant literary work is

Mary Shelley, “Frankenstein or the Modern Prometheus”,
1818,

a novel about about a “mad scientist” (Victor Frankenstein) who wants
to create life itself. He stitches together parts from the dead bodies and
brings his creation to life during an electrical storm.

The young Mary Shelley wrote her seminal novel (and one of the first
science-fiction novels) at the age of 18, partly as a consequence for her
fascination with chemistry and electricity (galvanism), two popular
topics in the 19th Century, where science was coming to understand
that chemistry held the keys to the phenomena of life. In this context,
electricity was understood as a fluid as any other, yet imbued with
energizing and vitalizing powers.

Frontispiece to Frankenstein, 1831 Edi-
tion

“The teenage Shelley showed uncanny prescience by intimating that life was fundamentally a chemical
affair. In the early part of the century, chemists such as Jacob Berzelius and Justus Liebig began to
establish organic chemistry as the link between the living and the abiotic, and to erode the need for
any ‘vital force’. Soon, even Charles Darwin was speculating about life’s chemical origins, while
his ally Thomas Henry Huxley considered there to be a kind of universal living substance called
protoplasm. In the early 20th century the focus of this nascent biochemistry came to be the issue of
organization, not mere composition – but one could say that molecular biology never looked back.”
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Phillip Ball, “The Making of a Modern Prometheus”, ChemistryWorld. url:
https://www.chemistryworld.com/opinion/

how-frankenstein-left-chemistry-with-a-monstrous-reputation/1017377.

article

https://www.chemistryworld.com/opinion/how-frankenstein-left-chemistry-with-a-monstrous-reputation/1017377.article
https://www.chemistryworld.com/opinion/how-frankenstein-left-chemistry-with-a-monstrous-reputation/1017377.article
https://www.chemistryworld.com/opinion/how-frankenstein-left-chemistry-with-a-monstrous-reputation/1017377.article
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There are 3 main energy transfer processes1

1: A 4th energy transfer mechanism has
recently been discovered, allowing heat
transfer through quantum fluctuations,
including in vacuum, though valid only
at very short scales (∼ 100 nm), see Fong
et al. [1][1]: Fong et al. (2019), Phonon Heat Trans-
fer Across a Vacuum Through Quantum
Fluctuations

:
Conduction: 

 Energy Transfer


{
in a material medium

} 
without movement Convection: with movement

Radiation:
{

in a transparent medium
}

with photons at 𝑣 = 𝑐

Figure 5.1: conduction, convection, radiation

Note: Convection refers to the combined effect of heat diffusion (conduc-
tion) and heat transfer from 𝐴 → 𝐵 thorough movement of the fluid
which transports heat (advection)2

2: both effects are also referred as “natu-
ral” and “forced” convection

. In this textbook, we will consider
the simplified version of convection as heat transfer through a moving
fluid.

Heat transfer processes

5.1 Conduction

Conduction is the heat transfer through a material medium at rest, under
the effect of temperature differences.

▶ Energy flows from 𝑇1 to 𝑇2 woth 𝑇1 > 𝑇2 (from higher energies
towards lower energies).

▶ The amount of heat transfered in an interval Δ𝑡 will depend/be
proportional to the following (using the analogy of a boiling pot):
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1. ∝ Δ𝑇 = 𝑇2−𝑇1 (water will heat faster if the flame temperature
is higher)

2. ∝ 1
Δ𝑥 (the thicker the bottom of the pot, the longer it will take

to boil water)
3. ∝ 𝐴 (higher areas for energy transfer will lead to thigher heat

transfer; consider the flame occupying all the bottom of the
pot, or just part of it)

4. ∝ 𝑡 (time-dependence is self-evident)

Accounting for all the proportionality relations we may write3 3: with 𝑘 the thermal conductivity coeffi-
cient replacing the proportionality term
∝

:

d𝑄
d𝑡

= −𝑘𝐴d𝑇
d𝑥

(5.1)

which is the Fourier Law for heat transfer (in its unidimensional form).

Property 3 has plenty of engineering applications. For building efficient
heat dissipators, one may simply increase the contact area 𝐴.

Figure 5.2: car radiator (left) and graph-
ics card heat dissipator (right)

5.1.1 Heat conductivity of different materials

▶ Gases: Very bad conductors (the distance between particles is too
large)

▶ Liquids: Mediocre conductors, but extremely efficient for convec-
tive heat transfer (good mobility, good heat capacity)

▶ Solid metals: Excellent conductors (the “free electrons” move in
the metal and transport energy). Conduction is the result of both
atomic vibrations and the movement of electrons‘
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See the microscopic visualization of heat
conduction from a hot to a cold solid
(link in text & image)Example: Conduction in an homogenous bar

We consider an homogeneous bar, with cross-section 𝐴, length 𝑙,
conductivity 𝑘, and boundaries in contact with a heat source at 𝑇1
and a heat sink at 𝑇2.
Let us also consider that the bar is in stationary regime, which means
that d𝑄

d𝑡 is independent of 𝑥, and hence d𝑇
d𝑥 = c (constant).

This differential equation has the trivial solution:

𝑇(𝑥) = 𝑐1𝑥 + 𝑐2

https://javalab.org/en/conduction_en/
https://javalab.org/en/conduction_en/
https://javalab.org/en/conduction_en/
https://javalab.org/en/conduction_en/
https://javalab.org/en/conduction_en/
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And we may now simply determine the equation constants from the
constraints at the edge of the bar:

𝑇(𝑥 = 0) = 𝑇2 → 𝑐2 = 𝑇2

𝑇(𝑥 = 𝑙) = 𝑇1 → 𝑐1𝑙 + 𝑇2 = 𝑇1

and we have the solution

𝑇(𝑥) = −𝑇2 − 𝑇1
𝑙

𝑥 + 𝑇2

Example: Conduction in two homogenous bars
We consider two homogeneous bars, with the same cross-section 𝐴,
but with lengths 𝑙1 and 𝑙2, and conductivities 𝑘1 and 𝑘2.
As usual, the bars are in the stationary regime, d𝑇

d𝑥 = c (constant) in
any section.

d𝑄
d𝑡

= 𝑐1 = −𝑘1𝐴
d𝑇
d𝑥 (0<𝑥<𝑙1)

= 𝑘2𝐴
d𝑇
d𝑥 (𝑙1<𝑥<𝑙2)

We solve for (0 < 𝑥 < 𝑙1) and (𝑙1 < 𝑥 < 𝑙2):

d𝑇
d𝑥 =

𝑇0−𝑇2
𝑙1

d𝑇
d𝑥 =

𝑇1−𝑇0
𝑙2

}
𝑘1
𝑇0 − 𝑇2
𝑙1

= 𝑘2
𝑇1 − 𝑇0
𝑙2

→

𝑘2𝑙2𝑇0 − 𝑘1𝑙2𝑇2 = −𝑘2𝑙1𝑇0 + 𝑘2𝑙1𝑇1

𝑇0(𝑘1𝑙2 + 𝑘2𝑙1) = 𝑘1𝑙2𝑇2 + 𝑘2𝑙1𝑇1

and

𝑇0 =
𝑘1𝑙2𝑇2 + 𝑘2𝑙1𝑇1
𝑘1𝑙2 + 𝑘2𝑙1
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d𝑄
d𝑡

= − 𝑘1𝐴

𝑙1

[
𝑘1𝑙2𝑇2 + 𝑘2𝑙1𝑇1
𝑘1𝑙2 + 𝑘2𝑙1

− 𝑇2

]
= − 𝑘1𝐴

𝑙1

−𝑘2𝑙1𝑇2 + 𝑘2𝑙1𝑇1
𝑘1𝑙2 + 𝑘2𝑙1

=
𝑘1𝑘2𝑙1𝐴

𝑙1

𝑇2 − 𝑇1
𝑘1𝑙2 + 𝑘2𝑙1

= 𝐴
𝑇2 − 𝑇1
𝑙2
𝑘2
+ 𝑙1

𝑘1

If 𝑙1 = 𝑙2, 𝑇0 will be closer to 𝑇2 if 𝑘1 > 𝑘2. If 𝑘1 = 𝑘2 and 𝑙1 = 𝑙2,
𝑇0 =

𝑇1+𝑇2
2 .

[we may remark from the previous solution that if we want to
minimize d𝑄

d𝑡 , for example to minimize the heat losses of a house wall,
improving its insulation, we may do so if we add a thick wall (𝑙 ↗)
with low thermal conductivity (𝑘 ↘)]

Note: these calculations are analogue to the ones carried out when
pairing electrical resistances:

𝑅1 𝑅2𝑉𝑎 𝑉𝑏 𝑉𝑐

Δ𝑉 = (𝑅1 + 𝑅2)𝐼

We may write similarly:

Δ𝑇 =

(
𝑙1
𝑘1𝐴
+ 𝑙1
𝑘1𝐴

)
d𝑄
d𝑡

(5.2)

→

d𝑄
d𝑡

= 𝐴
1

𝑙1
𝑘1
+ 𝑙2

𝑘2

Δ𝑇 ≡ 1
𝑅1 + 𝑅2

Δ𝑇,

defining 𝑅 = 𝑙/𝑘.

Example: Double-pane window used for insulating a room
A double-pane window used for insulating a room thermally from the
outside consists of two glass sheets each of area 1 m2 and thickness
0.01 m separated by a 0.05 m thick stagnant air space. In the steady
state, the room glass interface and the glass-outdoor interface are at
constant temperature of 27◦ and 0◦, respectively.
Calculate the rate of heat flow through the window pane and find the
temperature for each interface. Assume the thermal conductivities of
glass and air as 0.8 and 0.08 W/(m K), respectively.
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Solution:

The rate of heat flow through the room-side glass is

d𝑄𝑔1

d𝑡
=
𝑘𝑔𝐴(𝑇𝑟 − 𝑇1)

𝑥𝑔
, (5.3)

and through the air-space is

d𝑄𝑎

d𝑡
=
𝑘𝑎𝐴(𝑇1 − 𝑇2)

𝑥𝑎
, (5.4)

and through the outside glass is

d𝑄𝑔2

d𝑡
=
𝑘𝑔𝐴(𝑇2 − 𝑇𝑎)

𝑥𝑔
. (5.5)

In the steady-state, d𝑄𝑔1/d𝑡 = d𝑄𝑎/d𝑡. Solving Eq. 5.3 and Eq. 5.4 in
the same fashion than for the last exercise we get

𝑘𝑔𝑥𝑎(𝑇𝑟 − 𝑇1) = 𝑘𝑎𝑥𝑔(𝑇1 − 𝑇2) (5.6)

In the same fashion, d𝑄𝑔2/d𝑡 = d𝑄𝑎/d𝑡. Solving Eq. 5.4 and Eq. 5.5
yields

𝑘𝑎𝑥𝑔(𝑇1 − 𝑇2) = 𝑘𝑔𝑥𝑎(𝑇2 − 𝑇𝑎) (5.7)

combining 5.6 and Eq. 5.7 we get

(𝑇𝑟 − 𝑇1) = (𝑇2 − 𝑇𝑎) (5.8)

Solving these last two equations (Eq. 5.7 and Eq. 5.8) we get

𝑇1 =
(𝑘𝑔𝑥𝑎 + 𝑘𝑎𝑥𝑔)𝑇𝑟 + 𝑘𝑎𝑥𝑔𝑇𝑎

2𝑘𝑎𝑥𝑔 + 𝑘𝑔𝑥𝑎
= 26.48 ◦C

and 𝑇2 =0.52 ◦C.



5 Heat Transfer 77

We substitute these values in 5.4 to obtain the rate of heat flow:

d𝑄𝑎

d𝑡
=
𝑘𝑎𝐴(𝑇1 − 𝑇2)

𝑥𝑎

=
0.08(1)(26.48 − 0.52)

0.05
= 41.5W.

We may compare this value with the corresponding rate of heat flow
of a single-pane window (keeping the same 𝐴 and 𝑥𝑎):

d𝑄𝑎

d𝑡
=
𝑘𝑎𝐴(𝑇𝑟 − 𝑇𝑎)

𝑥𝑎

=
0.08(1)(27 − 0)

0.01
= 216W.

A double-pane window loses only 19% of the heat that a
single-pane window would lose for these same conditions

Heat transfer in a coaxial pipe with an internal temperature 𝑇1 and
an external temperature 𝑇2:a

d𝑄
d𝑡

= −𝑘𝐴d𝑇
d𝑟

= 𝑘2𝜋𝑙𝑟
d𝑇
d𝑟

= 𝑐, 𝐴 = 2𝜋𝑟𝑙

Solving the ordinary differential equation in the usual fashion we get:

𝑟
d𝑇
d𝑟

= 𝑐1 →
d𝑇
d𝑟

=
𝑐1
𝑟

𝑇(𝑟) = 𝑐1 ln(𝑟) + 𝑐2

𝑇(𝑟1) = 𝑇1 , 𝑐1 ln(𝑟1) + 𝑐2 = 𝑇1

𝑇(𝑟2) = 𝑇2 , 𝑐1 ln(𝑟2) + 𝑐2 = 𝑇2
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𝑐1 ln(𝑟2/𝑟1) = 𝑇2 − 𝑇1 𝑐1 =
𝑇2 − 𝑇1

ln
(
𝑟2
𝑟1

)
𝑐2 = 𝑇1 − 𝑐1 ln(𝑟1)

= 𝑇1 − (𝑇2 − 𝑇1)
ln(𝑟1)
ln

(
𝑟1
𝑟2

) =
ln(𝑟2)𝑇1 −����ln(𝑟1)𝑇1 − 𝑇2 ln(𝑟1) +����𝑇1 ln(𝑟1)

ln
(
𝑟1
𝑟2

)
=

ln(𝑟2)𝑇1 − 𝑇2 ln(𝑟1)
ln

(
𝑟1
𝑟2

)
d𝑄
d𝑡

= 𝑘2𝜋𝑙𝑟
d𝑇
d𝑟

and
d𝑇
d𝑟

=
𝑐1
𝑟
→ d𝑄

d𝑡
= −2𝜋𝑘𝑙

𝑇2 − 𝑇1

ln
(
𝑟1
𝑟2

)
analogy to electrical resistances:

𝑅 = ln
(
𝑟1
𝑟2

)
1

2𝜋𝑙𝑘
a See also Cengel, Heat Transfer, 2nd Ed. Example 2-15

Heat transfer between two concentric spheres with temperatures 𝑇1
and 𝑇2:a

𝑟1 𝑟2
𝑟

𝑇1

𝑇2

d𝑄
d𝑡

= −𝑘𝐴d𝑇
d𝑟

= 𝑘4𝜋𝑟2 d𝑇
d𝑟

= 𝑐, 𝐴 = 4𝜋𝑟2

Solving the ordinary differential equation in the usual fashion we get:

𝑟2 d𝑇
d𝑟

= 𝑐1 →
d𝑇
d𝑟

=
𝑐1

𝑟2

𝑇(𝑟) = − 𝑐1
𝑟
+ 𝑐2

𝑇(𝑟1) = 𝑇1 , − 𝑐1
𝑟
+ 𝑐2 = 𝑇1

𝑇(𝑟2) = 𝑇2 , − 𝑐1
𝑟
+ 𝑐2 = 𝑇2
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𝑐1

(
1
𝑟2
− 1
𝑟1

)
= 𝑇1 − 𝑇2 → 𝑐1 =

𝑇1 − 𝑇2(
1
𝑟2
− 1

𝑟1

)
= (𝑇1 − 𝑇2)

𝑟1𝑟2
𝑟1 − 𝑟2

= (𝑇2 − 𝑇1)
𝑟1𝑟2
𝑟2 − 𝑟1

d𝑄
d𝑡

= 𝑘4𝜋𝑟2 d𝑇
d𝑟

and
d𝑇
d𝑟

=
𝑐1

𝑟2 → d𝑄
d𝑡

= −4𝜋𝑘(𝑇2 − 𝑇1)
𝑟1𝑟2
𝑟2 − 𝑟1

analogy to electrical resistances:

𝑅 =
𝑟2 − 𝑟1
𝑟1𝑟2

1
4𝜋𝑘

a See also Cengel, Heat Transfer, 2nd Ed. Example 2-16

5.2 Convection

Online visualization of natural convec-
tion in a heated pot filled with water at
a microscopic level. The heated water
expands, and buoyancy pulls the lighter
water upwards, creating a circular
movement in the pot, which also brings
colder water downwards to be heated)
(link in text & image)

Liquid or Gas, these absorb heat in a location, move and release the heat
in another location.

▶ Natural convection: The movement is produced by a density differ-
ence associated to the temperature differences – 𝑝 = 𝜌𝑅𝑇 (wind,
sea currents, ...).

▶ Forced convection: Movement of the fluid imposed by a pump or a
ventilator

ℎ: convection coefficient (usually very complex to calculate!)

d𝑄
d𝑡

= ℎ𝐴Δ𝑇 (5.9)

where for the example of a hot wall in contat with a fluid (at an arbitrary
preset fluid velocity and condition; slow/fast, laminar/turbulent, etc...)

▶ 𝐴 is the contact area between the wall and the fluid
▶ Δ𝑇 is the temperature difference between the wall and the main

mass of the fluid.

ℎ will depend on:

▶ the wall shape
▶ whether the flow is moving horizontally or vertically
▶ material in contact with the wall
▶ density, viscosity, specific heat and conductivity of the fluid
▶ if there is evaporation or condensation

analogy to electrical resistances:

𝑅 =
1
ℎ𝐴

https://javalab.org/en/conduction_en/
https://javalab.org/en/conduction_en/
https://javalab.org/en/conduction_en/
https://javalab.org/en/conduction_en/
https://javalab.org/en/conduction_en/
https://javalab.org/en/conduction_en/
https://javalab.org/en/conduction_en/
https://javalab.org/en/conduction_en/
https://javalab.org/en/conduction_en/
https://javalab.org/en/conduction_en/
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Appendix: Energy transfer through a window
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Nomenclature

Variables:

▶ 𝐴: Area [m2]
▶ 𝐼: Current [A]
▶ ℎ: Convection coefficient [W/mK]
▶ 𝑙: Length [m]
▶ 𝑘: Conductivity [W/mK]
▶ 𝑄: Heat [J]
▶ 𝑅: Electric Resistance [Ω]
▶ 𝑙: Radius [m]
▶ 𝑉 : Electric Potential [V]
▶ 𝑇: Temperature [K]
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5.3 Radiation

Light as a Bundle of Photons

A photon:

▶ has an energy, 𝐸 = ℎ𝜈 (Planck’s Law)
▶ moves at the speed of light, 𝑣 = 𝑐

▶ has no mass, 𝑚 = 0
▶ yet behaves as a particle with momentum 𝑚 = ℎ/𝜈
▶ ...and at the same time behaves as an electromagnetic wave.

E

PropagationDirection

B

Light can be created and destroyed

Interaction with matter:

▶ The photon (and its energy) may be absorbed by matter.
▶ This only occurs if the energy of a photon exactly corresponds to

the energy difference between the initial energy state and a higher
available energy state of a material medium.

▶ The inverse process (spontaneous emission) may also happen,
creating a photon of energy corresponding to the inverse energy
jump (from the higher to the lower energy state).

▶ The induced emission process is the third and final possible radia-
tive process.
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Radiation emission and absorption

Absorption Emission

Nucleus

Nucleus

Excited state

Fundamental
energy level

Absorption of en-
ergy by the atom

Emission of an
energy quanta

Radiation Emission and Absorption
▶ Planck’s Relation: all material systems can absorb or emit electro-

magnetic radiation of frequency proportional to the energy gained
or lost such that Δ𝐸 = ℎ𝜈.

▶ Radiation emission/absorption can be discrete (collection of broad-
ened lines) or continuum.

▶ The frequency/wavelength of the transitions is intrinsically re-
lated to the energies of the internal quantum states of the emit-
ting/absorbing medium, and to the quantum selection rules of the
allowed/forbidden transitions between these states.

Visible light is just a tiny part of all the electromagnetic
spectrum

Source: wikipedia.org
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Blackbody radiation limit

The spectral emissivity of a gas/plasma has a theoretical limit given by
Planck’s law

𝐵𝜈(𝑇) =
2ℎ𝜈3

𝑐2

[
𝑒𝑥𝑝

(
ℎ𝜈
𝑘𝐵𝑇

)
− 1

]−1

The spectral integration yields the Stefan–Boltzmann Law:∫
𝜈
𝐵𝜈(𝑇) = 𝜎𝑇4

The Sun’s emissivity is close to a blackbody

Radiation Emission and Absorption
▶ Dense/High pressure objects emit near-blackbody continuum radi-

ation. Combination of large number of discrete quantum transitions
with line broadening effects add up to a continuum.

▶ Absorption by a medium who is not in radiative equilibrium (grey
medium) is strongly uneven, depending on the radiation frequency.
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▶ Earth’s atmosphere is a good example of a non-grey medium.
Radiation in the UV and certain IR regions is blocked. Visible
radiation and radio waves are not.

Remote Sensing

Observation of the absorption of a near-blackbody source (Star) trough
interstellar gases or planetary atmospheres is a very popular and excit-
ing topic in current day astronomy. Allows detection of atmospheric
components.
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All dense objects emit blackbody radiation at their
characteristic Temperature T

Much of a person’s energy is radiated away in the form of infrared energy.
Some materials are transparent to infrared light, while opaque to visible
light (note the plastic bag). Other materials are transparent to visible
light, while opaque or reflective to the infrared (note the man’s glasses).
Image: NASA/IPAC.

Online Simulator of Planck’s Blackbody Law

Planck Blackbody spectrum simulator (link in text & image)

Useful relations

▶ Wien’s Law: (𝜆𝑇)max power =2897.8𝜇m × K
▶ Emissivity: ratio of the radiation emitted by an object and the

radiation emitted by a blackbody with the same Area 𝐴 and
Temperature 𝑇, 𝜀 = 𝐸/𝐸black, 0 ≤ 𝜀 ≤ 1

▶ Absorptivity: fraction of the incident radiative flux (irradiation)
absorbed by a surface, 𝛼 = 𝐺abs/𝐺, 0 ≤ 𝛼 ≤ 1

▶ Reflectivity: fraction of the incident radiative flux (irradiation)
reflected by a surface, 𝜌 = 𝐺ref/𝐺, 0 ≤ 𝜌 ≤ 1

▶ Transmissivity: fraction of the incident radiative flux (irradiation)
transmitted through a semi-transparent object, 𝜏 = 𝐺tr/𝐺, 0 ≤ 𝜏 ≤
1

https://javalab.org/en/conduction_en/
https://javalab.org/en/conduction_en/
https://javalab.org/en/conduction_en/
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5.3.1 Applications

Earth-Sun radiative balance

Problem:

The temperature of Earth’s surface is maintained by radiation from the
Sun. Approximating the Sun and Earth as black bodies, show that:

𝑇Earth
𝑇Sun

=

√
𝑅Sun
2𝐷

(5.10)

where 𝑅Sun is the radius of the Sun and 𝐷 the Earth-Sun separation.

Solution:

The Sun emits a power equal to its surface area 4𝜋𝑅2
Sun multiplied by

𝜎𝑇4
Sun. This power is known as its luminosity 𝐿 (in watts):

𝐿 = 4𝜋𝑅2
Sun𝜎𝑇

4
Sun (5.11)

At a distance 𝐷 from the Sun, this power is uniformly distributed over a
sphere with surface area 4𝜋𝐷2, and the Earth is only able to “catch” this
power over its projected area 𝜋𝑅2

Earth. Thus the power incident on Earth
is

power incident = 𝐿

(
𝜋𝑅2

Earth
4𝜋𝐷2

)
. (5.12)

The power emitted by the Earth, assuming blackbody radiation at an
uniform temperature 𝑇Earth, is simply 𝜎𝑇4

Earth, multiplied by the Earth’s
surface area 4𝜋𝑅2

Earth, so that

power emitted = 4𝜋𝑅2
Earth𝜎𝑇

4
Earth. (5.13)

Since Earth is in thermodynamic equilibrium, power emitted = power
incident and one may equate the two above expressions to yield the
desired result.

Doing the numerical application with 𝑅Sun=7 × 108 m, 𝑅Earth=6371 m,
𝐷=1.5 × 1011 m, and 𝑇Sun =5800 K yields 𝑇Earth =280 K, which is just
slightly below the real value of 288 K. If we account that Earth reflects
part of the solar radiation (Albedo/reflectance of 0.306), and that part of
the Earth energy is retained through the greenhouse effect (𝜀 = 0.61), we
obtain the real value.
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Greenhouse effect and Earth’s energy balance

Urban Heat Island Effect
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Urban Heat Island Effect

Urban Heat Island Effect
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Infrared City Views

The effect of the Sun’s illumination of the buildings façades is evident in
the early morning

Infrared City Views

Thermal images taken in a January 2017 heatwave show the impact of
urban heat islands in Melbourne. Taken by an Elizabeth Street heat camera
opposite Queen Victoria Market. Photograph: City of Melbourne.

https://www.theguardian.com/cities/2018/aug/15/what-heat-proof-city-look-like

5.3.2 Radiative Transfer Units

Radiometric and Photometric Units
▶ Radiometry is the study of optical radiation – light, ultraviolet

radiation, and infrared radiation. Photometry, is concerned with
humans visual response to light.

▶ Most common unit in radiometry is the watt (W), which measures
radiant flux (power), while the most common unit in photometry is
the lumen (lm), which measures luminous flux. Radiant intensity
is measured in watts/steradian (W/sr), while luminous intensity
is measured in candelas (cd, or lm/sr).

▶ For monochromatic light of 555 nm, 1 W = 683 lumens. For light at
other wavelengths, conversion depends on the human eye response
to different wavelengths.

▶ Knowledge on the units correspondence can be useful as the
nomenclatures are sometimes mixed.

https://www.theguardian.com/cities/2018/aug/15/what-heat-proof-city-look-like
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Radiometric and Photometric Units (1/3)

Radiometric and Photometric Units (2/3)

Other Useful Units (3/3)

Other Radiative Transfer Variables
▶ Emission coefficient 𝜀𝜈 : Energy spontaneously emitted in one

local coordinate of the gas/plasma. 𝑑𝐸 = 𝜀𝜈𝑑𝑉𝑑𝑡𝑑Ω𝑑𝜈.
▶ Emissivity 𝜖𝜈 : Emission coefficient in massic units, with 𝜀𝜈 =

𝜖𝜈𝜌
4𝜋 .

𝑑𝐸 = 1/4𝜋𝜖𝜈𝜌𝑑𝑉𝑑𝑡𝑑Ω𝑑𝜈.
▶ Emission Cross Section 𝜎𝑒𝑚𝑖(𝜈) : Measure for the probability of

an emission process. 𝜎𝑒𝑚𝑖(𝜈) = 𝜀𝜈/𝑁
▶ Absorption Coefficient 𝛼(𝜈) : Intensity loss for a ray crossing a

distance 𝑙.
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Radiometric Units (R.U.) Photometric Units (P.U.)
Quantity Symb. Units Symb. Units

Wavelength 𝜆 nanometer (nm) 𝜆 nanometer(nm)

Radiant (R.U.) & Q watt-seconds (W s) Q𝑣 lumen-seconds (lm s)
Luminous (P.U.) energy

Radiant (R.U.) & U watt-seconds/m3 U𝑣 lumen-seconds/m3

Luminous (P.U.) energy density (W s/m3) (lm s/m3)

Irradiance (R.U.) & E watts/cm2 (W/cm2) or E𝑣 lux (lx; lm/m2) or
Illuminance (P.U.) watts/m2 (W/m2) footcandle (fc; lm/ft2)

Radiance (R.U.) & L watts/m2/steradian L𝑖 lumens/m2/steradian
Luminance (P.U.) (W/(m2 sr)) (lm/(m2 sr))
Radiant (R.U.) & I watts/steradian (W/sr) I𝑣 candela (cd; lm/sr)
Luminous (P.U.) intensity

Table 5.1: Radiometric and Photometric
Quantities

▶ Opacity 𝜅(𝜈) : Absorption coefficient in mass units, 𝜅(𝜈) = 𝛼(𝜈)/𝜌.
▶ Absorption Cross Section 𝜎𝑎𝑏𝑠(𝜈) : Measure for the probability of

an absorption process. 𝜎𝑎𝑏𝑠(𝜈) = 𝛼(𝜈)/𝑁
▶ Optical Depth 𝜏𝜈 : Defines if a medium is optically thin (𝜏𝜈 < 1),

or optically thick (𝜏𝜈 > 1). 𝑑𝜏𝜈 = 𝛼(𝜈)𝑑𝑙.
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Chapter Summary

▶ Conduction Heat Transfer

• Fourier Law (1D): d𝑄/d𝑡 = −𝑘𝐴 × d𝑇/d𝑥
• Thermal conductivity for different materials

▶ Convective Heat Transfer

• d𝑄/d𝑡 = −ℎ𝐴 × Δ𝑇
▶ Radiative Heat Transfer

• Properties of a photon
• Planck’s Law: 𝐸 = ℎ𝜈
• Light-Matter interaction; Radiative emission and absorp-

tion
• The electromagnetic spectrum
• Planck’s Blackbody Law:
𝐿𝜈(𝑇) = 2ℎ𝜈3/𝑐2 [exp (−ℎ𝜈/𝑘𝐵𝑇) − 1]−1

* Emissivity, Absortivity, Reflectivity, Transmissivity.
* Wien’s Law, 𝜆𝑚𝑎𝑥𝑇 = 2897.8𝜇m K
* Stephan-Boltzmann’s Law: 𝐸 = 𝜀𝜎𝑇4

Recommended readings
▶ Blundell, “Concepts in Thermal Physics” [5], for Chapters 23 and

37.4 discussing radiative transfer and Global Warming due to
Greenhouse gases like CO2.

▶ Cengel, “Heat Transfer” [6], Chapters 1, 2, 3, and 11, providing theo-
retical support on heat transfer phenomena (conduction, convection
and radiation).



5 Heat Transfer 94

Thermodynamics and Culture: Relevant Works

In Chapter 5 we have discussed the mechanisms of heat transfer, and we
have discussed the phenomena of “Urban Heat Islands” where it has
been pointed out that the design of modern cities with tall skyscrapers,
although very efficient from an urban planning point of view, nevertheless
fosters challenges linked to the excessive heating of city centers, which
have a shape essentially akin to a giant heat dissipator (see figure 5.2)

The aesthetics of urban environments with tall skyscrapers are the
inspiration of countless works in the cyperpunk genre, however we will
go a little further back in time to a movie from the silent era:

Fritz Lang, “Metropolis”, 1927,

Metropolis is a German Science Fiction movie premiered in 1927, and
directed by the Austrian film director Fritz Lang. It was, at the time,
the most expensive ovie ever filmed in Europe, and is considered in the
expert movies community as one of the masterpieces of the German
expressionism movement. It was also a masterpiece ahead of its time,
since the movie underlying themes remain relevant in modern days.

In this futuristic urban dystopia, taking place in 2026 (100 years after
the movie production), wealthy industrials govern the great city of
metropolis from towering skyscrapers, while workers constantly toil on
the city underground to operate the machines who serve the city.

Freder, the wealthy son of the city supervisor, and Maria, a matriarch
figure to the working class try to overcome the divisions that separate
the different social classes of the city and act as mediators which may
bring the higher and working classes to put aside their divisions and
being capable of working hand in hand. The message of the movie is
handled in the final intertitle: “The mediator between the head and the
hands must be the heart”.
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We now return to our macroscopic world, ending (for now!) our travels
in the strange and wonderful microscopic world.

To properly anchor ourselves in this new world, let us transition to a
macroscopically adapted Perfect Gas Law (reminder: see section 3.3 ):

𝑝𝑉 = 𝑁𝑘𝐵𝑇 → 𝑝𝑉 = 𝑛𝑅𝐵𝑇,

where {
𝑁[particles]→ 𝑛[mol] with 𝑁 = 𝑛 × 𝑁𝐴

𝑘𝐵[J/K]→ 𝑅[J/K mol] with 𝑅 = 𝑘𝐵 × 𝑁𝐴

We may now represent this equation on several diagrams:
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𝑉

𝑝

0

𝑇1
𝑇2

𝑇3
𝑇 [◦C]

𝑝

−273.15 0 100

𝑉1

𝑉2

𝑉3

p-V diagram p-T diagram p-v-T diagram

or in other terms:

6.1 Phase Changes

Let us now return to the Real Gas Equation (van der Waals equation, see
Lecture 4).

The van der Waals equation is a simple mathematical model which is yet
capable of reproducing the transitions experimentally observed between
the vapor and liquid phases, predicting the so-called “critical zone” (the
zone below a given “critical Temperature 𝑇𝑐”, see Fig. 6.1, left side.

𝑝

𝑉

𝑇 < 𝑇c

𝑇c

𝑇 > 𝑇c

𝑉c

𝑝c

𝑇c

liquid
gas

𝑝

𝑉

Figure 6.1: van der Waals Isotherms

In the critical zone, the system is unstable, and a thermal equilibrium
cannot exist. The physical justification for this is considerably complex,
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requiring further notions of thermodynamics which are not addressed
in this unit. The interested reader may refer to Blundell, section 26.1.

The end result is that in such a critical zone, the transition from a smaller
volume (𝐴) towards a higher volume (𝐵) will occur horizontally, at
constant 𝑇 (isotermically), see Fig. 6.1, center. This corresponds to a phase
change, see Fig. 6.1, right side.

The analogy to a boiling process is evident:

Figure 6.2: Boiling Process. Right figure
adapted from Cengel, Thermodynamics,
and Engineering Approach, 5th Ed.

When we boil a substance, we are increasingly releasing more particles of
gas, which will occupy more space (the Volume increases). This process
occurs at constant Temperature 𝑇 =100 ◦C at atmospheric pressure.

Although the van de Waals equation qualitatively reproduces the liquid-
vapor phase transition, for most substances, the relationships between
their thermodynamic properties are too complex to be described by
simple equations.

The thermodynamic properties of a substance are usually presented
in the form of tables of thermodynamic properties
(see Appendix C in Book 2)
The students should familiarize themselves with such tables and learn
how to use them to infer the thermodynamic properties of a substance
at arbitrary (𝑝, 𝑇) pairs. This is done in a separate document.

Some definitions (see also Fig. 6.2, right side):

▶ Compressed/Subcooled Liquid: A liquid which is not about to
vaporize (ex: 𝑝 = 1atm, 𝑇 = 20 ◦C, between 1 and 2 in Fig. 6.2)

▶ Saturated Liquid: A liquid which is about to vaporize (ex: 𝑝 = 1atm,
𝑇 = 100 ◦C, 2 in Fig. 6.2)

▶ Saturated Liquid–Vapor: A mixture of liquid and vapor phases
(ex: 𝑝 = 1atm, 𝑇 = 100 ◦C, 3 in Fig. 6.2)

▶ Saturated Vapor: A vapor which is about to condense (ex: 𝑝 = 1atm,
𝑇 = 100 ◦C, 4 in Fig. 6.2)

▶ Superheated Vapor: A vapor which is not about to condense (ex:
𝑝 = 1atm, 𝑇 = 120 ◦C, between 4 and 5 in Fig. 6.2)
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6.2 Three-phase diagrams

If we now include the solid phase, we obtain two different kinds of 𝑝 −𝑉
plots, depending on whether the substance contracts upon freezing (most
of the substances), or whether the substance expands instead (like the
case of liquid water-ice transition). The corresponding 𝑝 −𝑉 diagrams
are presented if Fig. 6.3.

Figure 6.3: 𝑝−𝑉 phase diagram for a sub-
stance that contracts upon freezing (left)
and a substance that expands upon freez-
ing (right). Adapted from Cengel, Thermo-
dynamics, and Engineering Approach, 5th
Ed.

We may also produce a 𝑝 − 𝑇 diagram:

Figure 6.4: 𝑝−𝑇 phase diagram for a pure
substance. Adapted from Cengel, Thermo-
dynamics, and Engineering Approach, 5th
Ed.

... or full 3D 𝑝 −𝑉 − 𝑇 diagrams

Figure 6.5: 𝑝 −𝑉 − 𝑇 phase diagram for
a substance that contracts upon freezing
(left) and a substance that expands upon
freezing (right).
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6.3 The 1st Law of Thermodynamics

1st Law of Thermodynamics: Energy conservation principle

Historical Note: This principle was independently formulated by Julius
Robert von Mayer in 1842 and James Prescott Joule in 1843. This was
the cause of great drama among both researchers and their respective
supporters, and a wealthy dose of “strongly-worded letters” being ex-
changed. Mayer is defeated in this peculiar competition, and this defeat,
compounded with other misfortunes that assailed him at the same time
drove him to suicide in the best tradition of the XIXth Century. But even
his 1850 suicide attempt ends up in failure, as his deliberate fall from
the 3rd floor of a building only results in both his legs getting broken.
He latter spent several years (1851–1853) in a number of insane asylums.
In a noted 1858 lecture, German chemist Justus Liebig is said to have
described Mayer as “the father of the greatest discovery of the century”,
but also to have announced incorrectly that Mayer had died ignomin-
iously in a mental asylum due to vilification; when Mayer heard of this
and protested that such eulogies were premature, his complaints were
ignored. In the meantime, Joule was crowned as the Master of the Energy
Conservation Principle. This was due to a variety of factors, however, the
fact that his experiments were more rigorous and better conceived than
those of Mayer undoubtedly played an important role in this.

Figure 6.6: Joule Calorimeter, 1849

Fig. 6.6 shows Joule’s experiment. Joule was the self-taught Son of a
Brewer, and a meticulous experimentalist to boot. The success of Joules
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experiment was partly due to his proficiency at designing and operating
extremely accurate thermometers, with whom he could measure tem-
perature variations as small as 0.003 ◦C. In Joule’s experiment, a mass
would fall down by a certain height, turning a paddle weal inside an
insulated water enclosure. This mechanical energy is dissipated into heat
through friction forces, hence increasing the temperature of the water by
a very small amount.

The necessary value for raising water temperature by 1 ◦C, as determined
by Joule, was 4.157 J/g, remarkably close to the actual value of 4.186 J/g1, 1: for water at 15 ◦C
with a relative discrepancy of only 0.7% !

Coming back to the definition of the 1st Law, this Law has no possible
demonstration, it is a fundamental principle which may not be
inferred from any other Law.

(Truly, we could have had expressed this Law immediately in the 1st

Lecture, together with the Zero Law)

The rigorous expression for this Law determines that:
“The variation (increase or decrease) of the total energy of a system
during a process corresponds to the difference of energy that enters
the system and the energy that leaves the system”
This energy may be transferred in three different forms:

▶ Heat transfer 𝑄
▶ Work transfer𝑊
▶ Mass transfer (with its own energy) 𝐸𝑚

For an isolated system, we may not transfer any mass, so only the two
terms 𝑄 and𝑊 apply.

Conventions used in this course:

▶ Heat that enters/exits the system: +/– 𝑄
▶ Work that is received from/is given to the system: +/–𝑊

While all authors agree on the convention for 𝑄, some authors do not
follow the convention 𝑊 , using the opposite signals (–/+ 𝑊). This
is the case for example for the book Serway: Physics for Scientists and
Engineers. The student should use extreme caution when studying
through any thermodynamics book, getting acquainted with the book
conventions beforehanda.
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a Some authors such as Cengel use the subscripts 𝑖𝑛 and 𝑜𝑢𝑡 to refer to the heat 𝑄 and
work𝑊 that enter/leave the system, in a clever way of avoiding any ambiguities

6.4 Work in Reversible processes

Let us assume a fluid in thermal equilibrium enclosed in a piston with
a large amount of sand grains on top of the piston, exerting a certain
gravitic force, counteracted by the pressure of the gas inside the piston.
The piston wall are well insulated, which means that no heat is exchanged
with its surroundings, and friction losses in the piston are also assumed
as being negligible.

This piston is undergoing an an infinitesimal expansion 𝑑𝑥 as an ob-
server removes the sand grains one by one.
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We now remember that the Work𝑊 of a Force F exerted at a distance x,
parallel to F is:

𝑊 = 𝐹 · 𝑥

We may accordingly determine the work performed by the fluid as:

d𝑊 = 𝐹d𝑥 = 𝑝𝐴d𝑥 = 𝑝d𝑉,

(since 𝐴d𝑥 = d𝑉).

We may rigorously write:

d𝑊 ′ = 𝑝d𝑉 (6.1)

This process is reversible as we may place back the sand grains one by
one until we achieve the initial state. We have further used the term ′ in
Eq. 6.1 as d𝑊 is not an exact differential, since it depends on the path
taken.

We now may start reasoning in terms of the 1st Law. Here we have d𝑊 > 0
and d𝑈 < 0 since the system loses energy by performing work on its
surroundings.

We may now define the conditions for a reversible process: PUZZ

1. The process occurs “very slowly”, or in other terms the fluid will
transit though a multitude of thermal equilibrium states, for which
𝑝 and 𝑉 are clearly defined.

2. Friction is negligible.

6.4.1 Irreversible processes
Let us now provide the example of an irreversible process, going back
to the exact piston configuration of the piston previously described
(well-insulated piston without friction losses). This irreversible process
is called The Joule Free Expansion:

→

We consider a well insulated box (e.g. isolated from its surroundings)
with a gas on one side and vacuum on the other side. We then remove
the division, allowing for the gas particles to occupy the empty space.
Here we have a variation of volume d𝑉 for the gas, yet no work is
produced (d𝑊 = 0), and no heat is exchanged with the box surround-
ings dince the box is well insulated (e.g. its walls are adiabatic), and
accordingly d𝑄 = 0. This means that there is no variation of the
energy of the box; d𝑈 = 0.
This may seem a bit puzzling until we consider the microscopic
energy of the particles, 𝜀 = 1/2𝑚𝑣2. The collisions in the box walls
are identical whether the particles are confined in the smaller space or
move in the larger space. They just cross a larger path before hitting
the wall. Accordingly 𝜀 = 𝑐𝑜𝑛𝑠𝑡 and d𝑈 = d ∑

𝜀 = 0
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6.4.2 The many forms of Work
Work performed is a concept not limited to mechanical systems.
Indeed work may assume many different forms:

▶ For closed systems we saw that d𝑊 is the mechanical work due
to volume change:

d𝑊mech = −𝑝d𝑉 (6.2)

where 𝑝 is the Pressure against the moving surface and d𝑊 the
change in Volume.

▶ For a moving charge d𝑞 across a potential difference 𝜙:

d𝑈𝑞 = +𝜙d𝑞 (6.3)

▶ For dielectric systems, the change of electric dipole moment d𝑃
in the presence of an electrical field 𝐸 is associated to a change
of energy

d𝑈el = −𝐸d𝑃 (6.4)

▶ For magnetic systems, the change of magnetic dipole moment
d𝑀 in the presence of a magnetic field 𝐵 is associated to a
change of energy

d𝑈mag = −𝐵d𝑀 (6.5)

▶ For a change of surface area dΣ with an associated interfacial
energy 𝛾 (interfacial energy per unit area)

d𝑈surf = +𝛾dΣ (6.6)

In general, a system may account for all these different forms of Work,
with each term being the product of an intensive variable, and the
differential of an extensive variable (see Lecture 1).
The change in internal energy of such a system is then written as:

d𝑈 = d𝑄 − 𝑝d𝑉 + 𝜙d𝑞 − 𝐸d𝑃 − 𝐵d𝑀 + 𝛾dΣ (6.7)

Getting back to our piston case, we now may integrate Eq. 6.1 to obtain the
work done by a fluid in a reversible process between the initial Volume
𝑉𝑖 and the final Volume 𝑉𝑓 :

𝑊𝑖→ 𝑓 =

∫ 𝑉𝑓

𝑉𝑖

d′𝑊 =

∫ 𝑉𝑓

𝑉𝑖

𝑝d𝑉 (6.8)

We know that each equilibrium state of the system may be represented
by only two variables (𝑝,𝑉), and that the system transits through a series
of equilibrium states (𝑝𝑖 , 𝑉𝑖) which may be represented by one curve
in the plane (𝑝, 𝑉). (Historical Note: This representation, named the
“indicator diagram”, was firstly proposed by James Watt (1736–1819) in
1796.

As inferred from Fig. 6.7,𝑊𝑖→ 𝑓 will depend on the path taken:
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𝑊

𝑝𝑖 , 𝑉𝑖

𝑝 𝑓 , 𝑉𝑓

𝑝

𝑉
Figure 6.7: Indicator diagram (𝑊𝑖→ 𝑓 is
the shaded area)

𝑊

1

𝑝𝑖 , 𝑉𝑖

𝑝 𝑓 , 𝑉𝑓

2
𝑝

𝑉

... and as such the differential is not exact, hence the ′ sign.

Nevertheless, the difference of energies (𝑈 𝑓 −𝑈𝑖) will not depend on the
path taken, and as such there is no state function which represents the
work contained in a system.

Example: We may travel from Shanghai to Beĳing directly, or doing a
detour through Nanjing. If by chance a passenger does this whole trip
asleep, she/he only knows that she/he left from Shanghai (𝑈𝑖) and
arrived at Beĳing (𝑈 𝑓 ). The information about the Work𝑊 of the trip is
lost.

Work delivered and work received

In the diagram above, one needs to distinguish the direction of
the process. For our initial process where Pressure 𝑝 decreases and
Volume 𝑉 increases (𝑝𝑖 , 𝑉𝑖 → 𝑝 𝑓 , 𝑉𝑓 ), we are producing positive
Work, see Eq. 6.8. Now we may choose to go back to the initial state
by increasing Pressure and reducing Volume (𝑝𝑖 , 𝑉𝑖 → 𝑝 𝑓 , 𝑉𝑓 ), and
here we are consuming Work (𝑊 < 0).
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Again, we do not need to take the same path backwards. We may
chose an “easier” path for coming back to (𝑝𝑖 , 𝑉𝑖), than the one taken
for descending to (𝑝 𝑓 , 𝑉𝑓 ), the work put back in the system will be
lower than the one given by the system:

𝑊𝑖→ 𝑓 > −𝑊𝑓→𝑖 (6.9)

and we will have a net work production ∑
𝑊 > 0 by the system

through a full cycle 𝑖 → 𝑓 → 𝑖. In the opposite case, we will have a
net work consumption ∑

𝑊 < 0.
Mathematically we may write:

𝑊 =

∮
𝑝𝑑𝑉

One may notice for a pV diagram that this corresponds to a clock-
wise vs. anticlockwise cycle. This is a very important property for a
thermodynamic system!
For a given thermodynamic cycle:

▶ Net Work𝑊 will be positive if the cycle proceeds in a clockwise
fashion.

▶ Net Work 𝑊 will be negative if the cycle proceeds in a anti-
clockwise fashion.

6.5 Energy change in a Reversible and an
Irreversible expansion: Microscopic
demonstration

Let us now revisit our piston undergoing an expansion. We have previ-
ously shown the difference between a reversible and irreversible process
using the example of removing sand grains from the top of the pis-
ton (hence slowly reducing the gravitic force that counterbalances the
pressure force of the gas) for a reversible process, and the example of
removing a piston barrier between an enclosure with the same gas, and
an enclosure in vacuum, for an irreversible process:

In the first case, the piston is moving (although at a glacial pace with
𝑣 = 0+), and in the second case the piston disappears instantaneously.
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Let us now move to the microscopic world and observe a particle during
its collision with the piston for the reversible process (left) and the
irreversible process (right):

Reversible process

Movement in the piston frame:

Movement in the inertial reference frame:

The velocity vectors are:



−→𝑣𝑝−→
𝑣 𝑖𝑥−→
𝑣 𝑖𝑦



−→0
−→
𝑣 𝑖𝑥 − −→𝑣𝑝−→
𝑣 𝑖𝑦



−→0
−
−→
𝑣 𝑖𝑥 + −→𝑣𝑝−→
𝑣 𝑖𝑦



−→𝑣𝑝
−
−→
𝑣 𝑖𝑥 + 2−→𝑣𝑝−→
𝑣 𝑖𝑦

A B C D

With:

▶ A : Inertial referential; before collision
▶ B : Piston referential; before collision
▶ C : Piston referential; after collision
▶ D : Inertial referential; after collision

Irreversible process

Particle collision prior to piston removal:

The same particle if the piston has vanished before
collision. The particle instead collides with the vessel
wall.

The collision is elastic and in both cases:



−→
𝑣
𝑓
𝑦 =

−→
𝑣 𝑖𝑦−→

𝑣
𝑓
𝑥 = −

−→
𝑣 𝑖𝑥
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If we now compute the particle kinetic energy we
have, in the inertial referential:

▶ 𝐸𝑖 = 1/2𝑚𝑖

[ (
𝑣 𝑖𝑥

)2 +
(
𝑣 𝑖𝑦

)2
]

▶ 𝐸 𝑓 = 1/2𝑚𝑖

[ (
−𝑣 𝑖𝑥 + 2𝑣𝑝

)2 +
(
𝑣 𝑖𝑦

)2
]

Since we know that
(
−𝑣 𝑖𝑥 + 2𝑣𝑝

)2
<

(
𝑣 𝑖𝑥

)2 we
have 𝐸 𝑓 < 𝐸𝑖 , the particle will lose kinetic energy
while colliding with the piston which is moving away.

(Think about the tennis player that may imprint a
velocity change to the tennis ball by modulating the
velocity of the racket)

Summing for all the particles:

𝑈 𝑓 =
∑
𝑛

1
2
𝑚𝑛

(
𝑣
𝑓
𝑛

)2
<

∑
𝑛

1
2
𝑚𝑛

(
𝑣 𝑖𝑛

)2
= 𝑈𝑖

𝑑𝑈 < 0; 𝑑𝑊 > 0

(1st Law)

And the corresponding kinetic energies are:

𝐸𝑖 = 1/2𝑚𝑖

[(
𝑣 𝑖𝑥

)2
+

(
𝑣 𝑖𝑦

)2
]

= 1/2𝑚𝑖

[(
−𝑣 𝑖𝑥

)2
+

(
𝑣 𝑖𝑦

)2
]

= 𝐸 𝑓

Summing for all the particles:

𝑈 𝑓 =
∑
𝑛

1
2
𝑚𝑛

(
𝑣
𝑓
𝑛

)2
=

∑
𝑛

1
2
𝑚𝑛

(
𝑣 𝑖𝑛

)2
= 𝑈𝑖

𝑑𝑈 = 0; 𝑑𝑊 = 0

(1st Law)

If we invoke the equipartition theorem2: 2: with ⟨𝐾⟩ the average particle kinetic
energy

𝑈 = 𝑁 ⟨𝐾⟩

=
1
2
𝑁𝑘𝐵𝑇

=
1
2
𝑛𝑅𝑇

Temperature 𝑇 will decrease for the reversible process but will stay
constant for the irreversible process!

6.6 Specific Heat at constant pressure and
constant volume

Reminder: We have previously defined the heat capacity of a given
substance as the quantity of heat 𝛿𝑄 necessary for raising its temperature
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by Δ𝑇:

𝐶[J/K] = 𝑚[Kg] × 𝑐[J/KgK] =
Δ𝑄

Δ𝑇
,

where 𝑐 is the specific heat of a substance.

For a gas/liquid, this corresponds to the specific heat at constant
pressure.

Boiling water on the stove is a constant
pressure process

Using molar units we may write

𝑛[mol]𝐶𝑝[J/molK] =
Δ𝑄

Δ𝑇
,

or
d𝑄 = 𝑛𝐶𝑝d𝑇 (6.10)

Let us now determine the specific heat at constant volume3.

3: in the assumption of an ideal gas

Since the Volume 𝑉 is constant; d𝑉 = 0 we have𝑊 = 0 (
∫
𝑝d𝑉 = 0).

d𝑈 = d𝑄 −��d𝑊 = 𝑛𝐶𝑣d𝑇

which simplifies to
d𝑈 = 𝑛𝐶𝑣d𝑇 (6.11)

Considering the 1st Law:

d𝑈 = d𝑄 − d𝑊
= d𝑄 − 𝑝d𝑉

Substituting the term d𝑈 by Eq. 6.10, and the term d𝑄 by Eq. 6.12,

𝑛𝐶𝑣d𝑇 = 𝑛𝐶𝑝d𝑇 − 𝑝d𝑉 (6.12)

We will now differentiate the ideal gas law]using the differentiation by [
parts rule for the 𝑝𝑉 term, (𝑢𝑣)′ = 𝑢′𝑣 + 𝑢𝑣′:

𝑝𝑉 = 𝑛𝑅𝑇 →
𝑉d𝑝 + 𝑝d𝑉 = 𝑛𝑅d𝑇

and through rearranging we obtain

𝑝𝑉 = 𝑛𝑅𝑇 →
𝑝d𝑉 = 𝑛𝑅d𝑇 −𝑉d𝑝

Now lets remember that we are working in the scope of a reversible
process, and that there isn’t any heat transfer to the system. It stems from
the 1st Law that

d𝑈 =��d𝑄 − d𝑊

We may also remember that for an ideal gas, and considering the equipar-
tition theorem, the gas energy will only depend from its Termperature 𝑇,
⟨𝐸⟩ = 𝑁/2𝑘𝐵𝑇.

We accordingly write

d𝑊 = − 𝑓 (𝑇)
d𝑊 = 𝑛𝑅d𝑇 −𝑉d𝑝



6 Energy Analysis of Closed Systems and the 1st Law 110

d𝑊 only depends from 𝑇, hence −𝑉d𝑝 = 0, and therefore

d𝑊 = 𝑝d𝑉 = 𝑛𝑅d𝑇

We now may substitute the above relation in Eq. 6.11:

�𝑛𝐶𝑣��d𝑇 =�𝑛𝐶𝑝��d𝑇 −�𝑛𝑅��d𝑇

𝐶𝑝 = 𝐶𝑣 + 𝑅 (6.13)

We now have a very simple relationship correlating the specific heats
at constant pressure and constant volume, for the specific case of an
ideal gas.

6.6.1 Enthalpy
(Text extracted from Schröder, “An introduction to Thermal Physics”,
Oxford, 2021)
Constant-pressure processes occur quite often, both in the natu-
ral world and in the laboratory. Keeping track of the compression-
expansion work done during these processes gets to be a pain after
a while, but there is a convenient trick that makes it a bit easier.
Instead of always talking about the energy content of a system, we can
agree to always add in the work needed to make room for it (under
a constant pressure, usually 1 atm). This work is 𝑝𝑉 , the pressure
of the environment times the total volume of the system (that is, the
total space you would need to clear out to make room for it). Adding
𝑝𝑉 onto the energy gives a quantity called the enthalpy, denoted 𝐻:

𝐻 = 𝑈 + 𝑝𝑉. (6.14)

This is the total energy you would have to come up with, to create
the system out of nothing and put it into this environment (see Fig.
below).. Or, put another way, if you could somehow annihilate the
system, the energy you could extract is not just𝑈 , but also the work
(𝑝𝑉) done by the atmosphere as it collapses to fill the vacuum left
behind.

To create a rabbit out of nothing and place it on the table, the magician
must summon up not only the energy𝑈 of the rabbit, but also some
additional energy, equal to 𝑝𝑉 , to push the atmosphere out of the way
to make room. The total energy required is the enthalpy, 𝐻 = 𝑈 + 𝑝𝑉 .
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Nomenclature

Variables:

▶ 𝐴: Area [m2]
▶ 𝐸: Energy of a system [J]
▶ 𝐹: Force [N]
▶ 𝐸𝑚 : Mechanical Energy [J]
▶ 𝐻: Enthalpy 𝐻 = 𝑈 + 𝑝𝑉 [J]
▶ 𝐾: Kinetic energy [J]
▶ 𝑚: Mass [Kg]
▶ 𝑀: Molar Mass [g/mol]
▶ 𝑁 : Number of particles [-]
▶ 𝑛: Number of moles 𝑛 = 𝑁/𝑁𝑎 [mol]
▶ 𝑝: Pressure [Pa]
▶ 𝑄: Heat [J]
▶ 𝑇: Temperature [K]
▶ 𝑡: Time [s]
▶ 𝑣: Velocity [m/s]
▶ 𝑉 : Volume [m3]
▶ 𝑊 : Work [J]

▶ 𝑥: Length [m]

▶ 𝐶: Heat Capacity [J/K]
▶ 𝑐: Specific Heat of a substance [J/KgK]
▶ 𝐶𝑝 : Molar Specific Heat at Constant Pressure [J/molK]
▶ 𝐶𝑣 : Molar Specific Heat at Constant Volume [J/molK]

Constants:

▶ 𝑘𝐵 = 1.3806488 × 10−23 [J/K]: Boltzmann Constant
▶ 𝑁𝐴 = 6.02214076 × 1023 [mol−1]: Avogadro Number/Constant
▶ 𝑅 = 8.31447 [J/molK]: Universal Gas Constant

Acronyms, subscripts and superscripts

▶ 𝑖: initial
▶ 𝑓 : final
▶ 𝑝: piston
▶ 𝑤: wall
▶ 𝑥: 𝑥 coordinate [m]
▶ 𝑦: 𝑦 coordinate [m]
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Chapter Summary

▶ State diagrams 𝑝 − 𝑉 , 𝑝 − 𝑇 and 𝑝 − 𝑉 − 𝑇 for ideal and real
gases (van der Waals).

▶ State diagrams for substances (solid, liquid, gas).
▶ 1st Law of Thermodynamics: d𝐸 = d𝑄 − d𝑊 ; d𝐸/d𝑡 = ¤𝑄 − ¤𝑊 .
▶ Isothermal Expansion, Joule Free Expansion.

• Work performed by a fluid in a reversible process: 𝑊 =∫
𝑝d𝑉

▶ Heat Capacities at Constant Volume 𝐶𝑣 and Constant Pressure
𝐶𝑝 .

• d𝑄 = 𝑛𝐶𝑝d𝑇
• d𝑈 = 𝑛𝐶𝑣d𝑇
• 𝐶𝑝 = 𝐶𝑣 + 𝑅

Recommended readings
▶ Blundell, “Concepts in Thermal Physics” [5], Chapter 11.
▶ Moran & Shapiro, “Fundamentals of Engineering Thermodynamics”

[7], for Chapters 2.3, 3.2, 3.3, 3.4, 3.9.

Thermodynamics and Culture: Relevant Works

Chapter 6 introduces a key concept of Thermodynamics: the Energy
Conservation Law (1st Law). A relevant literary work is

Terry Pratchett, “The Colour of Magic”, 1983,

a fantasy romance, the first of the Discworld series. The book satirizes
fantastic adventures book tropes in the same way that the book “The
Hitchhiker’s Guide to the Galaxy” satirizes science-fiction book tropes.

We usually say that Magic is impossible in the real worls since it does not
abide by the Laws of Thermodynamics (things appear out of nothing; we
separate heat and cold; there is no conservation of energy, etc. . . ). Terry
Pratchett reconciles Magic and Thermodynamics by stating the Law of
Conservation of Reality: “the effort required for an action using a spell must
be equal to the force required to perform the action using more conventional
means”.

Some examples:

▶ For instance, when a wizard wishes to levitate to the top of the
Tower of Art, he must remove a rock from the tower’s crumbling
top to do so.

▶ Making an illusion of a glass of wine (or anything else) is easy- it’s
just manipulating light- but actually creating a glass of wine takes
much more power. (energy!).

How about that! Magic and Thermodynamics can be compatible!
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6.A Appendix: The Birth of the 1st Law

6.A.1 State-of-the-art prior to Mayer and Joule

Prior to Mayer and Joule, the caloric theory, which held that heat could
neither be created or destroyed had dominated thinking in the science of
heat since introduced by Antoine Lavoisier in 1783 [1].

This theory had already been questioned, even prior to Mayer and Joule,
most notably following the observations of Benjamin Thompson, Count
Rumford, regarding frictional heat generated by boring cannon at the
arsenal in Munich, Bavaria, circa 1797. Rumford immersed a cannon
barrel in water and arranged for a specially blunted boring tool. He
showed that the water could be boiled within roughly two and a half
hours and that the supply of frictional heat was seemingly inexhaustible
[2].

6.A.2 The 1st Law of Thermodynamics: Original
publications by Mayer and Joule

The First Law of Thermodynamics was independently formulated by
Julius Robert von Mayer in 1842 and James Prescott Joule in 1843 in a series
of articles and reports that firstly described the concept of equivalence of
Heat and Mechanical Energy.

▶ The 1842 article from Julius Robert von Mayer, originally published
on the German journal “Annalen der Chemie” (Ref. [3]), and later
translated to English in 1862, in the British journal “Philosophical
Magazine” (Ref. [4]). Here Mayer put forward the idea that heat
and work are equivalent.

▶ The 1843 article from James Prescott Joule, initially rejected by the
“Royal Society” and subsequently published in the British journal
“Philosophical Magazine” (Ref. [5])4. 4: By 1840–1841 Joule had already at-

tained a crude understanding on the rela-
tion between current, electric resistance
and heat generation [6], owing to its prior
experiments which led to the discovery
of the so-called “Joule effect” in electricity
[7].

6.A.3 Quantitative Determination of the Mechanical
Equivalent of Heat

▶ In his booklet “Die Organische Bewegung im Zusammenhang mit
dem Stoffwechsel” (The Organic Movement in Connection with the
Metabolism, Ref. [8]) Mayer proposes a numerical value of the me-
chanical equivalent of heat: at first as 365 kgf m/kcal (3.579 kJ/kcal),
later as 425 kgf m/kcal (4.168 kJ/kcal).

▶ The first attempts by Joule at measuring the mechanical equiv-
alent of heat were met with a large scatter of the predicted val-
ues (from 587 ft lbf/Btu to 1040 ft lbf/Btu, corresponding to 3.161–
5.600 kJ/kcal, see Ref. [5]) making it impossible to establish the
proportionality between mechanical work and heat production
[6]. Within the course of a few years, he was able to significantly
improve his famous paddle-wheel experiment, refining its value
to 819 ft lbf/Btu, corresponding to 4.404 kJ/kcal in 1845 [9], before
achieving a final, more accurate value of 772.692 ft lbf/Btu, corre-
sponding to 4.150 kJ/kcal in 1850 [10], very close to the real value
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(within 0.6%). Joule also provided an estimate of the value for the
mechanical equivalent of heat of 1034 ft lbf/Btu from Thompson’s
publication [2]. This has been criticised on the grounds that Thomp-
son’s experiments lacked systematic quantitative measurements.

▶ The modern values are 4.184 kJ/kcal (426.6 kgf m/kcal) for the
thermochemical calorie and 4.1868 kJ/kcal (426.9 kgf m/kcal) for
the international steam table calorie.

6.A.4 State-of-the-art for Steam Engines in 1850

Thermodynamics is a rather unique discipline in the sense that its work-
ing principles were experimentally discovered and developed to a great
refinement before even most of the theoretical framework was available.

So what was the state-of-the-art for steam engines at the time that some-
thing as fundamental for Thermodynamics as the 1st Law was discovered?
Answer: The Jenny Lind locomotive.

The Jenny Lind (named after one of the first worldwide famous music
stars, the Swedish Opera singer Jenny Lind) was built in 1847 and was
the first mass-produced locomotive. With a tractive effort of 28.36 kN (or
2.9 Ton). This locomotive had a great degree of sophistication, specially
taking into account that very little was known of the theoretical basis of
Thermodynamics at the time5. 5: Not quite true actually. As we will

see in the extra lecture about the history
of thermodynamics, a few concepts of
this discipline were already quite ma-
ture, although the foundations were still
lacking!
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9.1 Examples of Thermodynamic Processes

9.1.1 Isobaric Process (constant pressure)

𝑝 = 𝑐𝑜𝑛𝑠𝑡. This process is reversible.

𝑊

𝑝1, 𝑉1 𝑝2, 𝑉2𝑝

𝑉

Figure 9.1: Isobaric process; 𝑝𝑉 diagram

𝑊𝑖→ 𝑓 = 𝑝

∫ 𝑉𝑓

𝑉𝑖

d𝑉 = 𝑝(𝑉𝑓 −𝑉𝑖)
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Example: Vaporization of water at constant pressure 𝑝 = 𝑐𝑜𝑛𝑠𝑡.

For the process 𝑖 → 𝑓 , we heat the water and move the piston upwards.
We may write for 𝑚 grams of water:

Δ𝑈 = 𝑄 −𝑊 = 𝑚𝜆𝑣𝑎𝑝 − 𝑝(𝑉𝑣𝑎𝑝 −𝑉𝑙𝑖𝑞),

with 𝜆𝑣𝑎𝑝𝑜𝑟 the latent heat of vaporization for 1 g of water.

9.1.2 Isochoric Process (constant volume)

𝑉 = 𝑐𝑜𝑛𝑠𝑡. This process is reversible.

𝑝1, 𝑉1

𝑝2, 𝑉2

𝑝

𝑉
Figure 9.2: Isochoric process; 𝑝𝑉 dia-
gram

𝑊𝑖→ 𝑓 =

∫ 𝑉𝑖

𝑉𝑖

𝑝d𝑉 = 𝑝(𝑉) ×�����:0
(𝑉𝑖 −𝑉𝑖) = 0
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Example: Heating of a gas in a closed volume (𝑉 = 𝑐𝑜𝑛𝑠𝑡.)

9.1.3 Adiabatic Process (without heat transfer)

Without heat transfer.

𝑄 = 0 ⇒ Δ𝑈 =��7
0

𝑄 −𝑊 → 𝑈 𝑓 −𝑈𝑖 = −𝑊𝑖→ 𝑓

The process may be reversible or irreversible! If the process is re-
versible:

𝑊𝑖→ 𝑓 =

∫ 𝑉𝑓

𝑉𝑖

𝑝d𝑉

Example: Adiabatic compression

▶ For the process 𝑖 → 𝑓 : Adiabatic compression

𝑊𝑖→ 𝑓 < 0 → Δ𝑈 > 0 and usually* *: Light gases like H2 and He have the
opposite behavior. This is dangerous in
the case of H2 because when you expand
the gas from a bottle it heats instead:
H2 + heat + air = BOOM!

𝑇𝑓 > 𝑇𝑖 : the gas heats

▶ For the process 𝑖 ← 𝑓 : Adiabatic expansion

𝑊𝑓→𝑖 > 0 → Δ𝑈 > 0 and usually* 𝑇𝑓 > 𝑇𝑖 : the gas cools
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Note: The adiabatic expansion is dif-
ferent from the Joule free expansion
(𝑊 = 0; 𝑄 = 0; Δ𝑈 = 0).9.1.4 Isothermal Process (constant temperature)

𝑇 = 𝑐𝑜𝑛𝑠𝑡.

𝑊

𝑝𝑖 , 𝑉𝑖

𝑝 𝑓 , 𝑉𝑓

𝑝

𝑉
Figure 9.3: Isothermal process; 𝑝𝑉 dia-
gram

For an ideal gas𝑈 = 𝑈(𝑇), therefore Δ𝑈 = 0 → d′𝑄 = d′𝑊

Any energy that enters as heat is converted to work.

9.2 Reversible Processes for an Ideal Gas

We will now restrict ourselves to the case of an ideal gas1 1: Not a very harsh restriction... We know
that the ideal gas law stands for all the
usual temperature and pressure ranges
of most thermodynamic machines

, (𝑝𝑉 = 𝑛𝑅𝑇).
We will also consider all processes into consideration to be reversible.

9.2.1 Isothermal process

𝑇 = 𝑐𝑜𝑛𝑠𝑡. ⇒ 𝑛𝑅𝑇 = 𝑐𝑜𝑛𝑠𝑡.

𝑝𝑉 = 𝑐𝑜𝑛𝑠𝑡. (9.1)

9.2.2 Adiabatic process

d𝑄 = 0; d𝑈 = d′𝑄 − d′𝑊 ⇒ d𝑈 = −𝑝d𝑉

Since d𝑈 = 𝑛𝐶𝑣d𝑇 (see Lecture 6), we have:

−𝑝d𝑉 = 𝑛𝐶𝑣d𝑇
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We now differentiate2 2: as usual, using the product rule
(𝑢𝑣)′ = 𝑢′𝑣 + 𝑢𝑣′

𝑝𝑉 = 𝑛𝑅𝑇

𝑉d𝑝 + 𝑝d𝑉 = 𝑛𝑅d𝑇
𝑉d𝑝 = −𝑝d𝑉 + 𝑛𝑅d𝑇

= 𝑛𝐶𝑣d𝑇 + 𝑛𝑅d𝑇
= 𝑛(𝐶𝑣 + 𝑅)d𝑇
= 𝑛𝐶𝑝d𝑇

= 𝑛𝐶𝑣d𝑇
𝐶𝑝

𝐶𝑣

= 𝑛𝐶𝑣d𝑇︸  ︷︷  ︸
−𝑝d𝑉

𝛾

𝑉d𝑝 = −𝑝d𝑉𝛾

with 𝛾 = 𝐶𝑝/𝐶𝑣 .

We may rearrange the above expression to:

d𝑝
𝑝

= −𝛾d𝑉
𝑉

(9.2)

For an ideal gas, 𝛾 will be independent from Temperature in our range
of application; roughly 𝑇 = [100 − 2000 K] (see Lecture 3, section 3.1.1,
boxed).

We recall the equipartition theorem:

𝐸 =
𝑁

2
𝑘𝐵𝑇 ⇒

d𝐸
d𝑇

= 𝐶𝑣 =
𝑁

2
𝑘𝐵

(
or 𝐶𝑣 =

𝑁

2
𝑅 in molar units

)
𝛾 =

𝐶𝑝

𝐶𝑣
=
𝐶𝑣 + 𝑅
𝐶𝑣

=

𝑁+2
2 𝑅

𝑁
2 𝑅

=
𝑁 + 2
𝑁

𝛾 =
𝑁 + 2
𝑁

(9.3)

▶ For a monoatomic gas with 𝑁 = 3 degrees of freedom (𝑥, 𝑦, 𝑧):

𝛾 =
5
3

(9.4)

▶ For a diatomic gas with 2 additional degrees of freedom (unfrozen
at about 𝑇 = 2− 90 K), and assuming that vibrations remain frozen
up until about 𝑇 = 2000 K, we have 𝑁 = 5 and:

𝛾 =
7
5

(9.5)

If we integrate Eq. 9.2, assuming 𝛾 is constant:∫ 𝑝0

𝑝

d𝑝
𝑝

= −𝛾
∫ 𝑉0

𝑉

d𝑉
𝑉
⇒ ln

(
𝑝

𝑝0

)
= −𝛾 ln

(
𝑉

𝑉0

)
= ln

(
𝑉

𝑉0

)−𝛾
= ln

(
𝑉0
𝑉

)𝛾
⇒ 𝑝

𝑝0
=

(
𝑉0
𝑉

)𝛾
⇒ 𝑝𝑉𝛾 = 𝑝0𝑉

𝛾
0 = const. (9.6)
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Figure 9.4: Isotherms and Adiabats

Alternatively we may write:

𝑝𝑉𝛾 = 𝑝0𝑉
𝛾

0 ; 𝑝𝑉 = 𝑛𝑅𝑇; 𝑝𝑉𝑉𝛾−1 = 𝑛𝑅𝑇𝑉𝛾−1

⇒ 𝑛𝑅𝑇𝑉𝛾−1 = 𝑛𝑅𝑇0𝑉
𝛾−1

0

⇒ 𝑇𝑉𝛾−1 = const. (9.7)

Isotherm and adiabat plots at sample temperatures are presented in
appendix for an atomic and a molecular gas.

9.3 Work performed trough Reversible
Processes for an Ideal Gas

9.3.1 Isothermal process

𝑊𝑖→ 𝑓 =

∫ 𝑉𝑓

𝑉𝑖

𝑝d𝑉 =

∫ 𝑉𝑓

𝑉𝑖

𝑛𝑅𝑇

𝑉
d𝑉 = 𝑛𝑅𝑇

∫ 𝑉𝑓

𝑉𝑖

d𝑉
𝑉

= 𝑛𝑅𝑇
[
ln(𝑉𝑓 ) − ln(𝑉𝑖)

]
For an isothermal, reversible process:

𝑊𝑖→ 𝑓 = 𝑛𝑅𝑇 ln
(
𝑉𝑓

𝑉𝑖

)
(9.8)

9.3.2 Adiabatic process

We consider 𝑝𝑉𝛾 = 𝑐1 = const.

𝑊𝑖→ 𝑓 =

∫ 𝑉𝑓

𝑉𝑖

𝑝d𝑉 =

∫ 𝑉𝑓

𝑉𝑖

𝑐1
𝑉𝛾 d𝑉 = 𝑐1

[
𝑉−(𝛾−1)

1 − 𝛾

]𝑉𝑓
𝑉𝑖

=
𝑐1

1 − 𝛾

(
𝑉

1−𝛾
𝑓
−𝑉1−𝛾

𝑖

)
,
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since 𝑐1 = 𝑝𝑖𝑉
𝛾
𝑖
= 𝑝 𝑓𝑉

𝛾
𝑓

:

𝑊𝑖→ 𝑓 =
𝑐1𝑉

1−𝛾
𝑓
− 𝑐1𝑉

1−𝛾
𝑖

1 − 𝛾
=
𝑝 𝑓𝑉

𝛾
𝑓
𝑉

1−𝛾
𝑓
− 𝑝𝑖𝑉𝛾

𝑖
𝑉

1−𝛾
𝑖

1 − 𝛾
=
𝑝 𝑓𝑉𝑓 − 𝑝𝑖𝑉𝑖

1 − 𝛾
.

For an adiabatic, reversible process:

𝑊𝑖→ 𝑓 =
−

(
𝑝 𝑓𝑉𝑓 − 𝑝𝑖𝑉𝑖

)
𝛾 − 1

(9.9)

9.4 Limitations of the 1st Law

According to the 1st Law, as long as energy is conserved, any process is
possible. This includes:

▶ A pot with water, with a flame beneath, transferring its energy to
the flame, heating it and cooling the water (to the point that water
may even freeze!).

▶ A marble standing on a surface may have the surface shed some of
its heat (the surface cools), and have this heat transformed in work,
putting the marble in movement. This is the inverse process of a
marble braking to standstill due to friction.

In a general way, the 1st Law allows us to go back on time:

▶ A glass that falls and shatters into pieces may reintegrate itself and
come back to the shelf from where it fell.

▶ The body of a person deceased one month ago may reconstitute
itself and the person may come back to life.

▶ etc...

Yet, as we already intuitively know, this cannot happen in real life and
as such, only a small subset of the cases allowed by the 1st Law actually
happen!

(in other terms, most of the processes in our Universe are irreversible
processes, such as friction breaking a marble, a shattering glass, or
Death.)

We need additional Laws to restrict the physically possible cases!

Two different statements were postulated to enforce additional restrictions
to the ones derived from the 1st Law:

9.4.1 The Kelvin-Planck Statement

The Kelvin–Planck statement K postulates that:

“It is impossible to perform a process whose sole effect is removing
heat from a thermal reservoir and producing an equivalent quantity
of work”
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In its graphical form:

An example of this statement is a car. A car engine is known to dissipate
heat besides producing work (plus the heat from the exhaust gases).

(A more detailed explanation on why we cannot fully convert heat to
work is presented in Cengel, Thermodynamics, and Engineering Approach,
5th Ed, pp. 285: “Can we save 𝑄𝑜𝑢𝑡?”.)

Consequences:

▶ Friction losses from mechanical work are irreversible (the inverse
of Joule’s experiment does not occur).
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▶ The Joule free expansion is an irreversible process.

After undergoing a Joule free expansion (process A → B ),
returning to the initial A state implies performing work on the
gas (process C ) to push it back to the original spatial arrangement,
and removing any excess heat if process C was carried out faster
than an isothermal compression (process D ).

The Kelvin-Planck statement forbids a so-called “miracle engine”.

9.4.2 The Clausius Statement

The Clausius statement C postulates that:

“It is impossible to perform a process whose sole effect is transferring
heat from a colder body towards a hoter body”

The Clausius statement forbids a so-called “miracle refrigerator”, which
cools continually without any work input (like plugging the refrigerator
to the electric current).
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9.4.3 Equivalence of both statements

We may demonstrate that both statements are equivalent. To do so we
may demonstrate that a violation of one statement implies the violation
of the other one. Let us consider the two cases:

C → K

Assuming K is false:

▶ We remove heat from the
heat source at𝑇𝐻 and we con-
vert this heat in work

▶ We use this work to power a
refrigerator between 𝑇𝐶 and
𝑇𝐻 which moves heat 𝑄2 to
the source 𝑇1

The only effect is to transfer heat
from 𝑇𝐶 < 𝑇𝐻 to 𝑇𝐻 .
(miracle refrigerator)
we determine C to be false.

K → C

Assuming C is false:

▶ We remove heat 𝑄2 from the
heat sink at 𝑇𝐶 to the heat
source 𝑇𝐻

▶ We use an engine between
𝑇𝐻 and 𝑇𝐶 who gives back
exactly 𝑄2 to the heat source
(which is in this case the heat
sink)

The only effect is to convert 𝑄1-𝑄2
into work.
(miracle engine)
we determine K to be false.

9.5 Heat Engines and Refrigerators

9.5.1 Heat Engine

A Heat Engine is a machine that produces work from heat, operating in
a cyclical fashion.

From the Kelvin–Planck statement, we know that this is impossible to
achieve with only a heat source. We need at least two thermal reservoirs
at different temperatures, or in other terms we need a heat source at
temperature 𝑇𝐻 and a heat sink at temperature 𝑇𝐶 (𝑇𝐻<𝑇𝐶).

▶ 𝑄𝐻 : Heat supplied to the system by the heat source on each cycle
▶ 𝑄𝐶 : Heat supplied by the system to the heat sink on each cycle

1st Law: In a cycle: W = 𝑄𝐻 −𝑄𝐶 .

𝑄𝐶 > 0 (since we need the heat sink so as not to violate the Kelvin–Planck
statement K ). Accordingly W < 𝑄𝐻 .
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𝑄𝐶 is rejected heat that is not put to any use (it is either dissipated into
the atmosphere or taken away by the condenser cooling water. We may
note that this rejected heat may still be useful in an industrial process.
Think about the many processes that need heat to function! Many times,
thermal power plants (fueled by coal, oil or gas) have adjacent factories
that make use of such rejected heat in many diverse processes. This is
called Co-generation.

We may now define the efficiency of a heat engine as:

𝜂 =
W
𝑄𝐻

=
𝑄𝐻 −𝑄𝐶

𝑄𝐻
= 1 − 𝑄𝐶

𝑄𝐻
(9.10)

9.5.2 Refrigerator

A refrigerator is essentially a heat engine working in the reverse direction
(anticlockwise).

𝑄𝐻 = W+𝑄𝐶 since we need to add work to the system (W > 0 so as not
to violate the Clausius statement C ).
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A refrigerator will use a working fluid with a high latent heat of vaporiza-
tion (so that it may transfer large quantities of heat). It is also important
that the working fluid be capable of vaporizing at low pressure and
condensing at high pressure so that it may vaporize at 𝑇𝐶 < 𝑇𝐻 at which
it condenses.

The efficiency (also called “Coefficient Of Performance” – COP) of a
refrigerator is the ratio of the heat 𝑄𝐶 extracted from the cold source and
the input work W:

𝜀 =
𝑄𝐶

W
(9.11)

Note that the efficiency of a Heat Engine is mandatorily 0 ≤ 𝜂 ≤ 1,
however the efficiency/COP 𝜀 of a refrigerator may be larger than 1 (and
it usually is).

9.5.3 Heat Pumps

If we look more carefully at the working principle of a refrigerator, we
may notice that it represents a quite versatile heat transfer machine, since
it is used to remove heat from a given source, and to move it to another
sink. We may therefore be interested either in removing heat from a
system and flush it to the outside, or instead, in putting heat into a system
by taking it from the outside. This is the principle of a heat pump, which
is commonly used for heating houses.

Using a heat pump for cooling implies placing the evaporator inside the
house, whereas using it for heating implies placing the condenser inside
the house. Schematically we have:

Cooling mode:

Efficiency: 𝜀 =
𝑄𝐶

W
𝑄𝐶 = 𝑄𝑜𝑢𝑡

Heating mode:

Efficiency: 𝜀 =
𝑄𝐻

W
𝑄𝐻 = 𝑄𝑖𝑛

We note that the circuit of a heat pump might be cleverly designed so as
to allow for the pump to work reversibly, or in other terms, by simply
switching the direction of the fluid. A more detailed description of a
reversible heat pump is presented as supplementary material.
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9.6 The Carnot Cycle

This an idealized cycle originally proposed by the French Engineer Sadi
Carnot (1796–1832) in 1824.

Carnot was concerned with the design of good steam engines, realising
that French designs had fallen behind the dominance of British designs
after the Napoleonic wars. Carnot was willing to help France achieve
a more efficient utilization of steam through more advanced engine
designs.

The genius of Carnot’s approach was his consideration of a highly ideal-
ized process, delving into its physical essence, unlike British engineers
who had up to then resorted to a more specific an practical approach,
arguing about actual running conditions of steam engines, as well as the
merits of low and high-pressure engines, with single or multiple pistons.

The key idea of Carnot was to consider a fully reversible cycle which
would incur as little waste/losses as possible. This included:

▶ Heat absorption 𝑄𝐻 from the Hot Source to be carried out without
heat losses. This means that there may not be any heat conduction
involved (reminder: ¤𝑄 = 𝑘𝐴(𝑇𝐻 − 𝑇𝐶)/𝐿 = 0). This only means
to achieve this constraint is to have Δ𝑇 = 0, and the heat of the
source needs to be absorbed with the engine maintaining the same
temperature than the source (Isothermic Process). This may only
be achieved conceptually, since in practice this means that the
process will take an infinite time 𝑡 →∞ to conclude. You have to
raise very slowly the temperature of your heat source to ensure
that no temperature gradient with your engine occurs.

▶ Heat release𝑄𝐶 to the Cold Sink has to be carried out isothermically
for the same reasons.

▶ For the parts of the cycle where there is a transition between the Hot
Temperature 𝑇𝐻 and the Cold Temperature 𝑇𝐶 , no heat exchange
should equally occur. The only possible way to achieve this under
the required conditions (𝑇 ≠ 𝑐𝑜𝑛𝑠𝑡. and ¤𝑄 = 0) is to consider a
Reversible Adiabatic Process3 3: why can’t we consider an adiabatic

process also for the heat exchange part
of the process? Answer: because an adia-
batic process by definition implies that
there cannot be any heat exchange!

where there is no heat exchange
(typically a compression or expansion sufficiently fast that there is
no time for such a process. Theoretically speaking, it would have
to be an infinitely fast process 𝑡 → 0 to achieve these idealized
conditions).

This Carnot cycle is presented in detail in Fig. 9.5.

Carnot’s Theorem:
“No machine which operates between a given Hot Source and a given Cold
Sink has an efficiency higher than a Carnot Engine. All the Carnot Engines
that operate between the same sources have the same efficiency.”

9.6.1 Efficiency of a Carnot Machine

Let us consider all the 4 steps (not in order) of the Carnot cycle:
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Figure 9.5: Carnot Cycle

▶ 𝐴→ 𝐵 : Isothermal Process, Ideal Gas
𝑇 = 𝑐𝑜𝑛𝑠𝑡. → 𝑈 = 𝑈(𝑇) → Δ𝑈 = 0 → 𝑊 = 𝑄

𝑄𝐻 = 𝑛𝑅𝑇𝐻 ln
(
𝑉𝑏
𝑉𝑎

)
(9.12)

▶ 𝐶 → 𝐷 : Isothermal Process, Ideal Gas
𝑇 = 𝑐𝑜𝑛𝑠𝑡. → 𝑈 = 𝑈(𝑇) → Δ𝑈 = 0 → 𝑊 = 𝑄

𝑄𝐶 = 𝑛𝑅𝑇𝐶 ln
(
𝑉𝑐

𝑉𝑑

)
(9.13)

▶ 𝐵→ 𝐶 : Adiabatic Process, Ideal Gas
𝑉𝛾−1𝑇 = 𝑐𝑜𝑛𝑠𝑡.

𝑉
𝛾−1
𝑏

𝑇𝐻 = 𝑉
𝛾−1
𝑐 𝑇𝐶 (9.14)

▶ 𝐷 → 𝐴 : Adiabatic Process, Ideal Gas
𝑉𝛾−1𝑇 = 𝑐𝑜𝑛𝑠𝑡.

𝑉
𝛾−1
𝑎 𝑇𝐻 = 𝑉

𝛾−1
𝑑

𝑇𝐶 (9.15)

Adjoining Eqs. 9.14 and 9.15 we have:(
𝑉𝑏
𝑉𝑎

)𝛾−1

=

(
𝑉𝑐

𝑉𝑑

)𝛾−1

⇔
(
𝑉𝑏
𝑉𝑎

)
=

(
𝑉𝑐

𝑉𝑑

)
(9.16)
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The ratio from Eqs. 9.12 and 9.13 is:

𝑄𝐻

𝑄𝐶
=

𝑇𝐻 ln
(
𝑉𝑏
𝑉𝑎

)
𝑇𝐶 ln

(
𝑉𝑐
𝑉𝑑

)
Adjoining Eq. 9.16 we may simplify the above expression to:

𝑄𝐻

𝑄𝐶
=

𝑇𝐻
�
�
��ln

(
𝑉𝑏
𝑉𝑎

)
𝑇𝐶
�
�
��ln

(
𝑉𝑐
𝑉𝑑

) =
𝑇𝐻

𝑇𝐶

since 𝜂 = 1 − 𝑄𝐶

𝑄𝐻
we have:

𝜂𝑐𝑎𝑟𝑛𝑜𝑡 = 1 − 𝑇𝐶
𝑇𝐻

(9.17)

This expression has two corollaries:

▶ 𝜂 < 100% respecting the Kelvin–Planck statement
▶ 𝑇𝐻 > 0 by definition and 𝑇𝐶 > 0 stems from the previous corollary.

It is impossible to reach absolute zero

Demonstration of Carnot’s Theorem:
Considering a reversible Carnot engine R and an hypothetic engine
I with an efficiency 𝜂𝐼 > 𝜂𝑅. The two engines produce the same

quantity of work𝑊 .
Since the Carnot engine R is reversible, we will use the work 𝑊
produced by 𝐼 to place R working as a refrigerator.

We havea:

𝑊 𝐼
𝑜𝑢𝑡 =𝑊

𝑅
𝑖𝑛

=𝑊

𝜂𝐼 =
𝑊 𝐼
𝑜𝑢𝑡

𝑄𝐼
𝐻

>
𝑊𝑅
𝑜𝑢𝑡

𝑄𝑅
𝐻

= 𝜂𝑅

}
then 𝑄 𝐼

𝐻 < 𝑄𝑅
𝐻 (9.18)

𝑊𝑅
𝑜𝑢𝑡 ⇔ =𝑊𝑅

𝑖𝑛 the Carnot machine is reversible
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From Eq. 9.18 if we have 𝑄 𝐼
𝐻
< 𝑄𝑅

𝐻
then 𝑄 𝐼

𝐶
= 𝑄 𝐼

𝐻
−𝑊 < 𝑄𝑅

𝐻
−𝑊 =

𝑄𝑅
𝐶

.
Then it follows that 𝑄𝑅

𝐶
> 𝑄 𝐼

𝐶
.

For this combined machine, for each cycle we would simply have a
“miraculous refrigerator” which would transfer heat𝑄 = 𝑄𝑅

𝐶
−𝑄 𝐼

𝐶
> 0

from the heat sink at 𝑇𝐶 to the heat source at 𝑇𝐻 without any Work𝑊
input from the outside (since the work𝑊 in this case is given from
the left “sub-machine” to the right “sub-machine”.
A machine with efficiency 𝜂 > 𝜂𝑐𝑎𝑟𝑛𝑜𝑡 cannot exist as it violates the
Clausius statement C .
a if 𝐴/𝐵 > 𝐴/𝐶 then 𝐵 < 𝐶
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Nomenclature

Variables:

▶ 𝐴: Area [m2]
▶ 𝐿: Length [m]
▶ 𝑘: Conductivity [W/mK]
▶ 𝑚: Mass [Kg]
▶ 𝑛: Number of moles 𝑛 = 𝑁/𝑁𝑎 [mol]
▶ 𝑁 : Number of particles [-]
▶ 𝑁 : degrees of freedom of a gas [-]
▶ 𝑝: Pressure [Pa]
▶ 𝑄: Heat [J]
▶ 𝑡: Time [s]
▶ 𝑇: Temperature [K]
▶ 𝑈 : Energy of a system [J]
▶ 𝑉 : Volume [m3]
▶ 𝑊 : Work [J]

▶ 𝐶: Heat Capacity [J/K]
▶ 𝑐: Specific Heat of a substance [J/KgK]
▶ 𝜆: Latent Heat [J/Kg]
▶ 𝐶𝑝 : Molar Specific Heat at Constant Pressure [J/molK]
▶ 𝐶𝑣 : Molar Specific Heat at Constant Volume [J/molK]
▶ 𝛾: Specific Heats ratio 𝛾 = 𝐶𝑝/𝐶𝑣 [-]

▶ 𝜂: Efficiency of an Engine 𝜂 =𝑊/𝑄𝑖𝑛 [-]
▶ 𝜀 (COP): Efficiency of a Refrigerator/Heat Pump 𝜀 = 𝑄𝑖𝑛,𝑜𝑢𝑡/𝑊 [-]

Constants:

▶ 𝑁𝐴 = 6.02214076 × 1023 [mol−1]: Avogadro Number/Constant
▶ 𝑅 = 8.31447 [J/molK]: Universal Gas Constant

Acronyms, subscripts and superscripts

▶ 𝐶: cold
▶ 𝐻: hot
▶ 𝑖: initial
▶ 𝑓 : final
▶ 𝑖𝑛: from the outside towards the system
▶ 𝑜𝑢𝑡: from the system towards the outside
▶ 𝑙𝑖𝑞: liquid
▶ 𝑣𝑎𝑝: vapor
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Appendix: Sample Isotherms and Adiabats
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Figure 9.6: Sample isotherms and adia-
bats for an atomic gas (top) and a molec-
ular gas (bottom)
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Chapter Summary

▶ Isobaric (𝑝 =const.); Isochoric (𝑉 =const.); Isothermal
(𝑇 =const.); Adiabatic (𝑄 = 0) processes;

▶ Reversible processes for an Ideal Gas; 𝑝𝑉 =const. for Isothermal;
𝑝𝑉𝛾 =const, 𝑇𝑉𝛾−1 =const. for Adiabatic;

▶ Work performed for reversible Isothermal and Adiabatic pro-
cesses in an Ideal Gas;

▶ Limitations of the 1st Law;

• Clausius and Kelvin-Planck statements;

▶ Heat engine and refrigerator cycles;

• Efficiencies of heat engines, refrigerators and heat pumps;

▶ Carnot cycle;

• Efficiency of a Carnot cycle;
• Demonstration of Carnot’s theorem;

▶ Efficiency of a Carnot Engine:
𝜂 = 𝑊/𝑄ℎ𝑜𝑡 = (𝑄ℎ𝑜𝑡 − 𝑄𝑐𝑜𝑙𝑑)/𝑄ℎ𝑜𝑡 = 1 − 𝑄𝑐𝑜𝑙𝑑/𝑄ℎ𝑜𝑡 = 1 −
𝑇𝑐𝑜𝑙𝑑/𝑇ℎ𝑜𝑡

▶ COPcold of a Carnot Refrigerator:
𝜀 = 𝑄𝑐𝑜𝑙𝑑/𝑊 = 𝑄𝑐𝑜𝑙𝑑/(𝑄ℎ𝑜𝑡 − 𝑄𝑐𝑜𝑙𝑑) = 1/(𝑄ℎ𝑜𝑡/𝑄𝑐𝑜𝑙𝑑 − 1) =
1/(𝑇ℎ𝑜𝑡/𝑇𝑐𝑜𝑙𝑑 − 1)

▶ COPhot of a Carnot Heat Pump:
𝜀 = 𝑄ℎ𝑜𝑡/𝑊 = 𝑄ℎ𝑜𝑡/(𝑄ℎ𝑜𝑡 − 𝑄𝑐𝑜𝑙𝑑) = 1/(1 − 𝑄𝑐𝑜𝑙𝑑/𝑄ℎ𝑜𝑡) =
1/(1 − 𝑇𝑐𝑜𝑙𝑑/𝑇ℎ𝑜𝑡)

▶ COPhot = COPcold + 1

Recommended readings
▶ Blundell, “Concepts in Thermal Physics” [5], Chapters 12, 13.
▶ Moran & Shapiro, “Fundamentals of Engineering Thermodynamics”

[7], Chapter 5.
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Thermodynamics and Culture: Relevant Works

Chapter 9 finally introduces the steam engine, a key invention that
powered the Industrial Revolution and enabled new self-powered vehicles
such as trains. Our selected literary work will accordingly focus on
trains:

Georges–Jean Arnaud, “The Ice Company”, 1980–2005,

La Compagnie des glaces (“The Ice Company”) is a series of 97 post-
apocalyptic science fiction novels by the French writer Georges-Jean
Arnaud, published between 1980 and 2005. It is the longest science fiction
work ever published by a single author.

Its setting is the Earth of the far future, Centuries if not millennia later,
the planet is entirely covered by ice by −50 ◦C, under a thick, opaque
dust layer caused by an accidental explosion of the Moon. Giant wolf
packs roam the frozen wastes, and the mammoth has re-emerged from
the elephant stock. The Red Men, genetically transformed humanoids,
also survive and thrive under such low temperatures. Mankind ekes
out a living in a few handfuls of domed cities governed dictatorially by
railroad companies which effectively rule the world, and connected by
a network of massive armored trains. Their motto: “No life beyond the
rails”.

In this dystopian setting, a bunch of ragtag adventurers are going to set
up in search of the Sun, beyond the companies grasp.



10 A History of Steam

10.1 A History of Steam . . . 137
10.1.1 The Road to Practical,

Science-based Steam
Engines . . . . . . . . . . 143

10.2 Discovering Steam
Power in China, 1840s –
1860s . . . . . . . . . . . . 151

10.1 A History of Steam

A History of Steam

The Power of Steam is has been known for as far back as the antiquity,
more than 2,000 years ago...

Hero/Heron of Alexandria (AD 10–85)

Figure 10.1: 17th Century German depic-
tion of Heron

▶ One of the Greatest Engineers in the history of Mankind. Like
Archimedes.

▶ Lived in Alexandria (in today’s Egypt).
▶ His treatises (Pneumatica, Automata) described in great detail

mechanical inventions by himself and predecessors.
▶ They are the Magnum Opus of Greek Mechanical Science.

Pneumatica and Automata Treatises

Figure 10.2: Pneumatica, translation to
Italian by Bernardino Baldi in 1589

▶ Hero describes in great detail how to build several mechanical and
steam-operated contraptions.

▶ Many copies of his works lost in the turmoil of the fall of the
Western Roman Empire.

▶ Other copies kept safe in abbeys, or translated by Arabs and
reintroduced in Europe during the Renaissance.

▶ The invention of the printing press later led to the dissemination
of many copies.
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Hero’s Book Provides Precise Instructions on How to
Build His Machines

Automaton n°50: Aeolipile with translated instructions

Each Translation Would Propose its Own Schematics
Interpreting the Text

Automaton n°13: 13th Century Illustration

Automaton n°13: 1851 Illustration

▶ Drawings from the 19th Century are a significant improvement
compared to 13th Century drawings.

▶ One of the key contributions of the Renaissance was the introduc-
tion of geometrically based Perspective.

▶ This would prove very important for improving the quality of
technical drawings and better communicating ideas.
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Some Examples of Hero’s Steam Engines

Automaton n°45: Jet stream supporting a
sphere

Automaton n°50: Aeolipile

Automaton n°37: Temple doors opened by
fire on an altar

Automaton n°57: Syringe

...and Other Examples of Hero’s Genius

Automaton n°21: The 1st vending machine in
the world (!)

Automaton n°27: The 1st fire engine in the
world

(only reinvented in the 16th Century)
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The Antikythera Mechanism
▶ Hand-powered Orrery (model of the Solar System). A pinnacle of

Greek Engineering.
▶ Mechanism discovered in 1901 on a shipwreck off the coast of the

Antikythera Island. Built around 200 BC (Estimated).
▶ Mechanism examined with modern technology reveals an astound-

ing level of complexity and craftsmanship which would not be be
rivalled until the astronomical clocks of Richard of Wallingford in
the 14th Century.

Why Didn’t the Industrial Revolution Occur in Ancient
Rome?

Several theories/hypothesis:

▶ Class-structure explanation:

• Affluent and literate upper classes occupied with philosophy
and physical theory, but little concerned with manufactur-
ing/building, which were left to the lower class artisans and
workers.

• Ready availability of slave labor, making steam engines eco-
nomically unappealing beyond being novelties/toys.

▶ Technological explanation:

• Lack of enabling discoveries (many being achieved in the 17th

Century like the concept of vacuum and atmospheric pressure,
or Boyle’s Law). Old inaccurate theories (Aristotelian belief
that motion requires friction or resistance, Horror Vacui, etc...).

• Lack of technological solutions: threaded joints, primitive
metallurgy, no precision manufacturing (critical for pistons).

▶ Epistemological explanation:

• Ideas needed a lot of time to develop and mature and build
up to the rapid pace seen in modern times.

• Invention of the press and scientific method allowed the faster
diffusion of ideas.
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Modern Examples of Inventions Ahead of Their Time

The Concorde and the Space Shuttle once heralded a new era in Flight
and Space Exploration. Yet today, Airplanes or Spacecrafts of this kind
can only be found in Museums!

Why Didn’t the Industrial Revolution Occur in China?
▶ Chinese Science and Technology is a key part of the Universal

history of Science.
▶ Amongst many other things, we may outline the Four Great Inven-

tions

• The Compass: Traced back to the Warring States period (476–
221 BC), when Chinese people utilized a device known as
“south-governor”(sïnán司南) to point in the right direction.
First undisputed magnetized needles in Chinese literature
appear in 1086.

• Gunpowder: Invented in the 9th Century by Chinese al-
chemists searching for an elixir of immortality. First described
in a formula contained in the Taishang Shengzu Jindan Mĳue
(太上祖金丹秘) in AD 808.

• Papermaking: Traced back to AD 105. Cai Lun, official in the
imperial court during the Han dynasty (202 BC – AD 220),
created a sheet of paper using mulberry and other bast fibres

• Printing: Semi-mythical record in the Book of the Southern
Qi, in the 480s of Gong Xuanyi – Gong the Sage (玄宜) who
was the first printer. The first mention of printing is in an
AD 593 imperial decree by the Sui Emperor Wen-ti, who
mandates the printing of Buddhist pictures and scriptures.
Printing becomes widespread during the Tang dynasty (AD
618 – 906).

▶ Many inventions did not take hold

• Example of Printing: Printing presses in the Chinese alphabet
required much more characters than European ones using the
Latin alphabet, making printing less attractive, and precluding
the exchange of ideas and the increase of the population
literacy.

▶ Political, Cultural and Economic Factors

• The Xuande Emperor outlawed the building of ocean-going
ships in 1432, at a time when China was the world leader in
this domain. Portuguese Jorge Álvares is the 1st European to
reach China by Sea first in 1513.

• Large available workforce mades steam engines economically
unattractive.



10 A History of Steam 142

▶ Lack of application of the Scientific Method

• Namely the lack of tradition in making technical drawings.

▶ Yet, Chinese Science and Technology was one of the enabling factors
of the European Industrial Revolution

• Inventions and Innovations arriving in the Renaissance, in the
wake of Marco Polo and Arab traders.

• The compass and gunpowder would be critical discoveries
enabling the Age of Exploration (1st globalization event).

• Later many scientific and cultural exchanges by the hand of
the Jesuits in the 16th–17th Centuries.

...but the First Self-Propelled Vehicle in History might
have been made in China!

Figure 10.3: Ferdinand Verbiest

▶ Ferdinand Verbiest (1623 – 1688)
▶ Flemish Jesuit missionary in China during the Qing dynasty.

Known as Nan Huairen (南仁) in Chinese.

• Accomplished mathematician and astronomer.
• Proved that European astronomy was more accurate than

Chinese astronomy.
• Corrected the Chinese calendar.
• Asked to rebuild and re-equip the Beĳing Ancient Observa-

tory.

▶ Only Westerner in Chinese history to ever receive the honour of a
posthumous name by the Emperor.

Figure 10.4: Ferdinand Verbiest, Astrono-
mia Europaea, 1687

The steam “car” designed by Verbiest in 1672 from an 18th Century print

The car was a toy made for the Kangxi Emperor – a steam-propelled
trolley which was, quite possibly, the first working steam-powered vehicle
(“auto-mobile”). It is not verified by other known sources if Verbiest’s
model was ever built at the time and no authentic drawing of it exists.
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Why Did the Industrial Revolution Occur in Europe?
▶ Continuous innovation after the fall of the Western Roman empire

during Medieval Ages (The “Dark Ages” concept is a myth dispelled
by Historians).

▶ Multitude of small, warring states. Military and economical com-
petition fosters innovation. Continuous wars in Europe from the
Fall of Rome up to 1945.

▶ Religious Wars and the circulation of printed pamphlets increased
literacy in the general population, leading to increased exchanges
of ideas.

▶ This led to the invention of the Scientific Method that brought
down obsolete theories (Aristotelian Theories) and fostered new
ones (Copernician, Galilean, and Newtonian revolutions).

▶ Advances in Physics led to progress in Calculus (logarithms, differ-
entials, integrals).

10.1.1 The Road to Practical, Science-based Steam Engines

Vacuum and Atmospheric Pressure

Figure 10.5: Magdeburg experiment,
1654

▶ Aristotle believed that no void could occur naturally (Horror Vacui)

• Vaccum was inconceivable. No point in trying to create it!

▶ In the 17th Century Descartes defined the philosophically modern
notion of empty space as a quantified extension of volume.

▶ Torricelli’s mercury barometer of 1643 and Pascal’s experiments
both demonstrated a partial vacuum.

First Conceptual Steam Engine

Figure 10.6: Papin’s first design, now in
Louvre. No patent, no working model.

▶ Denis Papin, 1690, publishes design.
▶ Set architecture of all engines through modern day – Piston moves

up and down through cylinder.
▶ Papin nearly invented the internal combustion engine (propelled

by gunpowder) but couldn’t get the valves right to vent air.
▶ Papin’s cylinder is propelled by atmospheric pressure, not steam

pressure – Work done when steam is condensed and resulting
vacuum draws piston down. Work on downstroke.

▶ Papin did not have the mechanical skill to actually build his engine
successfully – Couldn’t machine the cylinder and piston pressure-
tight.
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Great Britain – Where the Steam Engine was Born
▶ 16th–17th Century pre-industrial energy crisis.
▶ World maritime trade, housing construction, mining industry,

brought a sharp rise in deforestation and wood scarcity.
▶ Mineral Coal for heating was an alternative. Plentiful in Great

Britain.
▶ But also, rainy weather. Mine flooding a critical issue.

Steve Hanks, “Waiting in the Rain”, Wa-
tercolours 2014

First Commercial Use of Steam

Figure 10.7: The 1698 Savery Engine

“A new Invention for Raiseing of Water and occasioning Motion to all Sorts of
Mill Work by the Impellent Force of Fire which will be of great vse and Advantage
for Drayning Mines, serveing Towns with Water, and for the Working of all
Sorts of Mills where they have not the benefitt of Water nor constant Windes.”

Thomas Savery, patent application filed in 1698 (good salesman, but he
was wrong – this can only pump water)

▶ Essentially a steam-driven vacuum pump, good only for pumping
liquids.

▶ Max pumping height: ∼10 m. (atmospheric pressure)
▶ Efficiency below 0.1% (compare to horses..)
▶ Why did anyone buy it? What for?
▶ Found immediate use in Scottish and English mines, to pump out

water. Fuel was essentially free. 2000 times less efficient than people
or animals, but they can’t eat coal.

First True Steam Engine

Figure 10.8: Newcomen engine

▶ Thomas Newcomen, 1712, blacksmith.
▶ Copy of 1690 Papin’s engine, piston falling as steam cooled, drawn

down by generated low pressure.
▶ First reciprocating engine: force transmitted by motion of piston.
▶ Can pump water to arbitrary height.
▶ Force only on downstroke of piston.
▶ Very low efficiency: ∼ 0.5%.
▶ Intermittent force transmission.
▶ In early versions, manually operated valves by the “plug man”.

Newcomen’s design is state of the art for 60+ years
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Figure 10.9: Legend that in 1713 a cock
boy named Humphrey Potter, whose
duty it was to open and shut the valves of
an engine he attended, made the engine
self-acting by causing the beam itself to
open and close the valves by suitable
cords and catches (known as the “potter
cord”).

Newcomen Engine Animation

James Watt Steam Engine

Figure 10.10: Watt engine schematic

▶ James Watt patents a new design in 1769, first engines produced
in 1774.

▶ Introduction of a separate condenser leads to higher efficiencies
than in Newcomen’s engine:

▶ There is less wasted heat by removing the need to heat and cool
the entire cylinder.

▶ Watt’s improved engine design allows for steam engines to start
being introduced to factories (previously relying on hydraulic
power) and not just being confined to mines.

James Watt Steam Engine, ctd.

▶ Higher efficiency: 2%
▶ Force only on piston downstroke.
▶ Intermittent force transmission.
▶ No rotational motion.

Figure 10.11: Watt engine
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One Century of Innovations

Improved James Watt Steam Engine

Figure 10.12: Sun and Planet Gear: Con-
verts linear-motion into rotation, mimics
a water wheel

Figure 10.13: The Governor: No need
for electronics controls – a mechanical
system also works!

▶ James Watt improved 1783 design. Albion Mill, London.
▶ Keeps separate condenser.
▶ Higher efficiency: ca. 3%.
▶ Force on both up- and downstroke.
▶ Continuous force transmission.
▶ Rotational motion (Sun and Planet gearing).
▶ Engine speed regulator – No need for fancy electronic controls.

Figure 10.14: James Watt’s rotative steam engine with sun-and-planet gear, original drawing,
1788. In the Science Museum, London.
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Figure 10.15: Side view of James Watt Albion Mill Steam Engine

Watt Engine Animation

credit: https://www.k-wz.de/dampfmaschine/

https://www.k-wz.de/dampfmaschine/
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Double Action Steam Engine
▶ No vacuum-induced downstroke.
▶ Piston pushed by steam on both up- and down-stroke.
▶ Slide valve alternates input & exhaust.
▶ Steam vented at high temperature.

Figure 10.16: Double action piston ani-
mation

▶ Benefits

• Faster cycle: No need to wait for condensation. Can get more
power, higher rate of doing mechanical work.

• Lighter and smaller: No need to carry a condenser around.

▶ Drawbacks

• Inefficiency: Venting hot steam means you are wasting energy.
• High water usage: Since we lose steam, we have to keep

replacing the water.

▶ Applications

• Ground transportation: Enabled the invention of the locomo-
tive.

Figure 10.17: Double action piston loco-
motive
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Triple Expansion Steam Engine
▶ Benefits

• Offsets the drawbacks of the Double Action Engine: Evacuated
Steam may be used to power additional pistons, albeit with
decreasing energy.

• More efficient – Conserves Fuel and Water.

▶ Drawbacks

• Larger and heavier engines (specially if high-power).

▶ Applications

• Steamships

Figure 10.18: Triple expansion steam en-
gine

Assessing and Improving the Efficiency of Steam Engines
▶ Indicator Diagrams.
▶ First invented and patented by Watt.
▶ Practical way to draw a real 𝑝𝑉 cycle and tracking engine ineffi-

ciencies.
▶ Continuous improvement of Steam Engines at a time where the

Fundamentals of Thermodynamics were unknown!

Figure 10.19: Indicator diagrams told en-
gineers how much work a cylinder put
out on each stroke
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Indicator Diagrams

credit: https://acwhyte.droppages.com/

Today’s Modern Steam Engines...

https://acwhyte.droppages.com/
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10.2 Discovering Steam Power in China, 1840s –
1860s

This section borrows heavily from the excellent article: Hsien-Chun
Wang, “Discovering Steam Power in China, 1840s–1860s”, Technology
and Culture, Vol. 51, No. 1, Jan. 2010, pp. 31–54, DOI: https://doi.org/
10.1353/tech.0.0388, which is provided as supplementary material

Steam Engines Introduced to China
▶ The first steamship visited the only port where foreigners were

allowed to live and trade: The city of Guangzhou in southern
China, in 1828.

▶ Steamships would prove instrumental in the British battles with
the Chinese Naval fleet during the 1st Opium War.

▶ At the end of the war in 1842, Qing officials understood the mecha-
nism of steamships.

Figure 10.20: The East India Company
steamship Nemesis (right background)
destroying war junks during the Second
Battle of Chuenpi, 7 January 1841.

The Issue With Deficient Drawings
▶ Chinese designers supplemented their drawings (tu) with scale

models (yang), because they were well aware of the limits of
drawings for communicating instructions.

▶ Unlike their European counterparts, who exploited the power of
drawings in visual communication, Chinese artisans put their trust
in models.

Figure 10.21: 1607 drawing of a human-
powered water pump (left), and 1627
Chinese translation (right). The pump
piston mechanisms were not fully un-
derstood by the translator, making the
drawing incomprehensible.

https://doi.org/10.1353/tech.0.0388
https://doi.org/10.1353/tech.0.0388
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First Successes
▶ Ding Gongchen: 1st Chinese to correctly describe the steam mech-

anism in writing.
▶ His book, Yanpao Tushuo Jiyao (Illustrative treatise on gunnery),

1st printed in 1841, included an essay discussing his experiments
with the steam engine.

▶ Ding asked artisans to build a small locomotive, and a small steam
boat. Unfortunately the craftsmen in Guangzhou, possessing no
tools that build machines, could not build big ships.

Figure 10.22: Ding Gongchen steam
cylinder (left) and steam locomotive
(right).

▶ Hua and Xu build 1st Chinese steamboat in 1863.

• Wooden-hulled with a screw-propeller system.
• Boat cruised for about 1 li (576 meters) before running out of

steam.
• Faulty engine did not include boiler tubes.

▶ Hua and Xu had not quite mastered the technology. Still were able
to harness steam technology by using indigenous skills.

▶ This stresses the importance of machine tools and technical drawing
in modern engineering skills.

The Dissemination of the Steam Engine
▶ The Treaty of Nanking in 1842 ended the First Opium War. The

Qing government agreed to open five ports, allowing foreign
merchants to trade and reside there.

▶ Dockyards for servicing and building steamships started to emerge
in the treaty ports.

▶ Late 1840s, a foreign dockyard was established in Shanghai, and
the number of dockyards soon rose to six in the 1850s and nine in
the 1860s.

▶ By 1860, three docks were operating on Hong Kong Island and
four in the port of Hangpu, near Guangzhou.

▶ British dockyard firm Boyd & Company in Shanghai in 1862.

• Installed steam engines and machine tools such as lathes,
planers, boring mills, rolling mills, a steam hammer, and a
furnace.

• Hailed as one of the best-equipped dockyards in the Far East.
• By 1865, had built seventeen seventy-horsepower small steam-

boats.
• In 1870, the firm built a 1,300-ton steamship, including its

steam engine and boiler.
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• in 1880, Boyd & Company employed 1,000 to 1,400 Chinese
workers, who had the ability to execute the blueprints they
were assigned.

▶ A U.S. dockyard, Farnham & Company, established in 1864, em-
ployed more than 2,000 Chinese during the 1880s.

▶ In other treaty ports such as Xiamen, Fuzhou, Tianjin, and Yantai
(known to foreigners as Chefoo), foreign-owned dockyards and
machine shops were also active.

▶ All these dockyards brought Western engineering skills to China.

▶ Qing government grants permission to establish the 1st Chinese
shipyard in Fuzhou in 1866.

▶ 1st Chinese Steamer built in 1869.
▶ China’s First Engineering School, training both Workers and

Engineers.

...and the Rest is History!

Figure 10.23: Detail from a panoramic
view of the Huangpu River and Bund,
Shanghai.The Shanghai Club is behind
the funnel of the ship. Above the ship’s
stern is the Russell Building. This large
black steamship is flying the P&O house-
flag. It is either the PENINSULAR of 1888
or the ORIENTAL of 1889. At 5000 tons
gross, these were the largest ships vis-
iting Shanghai in the early 1890s. Visits
in the period 1890–91 were ORIENTAL
(January 1890), PENINSULAR (February
1890), ORIENTAL (August 1890), ORIEN-
TAL (March 1891), PENINSULAR (Au-
gust 1891) and PENINSULAR (December
1891).

Figure 10.24: Steamships in Shanghai,
c.a. 1900.
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Concluding Remarks
▶ Rise of Thermodynamics in the 1850s. Machine building no longer

a matter of trial and error. Mathematical skills required.
▶ Need for technical drawings and machine tools.
▶ Need for training large numbers of engineers and financial re-

sources to maintain large industry.
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11.1 The Clausius Inequality

For a Carnot cycle we have seen that:

𝜂 = 1 − 𝑄𝐶

𝑄𝐻
= 1 − 𝑇𝐶

𝑇𝐻

We may accordingly write:

𝑄𝐶

𝑄𝐻
=
𝑇𝐶

𝑇𝐻
⇔ 𝑄𝐶

𝑇𝐶
=
𝑄𝐻

𝑇𝐻
(11.1)

Using the convention of the 1st Law:

W = 𝑄𝐻 −𝑄𝐶 = 𝑄𝑖𝑛 −𝑄𝑜𝑢𝑡

𝑄𝐻 has a negative sign (it is energy that leaves the system) and we
accordingly substitute 𝑄𝐻 by −𝑄𝐻 in Eq. 11.1:

𝑄𝐶

𝑇𝐶
=
𝑄𝐻

𝑇𝐻
⇔ 𝑄𝐶

𝑇𝐶
+ 𝑄𝐻

𝑇𝐻
= 0 ,

which is valid for any reversible process.

Let us now consider an arbitrary reversible cycle 𝛾.

We may represent this cycle as as sum of infinitesimal Carnot cycles:
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The left (orange) and right (yellow) areas are identical (to do so, we pick
the appropriate isotherms and adiabats that allow this equality among the
infinite number of curves available). We then have:𝑊𝑖→ 𝑓 =𝑊𝑖→𝑎→𝑏→ 𝑓 .

We may therefore define a succession of Carnot cycles which correspond
to the exchanged heat 𝑄 and the delivered work 𝑊 in an arbitrary
reversible process 𝛾.

Each Carnot cycle 𝑖 absorbs a quantity of heat d𝑄 𝑖
𝐻

at Temperature 𝑇 𝑖
𝐻

,
and gives back a quantity of heat d𝑄 𝑖

𝐶
at Temperature 𝑇 𝑖

𝐶
:

d𝑄 𝑖
𝐻

d𝑄 𝑖
𝐶

=
−𝑇 𝑖

𝐻

𝑇 𝑖
𝐶

⇔
d𝑄 𝑖

𝐻

𝑇 𝑖
𝐻

+
d𝑄 𝑖

𝐶

𝑇 𝑖
𝐶

= 0

(using the sign convention of the 1st Law)

If we now sum all the cycles 𝑖 we have: (♮ + ♮ + ♮ + · · · )∮
𝛾

𝛿𝑄
𝑇

= 0 (for a reversible process) (11.2)

For the case of an irreversible process 𝛾 we may consider:

𝜂𝑖𝑟𝑟𝑒𝑣. = 1 −
d𝑄 𝑖

𝐶

d𝑄 𝑖
𝐻

< 𝜂𝑐𝑎𝑟𝑛𝑜𝑡 = 1 −
𝑇 𝑖
𝐶

𝑇 𝑖
𝐻

⇒
d𝑄 𝑖

𝐶

d𝑄 𝑖
𝐻

>
𝑇 𝑖
𝐶

𝑇 𝑖
𝐻

⇒
d𝑄 𝑖

𝐶

𝑇 𝑖
𝐶

>
d𝑄 𝑖

𝐻

𝑇 𝑖
𝐻

If we again consider the sign conventions of the 1st Law (d𝑄 𝑖
𝐶
→ −d𝑄 𝑖

𝐶
)

we may write:
d𝑄 𝑖

𝐻

𝑇 𝑖
𝐻

+
d𝑄 𝑖

𝐶

𝑇 𝑖
𝐶

< 0∮
𝛾

𝛿𝑄
𝑇

< 0 (for an irreversible process) (11.3)

These two relations are denominated the Clausius Theorem .

11.2 Entropy

From Eq. 11.1 we concluded that the cyclic integral of 𝛿𝑄 𝑖
𝐻

𝑇 𝑖
𝐻

is 0.

We may revisit our previous Chapters, and in particular Chapter 6, and
re-analyze other cyclic integrals

∮
. We have for example the definition of

Work𝑊 where
𝑊 =

∮
𝑝d𝑉 ≠ 0
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(which is fine! since otherwise no closed cycle would produce work and
there wouldn’t be any possible engines). The same reasoning applies to
the cyclic integral of heat 𝑄.

Figure 11.1: Full cycle of a piston stroke

We have next the case of the cyclic integral for the volume occupied by a
gas in a piston-cylinder ensemble. At the cycle end, the piston reverts to
the initial position, hence we have:∮

d𝑉 = 0

or in other terms, the cyclic integral for the Volume 𝑉 or any other State
Variable (𝑝, 𝑇) is always 0 since at cycle end we always reset the system
properties to their initial states. Yet a Process Variable (𝑄,𝑊) will not
have a null cyclic integral.

Clausius understood in 1865 that his inequality in fact introduced a New
Thermodynamic State Variable which he dubbed as Entropy 𝑆:

d𝑆 =

(
𝛿𝑄
𝑇

)
internally reversible
[J/K] (11.4)

Entropy 𝑆 (in J/K units) is an extensive property of a system, dubbed
“total entropy”. The entropy per unit mass 𝑠 (in J/(kg K) units) is an
intensive property.

The variation of the entropy of a system during a process may be
determined through the integral for Eq. 11.4 between the initial and final
states:

Δ𝑆 = 𝑆 𝑓 − 𝑆𝑖 =
∫ 𝑓

𝑖

(
𝛿𝑄
𝑇

)
int. rev.

[J/K]

(we note that the entropy variation is independent on whether the process
is reversible or irreversible, as it should since 𝑆 is a state variable).

We notice that we are yet unable to determine the entropy of a state,
we may only determine the difference in entropy between two states.
This is enough for the Engineer who only cares for the variation of the
properties of a system.
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11.2.1 Irreversible Processes

We will now consider a circular process which encompasses an irre-
versible part 𝑖 → 𝑓 and a reversible part 𝑓 ↔ 𝑖.

Considering the Clausius inequality we have:∮
d𝑄
𝑇
≤ 0

We now expand the inequality over the two processes1: 1: for a reversible process:
∫ 𝐵

𝐴
𝑓 (𝑥)𝑑𝑥 =

−
∫ 𝐴

𝐵
𝑓 (𝑥)𝑑𝑥, and we omit the 𝑖𝑟𝑟𝑒𝑣/𝑟𝑒𝑣

subscript starting on the 2nd line
∫ 𝑓

𝑖

d𝑄𝑖𝑟𝑟𝑒𝑣/𝑟𝑒𝑣
𝑇

+
∫ 𝑖

𝑓

d𝑄𝑟𝑒𝑣

𝑇
≤ 0

⇔
∫ 𝑓

𝑖

d𝑄
𝑇

−
∫ 𝑓

𝑖

d𝑄𝑟𝑒𝑣

𝑇
≤ 0 ⇒

∫ 𝑓

𝑖

d𝑄
𝑇
≤

∫ 𝑖

𝑓

d𝑄𝑟𝑒𝑣

𝑇

This inequality is valid independently in how close 𝑖 and 𝑓 states are,
and in the limit 𝑖 → 𝑓 we may write:

d𝑆 =
d𝑄𝑟𝑒𝑣

𝑇
≥ d𝑄

𝑇

If we now consider a thermally insulated system (d𝑄 = 0), the inequality
becomes:

d𝑆 ≥ 0

Which is another interpretation of the 2nd Law of Thermodynamics.

This relationship implies that any process in a thermally insulated system
either maintains the same entropy (for a reversible process), or leads to
an increase in entropy (for an irreversible process), up until the entropy
of an isolated system eventually reaches a maximum.

We may apply this concept (and the 1st Law) to the Universe in its entirety
(which of course we may consider as a thermally isolated system).

▶ 1st Law:𝑈Universe : constant
▶ 2nd Law: 𝑆Universe always increases.
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11.2.2 1st Law Revisited

The 1st Law (d𝑈 = d𝑄 + d𝑊) may be rewritten for reversible processes,
considering that d𝑊 = −𝑝d𝑉 and d𝑄 = 𝑇d𝑆:

d𝑈 = 𝑇d𝑆 − 𝑝d𝑉 (11.5)

We may now remark that all variables from Eq. 11.5 are state functions
and hence do not depend on the path of the process. This means that the
relationship is also valid for irreversible processes:

d𝑈 = 𝑇d𝑆 − 𝑝d𝑉 reversible and irreversible (11.6)

How can that be? Don’t we have for irreversible processes2 d𝑊 > −𝑝d𝑉 2: If friction (irreversible process) is
present, then for example the force ex-
erted by the gas during an expansion
will be: 𝐹𝑒 𝑓 𝑓 = 𝐹𝑟𝑒𝑣 − 𝐹 𝑓 𝑟𝑖𝑐𝑡𝑖𝑜𝑛 with
𝐹𝑟𝑒𝑣 = 𝑝𝐴, and d𝑊 > −𝑝d𝑉 with
d𝑉 > 0. For compressing a gas we need
to add extra force to overcome friction:
𝐹𝑒 𝑓 𝑓 = 𝐹𝑟𝑒𝑣+𝐹 𝑓 𝑟𝑖𝑐𝑡𝑖𝑜𝑛 , and d𝑊 > −𝑝d𝑉
with d𝑉 < 0.

and d𝑄 < 𝑇d𝑆? The explanation is as follows: The system produces less
work, and as such requires less Heat 𝑄 to be given back to compensate
the lost energy (and enforcing the 1st Law).

Summary of relationships:

▶ d𝑈 = d𝑄 + d𝑊 : always true.
▶ d𝑄 = 𝑇d𝑆: only true for reversible processes.
▶ d𝑊 = −𝑝d𝑉 : only true for reversible processes.
▶ For irreversible processes d𝑄 < 𝑇d𝑆 and d𝑊 > −𝑝d𝑉
▶ d𝑈 = 𝑇d𝑆 − 𝑝d𝑉 : always true.

11.3 Entropy Variation for Reference
Thermodynamic Processes

11.3.1 Adiabatic, Reversible process

d′𝑄𝑟 = 0 ⇒ Δ𝑆 =
d′𝑄𝑟

𝑇
= 0

11.3.2 Phase change

𝑝 and 𝑇 remain constant during phase change:→ this is an isothermal,
reversible process3. 3: Δ𝑆 = 𝑆 𝑓 − 𝑆𝑖

Δ𝑆 =
1
𝑇

∫ 𝑓

𝑖

d′𝑄𝑟 =
Δ′𝑄𝑟

𝑇

For a mass unit 𝑚, Δ𝑄𝑟 = 𝑚𝜆, with 𝜆, the latent heat for the phase
change (in J/K).
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11.3.3 Ideal Gas

(𝑝𝑖 , 𝑉𝑖 , 𝑇𝑖) → (𝑝 𝑓 , 𝑉𝑓 , 𝑇𝑓 )

d′𝑄𝑟 = d𝑈 + 𝑝d𝑉
d𝑆 =

d′𝑄𝑟

𝑇

}
d𝑆 =

d𝑈
𝑇
+ 𝑝
𝑇

d𝑉

We consider one mole (𝑁 = 1) of an ideal gas,

d𝑈 = 𝐶𝑣(𝑇)d𝑇
𝑝𝑉 = 𝑅𝑇

(𝑝d𝑉 +𝑉d𝑝 = 𝑅d𝑇)

Let us now examine all the possible pairs of variables 𝑝, 𝑉 , and 𝑇.

We will consider molar entropy 𝑠 (in J/(K mol))

1. s = s(V,T)

d𝑠 =
𝐶𝑣(𝑇)
𝑇︸ ︷︷ ︸

d𝑈/𝑇

d𝑇 + 𝑅

𝑉︸︷︷︸
𝑃/𝑇

d𝑉

𝑠 𝑓 − 𝑠𝑖 =
∫ 𝑇𝑓

𝑇𝑖

𝐶𝑣(𝑇)
𝑇

d𝑇 + 𝑅
∫ 𝑉𝑓

𝑉𝑖

d𝑉
𝑉

Assuming4. 𝐶𝑣(𝑇) ≃ 𝑐𝑜𝑛𝑠𝑡. between 𝑇𝑖 and 𝑇𝑓 4: very reasonable approximation in
“usual” temperature ranges, see Chap-
ter 3 and the discussion about degrees
of freedom (Section 3.1.1), 𝑁 = 3 or 5 for
atoms, molecules in the 100-1500 K range

Δ𝑠 = 𝐶𝑣 ln(𝑇𝑓 /𝑇𝑖) + 𝑅 ln(𝑉𝑓 /𝑉𝑖).

𝑠(𝑉, 𝑇) = 𝐶𝑣 ln(𝑇) + 𝑅 ln(𝑉) + 𝑐𝑜𝑛𝑠𝑡. 𝑆(𝑉, 𝑇) = 𝑛𝑠(𝑉, 𝑇)
(11.7)

2. s = s(p,T)

We depart again from:

d𝑠 =
𝐶𝑣(𝑇)
𝑇︸ ︷︷ ︸

d𝑈/𝑇

d𝑇 + 𝑝
𝑇

d𝑉

Since 𝑝d𝑉 = 𝑅d𝑇 −𝑉d𝑝:

d𝑠 =
𝐶𝑣 + 𝑅
𝑇

d𝑇 − 𝑣d𝑝
𝑇

Then since 𝐶𝑝 = 𝐶𝑣 + 𝑅 and 𝑉
𝑇 = 𝑅

𝑝

d𝑠 =
𝐶𝑝

𝑇
d𝑇 − 𝑅d𝑝

𝑝

𝑠 𝑓 − 𝑠𝑖 =
∫ 𝑇𝑓

𝑇𝑖

𝐶𝑝

𝑇
d𝑇 − 𝑅

∫ 𝑝 𝑓

𝑝𝑖

d𝑝
𝑝

if we assume 𝐶𝑝(𝑇) = 𝑐𝑜𝑛𝑠𝑡. between 𝑇𝑖 and 𝑇𝑓
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Δ𝑠 = 𝐶𝑝 ln
(
𝑇𝑓

𝑇𝑖

)
− 𝑅 ln

(
𝑝 𝑓

𝑝𝑖

)
𝑠(𝑝, 𝑇) = 𝐶𝑝 ln(𝑇) − 𝑅 ln(𝑝) + 𝑐𝑜𝑛𝑠𝑡. 𝑆(𝑝, 𝑇) = 𝑛𝑠(𝑝, 𝑇)

(11.8)
3. s = s(V,p)

We depart from:

𝑠 = 𝐶𝑣 ln(𝑇) + 𝑅 ln(𝑉) + 𝑐𝑜𝑛𝑠𝑡.

= 𝐶𝑣 ln
(
𝑝𝑉

𝑅

)
+ 𝑅 ln(𝑉) + 𝑐𝑜𝑛𝑠𝑡.

= 𝐶𝑣 ln(𝑝) + 𝐶𝑣 ln(𝑉) − 𝐶𝑣 ln(𝑅)︸   ︷︷   ︸
𝑐𝑜𝑛𝑠𝑡.

+𝑅 ln(𝑉) + 𝑐𝑜𝑛𝑠𝑡.

= 𝐶𝑣 ln(𝑝) + (𝐶𝑣 + 𝑅)︸    ︷︷    ︸
𝐶𝑝

ln(𝑉) + 𝑐𝑜𝑛𝑠𝑡.

= 𝐶𝑣[ln(𝑝) + (𝐶𝑝/𝐶𝑣)︸   ︷︷   ︸
𝛾

ln(𝑉)] + 𝑐𝑜𝑛𝑠𝑡.

= 𝐶𝑣 [ln(𝑝) + ln (𝑉𝛾)] + 𝑐𝑜𝑛𝑠𝑡. = 𝐶𝑣 [ln 𝑝𝑉𝛾] + 𝑐𝑜𝑛𝑠𝑡.

𝑠(𝑝, 𝑉) = 𝐶𝑣 ln (𝑝𝑉𝛾) + 𝑐𝑜𝑛𝑠𝑡. 𝑆(𝑝, 𝑇) = 𝑛𝑠(𝑝, 𝑇) (11.9)

Note: 𝐶𝑣 ln (𝑝𝑉𝛾) = 𝑐𝑜𝑛𝑠𝑡. if 𝑝𝑉𝛾 = 𝑐𝑜𝑛𝑠𝑡. This is the case for an
adiabatic and reversible process.
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11.4 Energy Degradation

Lets again compare Isothermal Expansion vs. Joule Free Expansion, as in
Chapter 6:

Isothermal Expansion

Δ𝑈 = 0 (since 𝑇 = 𝑐𝑜𝑛𝑠𝑡.)⇒ Δ𝑄 = Δ𝑊

𝑊𝑖→ 𝑓 =

∫ 𝑓

𝑖

𝑝d𝑉 =

∫ 𝑓

𝑖

𝑛𝑅𝑇

𝑉
d𝑉

= 𝑛𝑅𝑇 ln
(
𝑉𝑓

𝑉𝑖

)
We apply

d𝑈 = 𝑇d𝑆 − 𝑝d𝑉 = 0

then it follows: 𝑇d𝑆 = 𝑝d𝑉 = Δ𝑊

Therefore:

d𝑆 =

𝑛𝑅𝑇 ln
(
𝑉𝑓
𝑉𝑖

)
𝑇

Finally:

Δ𝑆 = 𝑛𝑅 ln
(
𝑉𝑓

𝑉𝑖

)
The heat transferred from the reservoir was con-
verted into work which was carried out by the piston
(reversible process), therefore:

▶ Δ𝑆𝑔𝑎𝑠 = 𝑛𝑅 ln
(
𝑉𝑓
𝑉𝑖

)
▶ Δ𝑆𝑟𝑒𝑠 = −𝑛𝑅 ln

(
𝑉𝑓
𝑉𝑖

)
▶ Δ𝑆𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑒 = Δ𝑆𝑔𝑎𝑠 + Δ𝑆𝑟𝑒𝑠 = 0

As would be expected since the process is reversible.

Free Joule Expansion

Δ𝑄 = 0,Δ𝑊 = 0,Δ𝑈 = 0
We know that for an ideal gas:

𝑆 = 𝑆(𝑉, 𝑇) = 𝑛𝐶𝑣 ln(𝑇) + 𝑛𝑅 ln(𝑉) + 𝑐𝑜𝑛𝑠𝑡.

then

Δ𝑆 = 𝑆 𝑓 − 𝑆𝑖 = 𝑛𝑅 ln
(
𝑉𝑓

𝑉𝑖

)
+
��

����*
0

𝑛𝑅 ln
(
𝑇𝑓

𝑇𝑖

)

In the Joule Free Expansion the system is isolated
from its vicinity (𝑣𝑖𝑐.), hence:

▶ Δ𝑆𝑔𝑎𝑠 = 𝑛𝑅 ln
(
𝑉𝑓
𝑉𝑖

)
▶ Δ𝑆𝑣𝑖𝑐 = 0
▶ Δ𝑆𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑒 = Δ𝑆𝑔𝑎𝑠 + Δ𝑆𝑣𝑖𝑐

= 𝑛𝑅 ln
(
𝑉𝑓
𝑉𝑖

)
As expected the entropy of the Universe increases
since the process is irreversible.

Question: Since in the Joule free expansion we have Δ𝑄 = 0,
shouldn’t we have Δ𝑆 =

Δ𝑄
𝑇 = 0?
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Answer: Wrong since d𝑄 = 𝑇d𝑆 is only valid for reversible processes.
In this case we have Δ𝑄 = 0 and Δ𝑆 = 𝑛𝑅 ln

(
𝑉𝑓
𝑉𝑖

)
, therefore we verify

the inequality Δ𝑄 < 𝑇Δ𝑆 for an irreversible process.

We verify that in the irreversible case of the Joule Free Expansion we
have “wasted a potential quantity of work 𝑊𝑖→ 𝑓 = Δ𝑄 = 𝑇Δ𝑆 which
could have been used in case the process would have been carried out in
a reversible fashion (as for an isothermal expansion).

This is a key concept for understanding Entropy: All the irreversibilities
correspond to a degradation of energy, where we waste potential Work.

Some examples:

▶ Friction losses.
▶ Heat conduction 𝑇𝐻 → 𝑇𝐶 . These two heat sources/sinks could

have been put to use in a Carnot machine.

The Universe is inexorably evolving towards a Heat Death owing
to the irreversibilities who diminish the ability of the Universe to
perform useful work as Entropy S increases inexorably.

11.5 Some Examples of Irreversible Processes

11.5.1 Diffusion of a Gas into another

this corresponds to two Free Joule Expansions:
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In case 𝑉1 = 𝑉2 we have:

Δ𝑆 = 2𝑛𝑅 ln
(
𝑉1 +𝑉2
𝑉1

)
= 2𝑛𝑅 ln(2)

or in the general case 𝑉1 = 𝑥; 𝑉2 = 1 − 𝑥:

Δ𝑆 = 𝑛𝑅 [𝑥 ln(𝑥) + (1 − 𝑥) ln(1 − 𝑥)]

11.5.2 Heat conduction

Also an irreversible process!

Let us define the equivalent reversible process:

We take d′𝑄𝑟 from 1 at 𝑇𝐻 by using an intermediate thermal reservoir,
and we give back d′𝑄𝑟 to 2 by contact with another thermal reservoir at
𝑇𝐶 :

For this reversible process we have:

d𝑆 = d𝑆𝐻 + d𝑆𝐶 = −d′𝑄𝑟

𝑇𝐻
+ d′𝑄𝑟

𝑇𝐶
= d′𝑄𝑟

(
1
𝑇𝐶
− 1
𝑇𝐻

)
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If 𝑚𝐻 = 𝑚𝐶 = 𝑚 and 𝑐𝐻 = 𝑐𝐶 = 𝑐, 𝑇𝑓 =
𝑇𝐻 + 𝑇𝐶

2
.

Δ𝑆 = Δ𝑆𝐻 + Δ𝑆𝐶 =

∫ 𝑇𝑓

𝑇𝐻

d′𝑄𝑟

𝑇
+

∫ 𝑇𝑓

𝑇𝐶

d′𝑄𝑟

𝑇

= 𝑚𝑐

∫ 𝑇𝑓

𝑇𝐻

d𝑇
𝑇
+ 𝑚𝑐

∫ 𝑇𝑓

𝑇𝐶

d𝑇
𝑇

= 𝑚𝑐 ln
(
𝑇𝐻

𝑇𝐻

)
+ 𝑚𝑐 ln

(
𝑇𝑓

𝑇𝐶

)
= 𝑚𝑐 ln

(
𝑇2
𝑓

𝑇𝐻𝑇𝐶

)
= 𝑚𝑐 ln

[
(𝑇𝐻 + 𝑇𝐶)2

4𝑇𝐻𝑇𝐶

]

Δ𝑆 = 𝑚𝑐 ln
[
(𝑇𝐻 + 𝑇𝐶)2

4𝑇𝐻𝑇𝐶

]
since

(𝑇𝐻 + 𝑇𝐶)2 = (𝑇𝐻 − 𝑇𝐶)2︸      ︷︷      ︸
>0

+4𝑇𝐻𝑇𝐶 > 4𝑇𝐻𝑇𝐶

11.6 Statistic Basis of Entropy

We depart again from d𝑈 = 𝑇d𝑆− 𝑝d𝑉 and we rewrite d𝑈 as a function
of its natural variable 𝑆 and 𝑉 :

d𝑈 =

(
𝜕𝑈

𝜕𝑆

)
𝑉

d𝑆 +
(
𝜕𝑈

𝜕𝑉

)
𝑆︸  ︷︷  ︸

−𝑝

d𝑉

We have accordingly: 
𝑇 =

(
𝜕𝑈
𝜕𝑆

)
𝑉

𝑝 = −
(
𝜕𝑈
𝜕𝑉

)
𝑆

We rewrite:
1
𝑇

=

(
𝜕𝑆

𝜕𝑈

)
𝑉

From Chapter 2, Eq. 2.6 we have5 5: we used 𝐸 in Chapter 2 to describe
the internal energy𝑈

1
𝑘𝐵𝑇

=
d lnΩ

d𝑈
1
𝑇

=
d𝑘𝐵 lnΩ

d𝑈

and we may accordingly identify 𝑆 with 𝑘𝐵 lnΩ:

𝑆 = 𝑘𝐵 lnΩ (11.10)

Which corresponds to the expression of the entropy of a system in a par-
ticular macrostate in terms of Ω, the number of associated microstates.
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Example: Joule Expansion Revisited

After a Joule expansion for a mole of molecules, each of the may be in
the left or right part of the container.

There are accordingly 2𝑁𝑎 possible combinations for positioning
the molecules, and the number of associated microstates for a gas
occupying a volume twice (2x) as big is larger by a multiplicative
factor of 2𝑁𝑎 . The additional entropy is:

Δ𝑆 = 𝑘𝐵 lnΩ = 𝑘𝐵 lnΩ = 𝑘𝐵 ln 2𝑁𝑎 = 𝑘𝐵𝑁𝑎 ln 2 = 𝑅 ln 2
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Nomenclature

Variables:

▶ 𝑛: Number of moles 𝑛 = 𝑁/𝑁𝑎 [mol]
▶ 𝑁 : Number of particles [-]
▶ 𝑝: Pressure [Pa]
▶ 𝑄: Heat [J]
▶ 𝑆: Entropy [J/K]
▶ 𝑠: Molar Entropy [J/molK]
▶ 𝑡: Time [s]
▶ 𝑇: Temperature [K]
▶ 𝑈 : Energy of a system [J]
▶ 𝑉 : Volume [m3]
▶ 𝑊 : Work [J]

▶ 𝐶𝑝 : Molar Specific Heat at Constant Pressure [J/molK]
▶ 𝐶𝑣 : Molar Specific Heat at Constant Volume [J/molK]
▶ 𝛾: Specific Heats ratio 𝛾 = 𝐶𝑝/𝐶𝑣 [-]

▶ Ω: Microstate

Constants:

▶ 𝑁𝐴 = 6.02214076 × 1023 [mol−1]: Avogadro Number/Constant
▶ 𝑅 = 8.31447 [J/molK]: Universal Gas Constant

Acronyms, subscripts and superscripts

▶ 𝐶: cold
▶ 𝐻: hot
▶ 𝑖: initial
▶ 𝑓 : final
▶ 𝑒 𝑓 𝑓 : effective
▶ 𝑓 𝑟𝑖𝑐𝑡𝑖𝑜𝑛: friction
▶ 𝑖𝑟𝑟𝑒𝑣: irreversible
▶ 𝑟𝑒𝑣: reversible
▶ 𝑖𝑛𝑡𝑟𝑒𝑣: internally reversible
▶ 𝑣𝑖𝑐: vicinity
▶ 𝑟𝑒𝑠: reservoir



11 Irreversibilities and the 2nd Law 168

11.7 A Broader Understanding of Entropy

Entropy: A Macroscopic Vision This text is retrieved from Schroeder, an
Introduction to Thermal Physics, Chapter
3.

Historically, the relation d𝑆 = 𝑄/𝑇 was the original definition of entropy.
In 1865, Rudolf Clausius defined entropy to be the thing that increases
by 𝑄/𝑇 whenever heat 𝑄 enters a system at temperature 𝑇 . Although
this definition tells us nothing about what entropy actually is, it is still
sufficient for many purposes, when the microscopic makeup of a system
does not concern us. To illustrate this traditional view of entropy, consider
again what happens when a hot object, 𝐴, is put in thermal contact with
a cold object, 𝐵 (see Figure 11.2). To be specific, suppose that 𝑇𝐴 = 500 K
and𝑇𝐵 = 300 K. From experience we know that heat will flow from𝐴 to 𝐵.
Let’s say that during some time interval the amount of heat that flows is
1500 J, and that 𝐴 and 𝐵 are large enough objects that their temperatures
don’t change significantly due to the loss or gain of this amount of energy.
Then during this time interval, the entropy of 𝐴 changes by

Δ𝑆𝐴 =
−1500 J
500 K

= −3 J/K (11.11)

Figure 11.2: When 1500 J of heat leaves
a 500 K object, its entropy decreases by
3 J/K. When this same heat enters a 300 K
object, its entropy increases by 5 J/K.

Object 𝐴 loses entropy, because heat is flowing out of it. Similarly, the
entropy of 𝐵 changes by

Δ𝑆𝐵 =
+1500 J
300 K

= +5 J/K (11.12)

Object 𝐵 gains entropy, because heat is flowing into it. (Notice that the
traditional entropy unit of J/K is quite convenient when we compute
entropy changes in this way.)

Just as I often visualize energy as a “fluid” that can change forms and
move around but never be created or destroyed, I sometimes imagine
entropy, as well, to be a fluid. I imagine that, whenever energy enters
or leaves a system in the form of heat, it is required (by law) to carry
some entropy with it, in the amount𝑄/𝑇. The weird thing about entropy,
though, is that it is only half-conserved: It cannot be destroyed, but it
can be created, and in fact, new entropy is created whenever heat flows
between objects at different temperatures. As in the numerical example
above, the entropy that is “carried by” the heat is more when it arrives
at the cooler object than it was when it left the hotter object (see Figure
11.3). Only in the limit where there is no temperature difference between
the two objects will no new entropy be created. In this limit, however,
there is no tendency of heat to flow in the first place. It’s important to
remember that fundamentally, the net increase in entropy is the driving
force behind the flow of heat. Fundamentally, though, entropy isn’t a
fluid at all and my model is simply wrong.
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Figure 11.3: Each unit of heat energy (𝑄)
that leaves a hot object is required to
carry some entropy (𝑄/𝑇) with it. When
it enters a cooler object, the amount of
entropy has increased.

But what is Entropy exactly?
▶ We have seen that the 2nd Law of Thermodynamics and Entropy 𝑆

are very useful tools for the analysis and understanding of energetic
systems.

▶ We considered the Carnot cycle to define the ideal machine which
would convert a maximum amount of heat 𝑄 into work 𝑊 . But
even this ideal machine has losses! (eficiency 𝜂 < 100%).

• “The ideal Carnot engine produces the maximum of work possible,
when the heat in the boiler is cooled down to the temperature of
the condensor. The engine Carnot constructed worked without any
loss; the work produced could be used again to heat the boiler to the
starting temperature. That there are no engines more efficient than
the Carnot engine in producing mechanical work is the original
formulation of the second law of thermodynamics. Thus, actual
engines have some irreversible losses; what is lost is not energy but
capacity to do work. Entropy is a measure for that irreversible loss.”6 6: D. T. Spreng, “On the Entropy of Eco-

nomic Systems”, 1980.
▶ However at a more fundamental level, we are still not really quite

certain of the meaning of Entropy...
▶ Let us go “down the rabbit hole” again and again travel to the

microscopic world...

Entropy is a measure of disorder

The underlying foundations of the 2nd Law of Thermodynamics corre-
sponds to its statistical interpretation where, for a large number of atoms
and molecules, the most probable distribution of energy is so favorable
in the probabilistic sense (think about 99.9999. . . % hypothesis), that all
the other energy distributions, including those that invert the arrow of
time (reverting irreversible processes and leading to a more organized
system) are so unlikely that they may be ignored in practice7. 7: (remember lecture 2 and the 100x coin

toss. Going back in time is even more im-
probable than getting 100 faces or num-
bers in the coin toss outcomes)

“the very foundation of the second law is in the statistical interpretation that, for
a system containing a large number of atoms or molecules, the most probable
distribution of energies is so highly favored that one can ignore all other
distributions, including those that would carry the system backward in time to a
more highly ordered state.”

Gordon, “Thermodynamics and Society”, Science, 1981.
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⇐
P∼ 0

⇒
P∼ 1

The 2nd Law is inescapable!

Some examples of Order and Chaos

Your upcoming Thermodynamics exam A Punk-Rock concert

An example of Disorder: Brownian Movement
▶ Known to Physicists as the “drunkard’s walk”.
▶ We take a particle and we allow it to move one length unit in four

possible directions (north, south, east, west) in a random fashion.
We repeat the process for several particles.

▶ Corresponds to the macroscopic phenomena of diffusion: Diffusion
(or Heat) equation.

𝜕

𝜕𝑡
𝑓 (𝑥, 𝑡) = 𝐷

𝜕2

𝜕𝑥2 𝑓 (𝑥, 𝑡)

▶ Entropy (disorder) increases over time.
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The Universe is inexorably walking towards a state of
higher disorder

Any thermodynamic process will increase the global Entropy of the
system + its surroundings.

D𝑆 > 0D𝑆 > 0
“The increase of disorder or entropy is what distinguishes the past from the future,
giving a direction to time”

Stephen Hawking, “A Brief History of Time”

▶ Entropy of the Universe at 𝑡 = 0 (Big Bang): 𝑆 = 1088𝑘𝐵
▶ Entropy do Universe today: 𝑆 = 10103𝑘𝐵
▶ Entropy of the Black Hole at the center of our Galaxy: 𝑆 = 1091𝑘𝐵
▶ Entropy at the time of the postulated8 “Heat Death” of the Universe 8: This is a hypothetical end state of the

universe. Other theories for the Ultimate
End of the Universe exist.

in 𝑡 = 1030 years: 𝑆 = 10123𝑘𝐵

Fatalistic Assertion: All Thermodynamic Processes hasten
the Entropy increase of the Universe

All actions will increase entropy. Should we even get out of bed every
morning?

Well, can we at least minimize Entropy production?

Statistical interpretation of Entropy

Figure 11.4: Boltzmann’s grave

▶ Boltzmann Equation

• 𝑆 = 𝑘𝐵 lnΩ

• Ω corresponds to all the microstates of the macrostate (ther-
modynamic system, gas, or another) under study

• Review Chapter 2. Demonstration: H Theorem

▶ 3rd Law of Thermodynamics: for 𝑇 = 0, there is only one possible
microstate (everything is at a standstill)

• 𝑆(𝑇 = 0) = 𝑘𝐵 lnΩ = 𝑘𝐵 ln(1) = 0
• The entropy of a system is 0 if this system is at absolute

Zero (T = 0 K)
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The Answer is Cold

Heat is Chaos, Cold is Order

Order and Chaos
see https://tvtropes.org/pmwiki/

pmwiki.php/Main/OrderVersusChaos
▶ Many creation myths start with a primordial sea of Chaos, from

which Gods and creatures are born that eventually bring order to
the Chaos and create the Earth.

▶ In mythological studies, there is a trope called “Chaoskampf”. It is
always along the lines of “storm god fights huge serpent/dragon,
representing Order vs. Chaos”. It appears in the form of

• Indra vs Vritra (Hinduist mythology),
• Zeus vs Typhon (Greek mythology),
• Thor vs Jormungandr (Norse mythology),
• Marduk vs Tiamat (Hinduist mythology),
• YHWH vs Leviathan, followed by Christ vs The Ancient

Serpent Satan (Judeo-Christian mythology),
• and possibly Susano’o vs Orochi as well (Japanese mythology).
• Yu the Great killing Xiangliu during his work stopping the

Great Flood may also count, although Yu is not a storm god
(Chinese mythology).

This is the conflict in physics between the theories of General Relativity,
which describes an orderly and predictable universe, but is only applicable
to large scales, and Quantum Mechanics, which describes a chaotic,
random, near-nonsensical universe, but is only applicable to small scales.

https://tvtropes.org/pmwiki/pmwiki.php/Main/OrderVersusChaos
https://tvtropes.org/pmwiki/pmwiki.php/Main/OrderVersusChaos
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Both theories are correct, even though they contradict each other. The
purpose of a Unified Field Theory would be to resolve these conflicts and
unite both theories.

11.7.1 Negentropy

Entropy and Life

Negentropy: A temporary condition in which matter is hotter and more
highly organised than the surrounding space.

▶ Example: Earth (average temperature 𝑇 ≃ 15 ◦C/298 K) and the
surrounding vacuum in Space (from 𝑇 ≃ −100 ◦C/170 K in the
Earth’s shade to 𝑇 = 2.7 K9 in Outer Space). 9: Thermal equilibrium Temperature

with the cosmic microwave backgroundSee Earth–Sun energy balace in Chapter 5
▶ Earth is a system in thermodynamic nonequilibrium.
▶ One would expect for thermodynamic nonequilibrium to create

more chaos/disorder (see for example the phenomena of turbu-
lence), however nonequilibrium may paradoxically create structure
(Order from Chaos)10 and ultimately, Life. 10: See for example the regular turbu-

lence patterns in the atmosphere of
Jupiter

▶ Earth collects Energy and Negentropy from the Sun, and Life
resorts to nonequilibrium thermodynamic processes to create
ordered patterns and build structures11. Some examples include: 11: See E. Schrödinger, “What is Life?”,

1944• An human evolving from an unicellular embryo to a full
fledged man/woman,

• Humans building a city over decades/centuries.

Entropy balances on Earth This text is retrieved from Spreng, D.
T., “On the Entropy of Economic Systems”,
1984.

The global entropy balance

Let us first examine the Earth as an open thermodynamic system. The
system has to be regarded as an open system due to the solar radiation it
receives and the heat radiation it emits. The energy balance is very nearly
zero, but the entropy balance certainly not; the incoming radiation has
the temperature of the surface of the sun (∼ 5000 K) and the outgoing
radiation the surface temperature of the Earth (∼ 300 K). What happens
to the negative flux of entropy that enters this system or the positive flux
that leaves it?

The solar negentropy flux is mostly used to drive the climate machine: the
winds, the water cycle, the ocean currents, etc. However, all the negentropy
input that goes into the climate machine is ultimately dissipated by
mechanical friction. It looks like the total entropy of the Earth remains,
in the very first approximation, about constant since

de𝑆 (from the Sun) ≃ di𝑆 (due to friction of the climate machine).

However, about 10% of the Solar negentropy flux falls on green leaves,
photosynthesizes carbohydrates (at an efficiency of 1%), and leads to
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Figure 11.5: Jupiter dissipates the Negen-
tropy it receives from the Sun exclusively
through atmospheric friction processes
(since no Life is known to exist in Jupiter).

many highly organized biological structures. It is the principle of self-
organization that makes it possible to store the incoming entropy in
the biosphere. (In case of the climate the situation is of course similar:
the climate machine itself is a somewhat ordered structure that could
build itself up due to the incoming negentropy flux.) The biosphere
does however not grow and accumulate for ever; there is not only
photosynthesis, but also respiration and decomposition. The total mass
of the biosphere may be about constant, temporal decreases (for instance
at the start of an ice age) are likely to be followed by temporal increases.
Therefore, we may write in a first approximation also for the sunshine
that reaches green leaves:

−de𝑆 (from photosynthesis) ≃ di𝑆 (due to respiration and decomposition).

It thus seems that the incoming negentropy flux from the Sun is dissipated
on Earth by natural processes. How does Man with all his technological
activities fit into this picture? Let us examine this by looking at a typical
example of Man’s production machine.
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11.7.2 Final Ponderings

Pondering Entropy: Parting Thoughts

We have briefly approached the far-reachings of the concept of Entropy,
on how it relates to the arrow of time, the ultimate fate of the Uni-
verse, but also how Life may arise from Negentropy in nonequilibrium
thermodynamic systems.

The student may:

▶ Despair at the thought of any action being futile, ultimately only
leading to an increase of the global Entropy of the Universe,

▶ Marvel at the thought of Negative Entropy leading to the formation
of structure and Life in planets such as Earth12, 12: “Value arises from living creatures expe-

rience of the quality of their lives, not from
free energy or negative entropy” Andrews,
Env. Phil, 1984.

▶ Ignore all these other far-reaching and more philosophical im-
plications of Entropy, focusing only on the practical engineering
applications13 for this additional State variable (which is also fine!) 13: see previous section of this chapter

Come what may, We conclude with a saying of the Western philoso-
pher Soren KIERKEGAARD, who characterized Life as a dissipative
thermodynamic structure 150 years ago:

“Life can only be understood backwards but it must be lived forwards”
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Chapter Summary

▶ Clausius Inequality:
∮

d𝑄/𝑇 = 0 for a reversible process;∮
d𝑄/𝑇 > 0 for an irreversible process;

▶ 2nd Law of Thermodynamics: D𝑆 ≥ 0;

• d𝑄 = 𝑇d𝑆 : only true for reversible processes.
• d𝑊 = −𝑝d𝑉 : only true for reversible processes.
• For irreversible processes d𝑄 ≤ 𝑇d𝑆 and d𝑊 ≥ −𝑝d𝑉
• d𝑈 = 𝑇d𝑆 − 𝑝d𝑉 : always true.

▶ 𝑆 = 𝑘𝐵 lnΩ. (Ω is the number of microstates associated to a
system);

▶ 3rd Law of Thermodynamics: for𝑇 = 0, there is only one possible
microstate (everything is at a standstill);

• The entropy of a system is 0 if this system is at absolute
Zero (𝑇 = 0 K)

Recommended readings
▶ Blundell, “Concepts in Thermal Physics” [5], Chapter 14.
▶ Moran & Shapiro, “Fundamentals of Engineering Thermodynamics”

[7], Chapter 6.
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Thermodynamics and Culture: Relevant Works

In Chapter 11 we have thouroghly discussed Entropy, a new state vari-
able useful for the solving of thermodynamic problems. We have also
explored the far-reaching meaning of the concept of Entropy, outlining
its fundamental contribution to our understanding of thermodynamic
processes of all kind, and the implications of the 2nd Law on the Ultimate
Fate of Our Universe.

It is therefore not surprising that Entropy has been thouroughly appro-
priated by several works of writing, dating back to the 19th Century at
the time this variable was being defined.

Philip K. Dick, Do Androids Dream of Electric Sheep?
1968

The famous 1968 novel by North–American science fiction writer Philip K.
Dick which would go on to serve the basis for the 1982 World-acclaimed
movie “Blade Runner”. The novel is set in a post-apocalyptic San Francisco,
where Earth’s life has been greatly damaged by a nuclear global war. The
main plot follows Rick Deckard, a bounty hunter who has to “retire” six
escaped Nexus-6 model androids.

The novel is famous for, among other things, introducing “Kipple” as a
metaphor for Entropy:
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“Kipple is useless objects, like junk mail or match folders after you use the last
match or gum wrappers or yesterday’s homeopape. When nobody’s around,
kipple reproduces itself. For instance, if you go to bed leaving any kipple
around your apartment, when you wake up the next morning there’s twice
as much of it. It always gets more and more.”

“I see” The girl regarded him uncertainly, not knowing whether to
believe him. Not sure if he meant it seriously.

“There’s the First Law of Kipple,” he said. “Kipple drives out nonkipple.
Like Gresham’s law about bad money. And in these apartments there’s been
nobody here to fight the kipple.”

“So it has taken over completely,” the girl finished. She nodded. “Now I
understand.”

“Your place, here,” he said, “this apartment you’ve picked–it’s too kipple-ized
to live in. We can roll the kipple-factor back; we can do like I said, raid the
other apts. But–” He broke off.

“But what?”

Isidore said, “We can’t win.”

“Why not?” [...]

“No one can win against kipple,” he said, “except temporarily and maybe
in one spot, like in my apartment I’ve sort of created a stasis between the
pressure of kipple and nonkipple, for the time being. But eventually I’ll die
or go away, and then the kipple will again take over. It’s a universal principle
operating throughout the universe; the entire universe is moving toward a
final state of total, absolute kippleization.”

Percy Shelley, Ozymandias, 1818

“Ozymandias” is a sonnet written by the English Romantic poet Percy
Bysshe Shelley (1792–1822). It was first published in the 11 January 1818
issue of The Examiner of London.

Although it is not contemporary to Clausius statement, this sonnet
embodies our definition of Entropy. Here we have a great king, creator of
massive monuments to his own greatness, and yet his works lie destroyed,
eroded and buried by Entropy.

The poem is about the arrogance of Man himself, and it’s a cautionary
tale for the creators of great monuments and creations which will be
bound to decay, until they will be reclaimed by nature.

I met a traveller from an antique land
Who said: “Two vast and trunkless legs of stone

Stand in the desert. Near them on the sand,
Half sunk, a shattered visage lies, whose frown

And wrinkled lip and sneer of cold command
Tell that its sculptor well those passions read

Which yet survive, stamped on these lifeless things,
The hand that mocked them and the heart that fed.

And on the pedestal these words appear:
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‘My name is Ozymandias, King of Kings:
Look on my works, ye mighty, and despair!’

Nothing beside remains. Round the decay
Of that colossal wreck, boundless and bare,
The lone and level sands stretch far away.”

H. G. Wells, The Time Machine, 1895

The work that popularized the concept of time travel. H. G. Wells depics
a Victorian scientist known as the Time Traveller, who conceives and
builds a time machine he then uses to travel to the year 802,701, and later
to 30 million years into the future: where he witnesses a dying Earth
under a red Sun (our Sun having evolved to a Red Giant).

“The darkness grew apace; a cold wind began to blow in freshening gusts from
the east, and the showering white flakes in the air increased in number. From
the edge of the sea came a ripple and whisper. Beyond these lifeless sounds the
world was silent. Silent? It would be hard to convey the stillness of it. All
the sounds of man, the bleating of sheep, the cries of birds, the hum of insects,
the stir that makes the background of our lives—all that was over. As the
darkness thickened, the eddying flakes grew more abundant, dancing before
my eyes; and the cold of the air more intense. At last, one by one, swiftly, one
after the other, the white peaks of the distant hills vanished into blackness.
The breeze rose to a moaning wind. I saw the black central shadow of the
eclipse sweeping towards me. In another moment the pale stars alone were
visible. All else was rayless obscurity. The sky was absolutely black.”

Isaac Asimov, The Last Question, 1956

“INSUFFICIENT DATA FOR MEANINGFUL ANSWER.”

“The Last Question” is one of Asimov’s best-known works and is also
the author’s favorite short story written by himself. The story is written
in the omniscient third-person narrative and primarily addresses the
question of cosmic entropy in the universe, and the attempts of multiple
future generations of human beings and computers trying to answer this
question. The Last Question was first published in the November 1956
issue of the Science Fiction Quarterly.

Poul Anderson, Tau Zero, 1970

“for a moment infinitesimal and infinite, men, women, child, ship, and death were one. It”

“The universe is a symphony of chaos and harmony, and through exploration, we become part of its
captivating melody.”

The epic voyage of the spacecraft Leonora Christine will take her and
her fifty-strong crew to a planet some thirty light-years distant. But,
because the ship will accelerate to close to the speed of light, for those
on board subjective time will slow and the journey will be of only a few
years’ duration. Then a buffeting by an interstellar dustcloud changes
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everything. The ship’s deceleration system is damaged irreperably and
soon she is gaining velocity. When she attains light-speed, tau zero
itself, the disparity between ship-time and external time becomes almost
impossibly great. Eons and galaxies hurtle by, and the crew of the Leonora
Christine speeds into the unknown, beyond the end of the Universe.

Other works

Figure 11.6: Yuri Shwedoff, “White Cas-
tle”, 2014.
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This Chapter discusses the thermodynamic properties of Insternal Com-
bustion Engines (ICE).

The adopted conventions for the drawings presented here are: Blue:
Air; Green: Air-fuel mixture; Red: Combustion; Gray: Combustion
products.

12.1 Otto cycle

Otto cycle (1876): four-stroke, two mechanical cycles engine.

The piston goes up and down twice in a cycle. Typical piston cycle process:
Piston compresses an air-fuel mixture; mixture is ignited releasing heat;
the gas expands, pushing the piston.

intake
valve

exhaust
valve

crankshaft
piston

spark
plug

Figure 12.1: Four-Stroke Engine



12 Thermodynamic Cycles for Real Engines 182

𝑉𝑚𝑖𝑛 𝑉𝑚𝑎𝑥

𝑝𝑚𝑖𝑛

𝑝𝑚𝑎𝑥

𝑊 exhaust

intake

𝑄in

𝑄out

𝑝

𝑉
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D

A

B

0

Figure 12.2: pV (left) and TS (right) dia-
grams for the Otto cycle

12.1.1 Otto cycle process

1. Intake 0 → 𝐴: Fuel is injected at atmospheric
pressure. 𝑉𝑠 ↗ 𝑉𝑙 (the piston makes room for
filling the volume). Mass with chemical poten-
tial energy (air-fuel mixture) is allowed into the
system.

2. Compression 𝐴 → 𝐵: Adiabatic compression
to the initial volume 𝑉𝑙 ↘ 𝑉𝑠 . Win < 0, work is
given to the system by the inertia of the moving
piston. 𝑇𝐴 ↗ 𝑇𝐵 (𝑇𝐵 > 𝑇𝐴).

3. Ignition 𝐵→ 𝐶: The spark initiates combustion.
Very fast process (𝑉 ≃ 𝑐𝑜𝑛𝑠𝑡.). 𝑃𝐵 ↗ 𝑃𝐶 ; 𝑇𝐵 ↗
𝑇𝐶 . The chemical potential energy of the gas is
converted into heat Qin

4. Combustion/Power Stroke 𝐶 → 𝐷: The high-
pressure, hot gas expands very rapidly (e.g. adi-
abatically), performing work Wout > 0.

5. Exhaust Valve Opens 𝐷 → 𝐴: 𝑃𝐷 ↘ 𝑃𝐴; 𝑇𝐷 ↘
𝑇𝐴, again very rapidly. (𝑉 ≃ 𝑐𝑜𝑛𝑠𝑡.). Warm gas
exits, evacuating heat Qout

6. Exhaust Stroke 𝐴→ 0: The piston rises (𝑉𝑠 ↘
𝑉𝑙) and purges the remaining combustion prod-
ucts. The cycle restarts in 1 .
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Figure 12.3: Otto cycle animation
(from https://animatedengines.com/
otto.html)

12.1.2 Efficiency of the Otto cycle

We consider the air-fuel mixture as an ideal gas.

𝑊 =
∮
𝑝d𝑉= cycle area.

𝑊 =𝑊𝐴𝐵 +𝑊𝐶𝐷 +���*
0

𝑊𝐵𝐶 +���*
0

𝑊𝐷𝐴︸               ︷︷               ︸
d𝑉 = 0 ⇒ d𝑊 =

∫
𝑝d𝑉 = 0

=𝑊𝐴𝐵 +𝑊𝐶𝐷

For a cycle Δ𝑈 = 0, W = 𝑄𝑖𝑛 −𝑄𝑜𝑢𝑡

⇒ 𝑄𝑖𝑛 = 𝑛𝐶𝑣Δ𝑇 = 𝑛𝐶𝑣(𝑇𝐶 − 𝑇𝐵)
𝑄𝑜𝑢𝑡 = 𝑛𝐶𝑣Δ𝑇 = 𝑛𝐶𝑣(𝑇𝐷 − 𝑇𝐴)

𝜂 =
W
𝑄𝑖𝑛

= 1 − 𝑄𝑜𝑢𝑡

𝑄𝑖𝑛
= 1 − 𝑇𝐷 − 𝑇𝐴

𝑇𝐶 − 𝑇𝐵

We may now relate the different temperatures considering that for
adiabatic processes 𝑇𝑉𝛾−1 = 𝑐𝑜𝑛𝑠𝑡.:

𝑇𝐴𝑉
𝛾−1
𝐴

= 𝑇𝐵𝑉
𝛾−1
𝐵

𝑇𝐶𝑉
𝛾−1
𝐶

= 𝑇𝐷𝑉
𝛾−1
𝐷

}
𝑉𝐴 = 𝑉𝐷 = 𝑉𝑚𝑎𝑥
𝑉𝐵 = 𝑉𝐶 = 𝑉𝑚𝑖𝑛

⇒ 𝑇𝐴𝑉
𝛾−1
𝑚𝑎𝑥 = 𝑇𝐵𝑉

𝛾−1
𝑚𝑖𝑛

𝑇𝐶𝑉
𝛾−1
𝑚𝑖𝑛

= 𝑇𝐷𝑉
𝛾−1
𝑚𝑎𝑥

https://animatedengines.com/otto.html
https://animatedengines.com/otto.html
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
𝑇𝐴 = 𝑇𝐵

(
𝑉𝑚𝑖𝑛
𝑉𝑚𝑎𝑥

)𝛾−1

𝑇𝐷 = 𝑇𝐶

(
𝑉𝑚𝑖𝑛
𝑉𝑚𝑎𝑥

)𝛾−1 ⇒ 𝜂 = 1 − 𝑇𝐷 − 𝑇𝐴
𝑇𝐶 − 𝑇𝐵

= 1 −
𝑇𝐷 − 𝑇𝐵

(
𝑉𝑚𝑖𝑛
𝑉𝑚𝑎𝑥

)𝛾−1

𝑇𝐷/
(
𝑉𝑚𝑖𝑛
𝑉𝑚𝑎𝑥

)𝛾−1
− 𝑇𝐵

= 1 −
(
𝑉𝑚𝑖𝑛

𝑉𝑚𝑎𝑥

)𝛾−1

���������������:1
𝑇𝐷 − 𝑇𝐵

(
𝑉𝑚𝑖𝑛
𝑉𝑚𝑎𝑥

)𝛾−1[
𝑇𝐷/

(
𝑉𝑚𝑖𝑛
𝑉𝑚𝑎𝑥

)𝛾−1
− 𝑇𝐵

] (
𝑉𝑚𝑖𝑛
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𝜂Otto = 1 − 𝑟1−𝛾 (12.1)

with 𝑟 =
𝑉𝑚𝑎𝑥
𝑉𝑚𝑖𝑛

is the compression ratio of the engine. From Eq. 12.1, it
follows that the efficiency of the cycle will increase as the compression
rate increases. Fig. 12.4 plots the theoretical efficiency curve 𝜂 as a function
of 𝑟, and presents some “real-life” engine efficiencies as a comparison.
Naturally these are below the theoretical limit as the result of losses not
considered in an idealized engine (for example the compression/expan-
sion processes are never truly isentropic (adiabatic+reversible) nor even
adiabatic since the strokes are not infinitely fast 𝑡 → 0 and some heat
transfer to the walls occurs through conduction). Combustion is also not
100% efficient, and friction losses need to be accounted for.

Typical compression
ratios for gasoline
engines

0 5 10 15
Compression ratio r

0

0.1

0.2

0.3

0.4

0.5
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0.7

2
O

tto

Maximum possible efficiency
Typical efficiency

Figure 12.4: Theoretical efficiency of the
Otto cycle as a factor of the compression
ratio 𝑟, and real-life engine efficiencies.

Figure 12.5: Real Otto cycle. Figure
adapted from Cengel, Thermodynamics,
and Engineering Approach, 5th Ed.
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Comparison with a Carnot cycle

Figure 12.6: Otto and Carnot cycles TS
diagram

We may now express the efficiency of the Otto cycle in terms of Tempera-
tures considering: (

𝑉𝑚𝑎𝑥

𝑉𝑚𝑖𝑛

)𝛾−1

=
𝑇𝐴

𝑇𝐵
=
𝑇𝐷

𝑇𝐶

We accordingly have:

𝜂Otto = 1 − 𝑇𝐴
𝑇𝐵

= 1 − 𝑇𝐷
𝑇𝐶

Since 𝑇𝐶 > 𝑇𝐵 > 𝑇𝐷 > 𝑇𝐴 we have for an equivalent Carnot cycle:

𝜂Carnot = 1 − 𝑇𝐴
𝑇𝐶

>= 𝜂Otto = 1 − 𝑇𝐴
𝑇𝐵

as it should!

12.2 Diesel cycle

Diesel cycle (1893–1895): also four-stroke, two mechanical cycles en-
gine.

Very similar to the Otto cycle with two key differences:

1. The fuel is directly injected in the chamber during the cycle instead
of being premixed to the air. This mass addition increases the
volume from 𝑉𝑚𝑖𝑛 to 𝑉𝑐𝑢𝑡 .

2. There is no spark ignition of the mixture, instead the mixture is
auto-ignited as a consequence of the higher compression ratios of
such engines.

This leads to a slight difference compared to the Otto cycle, as heat
addition through combustion now occurs at constant pressure as the fuel
is injected and expands the piston (for the Otto cycle, combustion is very
fast and occurs at constant Volume).

intake
valve

exhaust
valve

crankshaft
piston

fuel
injection

Figure 12.7: Diesel Engine
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𝑉𝑚𝑎𝑥𝑉𝑐𝑢𝑡𝑉𝑚𝑖𝑛

𝑃𝑚𝑎𝑥

𝑃𝑚𝑖𝑛

𝑊

exhaust

intake

𝑄in

𝑄out

𝑝

𝑉

C

D

A

B

0

Figure 12.8: pV (left) and TS (right) dia-
grams for the Diesel cycle

12.2.1 Diesel cycle process

1. Intake 0 → 𝐴: Air (instead of an Air-Fuel
mixture) is injected at atmospheric pressure.
The rest is identical to the Otto cycle.

2. Compression 𝐴 → 𝐵: Adiabatic compres-
sion identical to the Otto cycle. Usually for
Diesel engines, the compression factor is
much higher and the gas volume at the end
of compression is very small. The final tem-
perature is accordingly very high.

3. Fuel Injection 𝐵 → 𝐶: The Temperature is
high enough to ensure the auto-ignition of
the Air-Fuel mixture without the aid of a
spark plug (as in the Otto engine).

4. Explosion 𝐶 → 𝐷: Adiabatic expansion to
𝑉𝑚𝑎𝑥

5. Exhaust Valve Opens 𝐷 → 𝐴: Energy leaves
the system (𝑄𝑜𝑢𝑡), identical to the Otto cycle

6. Exhaust Stroke 𝐴→ 0: Identical to the Otto
cycle.
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Figure 12.9: Diesel cycle animation
(from https://animatedengines.com/
diesel.html)

12.2.2 Otto and Diesel cycle comparisons

Figure 12.10: pV (left) and TS (right)
diagram comparisons for the Otto and
Diesel cycles. Same compression rate 𝑟
on top; same 𝑝𝑚𝑎𝑥 , 𝑇𝑚𝑎𝑥 on bottom. red:
Diesel cycle. black: Otto cycle.

▶ For an identical compression rate 𝑟: 𝜂Otto > 𝜂Diesel
▶ For identical 𝑝𝑚𝑎𝑥 , 𝑇𝑚𝑎𝑥 : 𝜂Otto < 𝜂Diesel

https://animatedengines.com/diesel.html
https://animatedengines.com/diesel.html
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12.2.3 Efficiency of the Diesel cycle

𝜂 = 1 − 𝑄𝑜𝑢𝑡

𝑄𝑖𝑛

{
𝑄𝑜𝑢𝑡= 𝑛𝐶𝑣(𝑇𝐷 − 𝑇𝐴) (DA: constant volume process)
𝑄𝑖𝑛= 𝑛𝐶𝑝(𝑇𝐶 − 𝑇𝐵) (BC: constant pressure process)

𝜂 = 1 − 𝐶𝑣
𝐶𝑝

𝑇𝐷 − 𝑇𝐴
𝑇𝐶 − 𝑇𝐵

= 1 − 1
𝛾
𝑇𝐷 − 𝑇𝐴
𝑇𝐶 − 𝑇𝐵

𝑇𝐷 − 𝑇𝐴
𝑇𝐶 − 𝑇𝐵

=
𝑝𝐷𝑉𝑚𝑎𝑥 − 𝑝𝐴𝑉𝑚𝑎𝑥
𝑝𝐵𝑉𝑐𝑢𝑡 − 𝑝𝐵𝑉𝑚𝑖𝑛

=
𝑝𝐷 − 𝑝𝐴
𝑝𝐵

𝑉𝑚𝑎𝑥

𝑉𝑐𝑢𝑡 −𝑉𝑚𝑖𝑛
=

𝑝𝐷/𝑝𝐵 − 𝑝𝐴/𝑝𝐵
𝑉𝑐𝑢𝑡/𝑉𝑚𝑎𝑥 −𝑉𝑚𝑖𝑛/𝑉𝑚𝑎𝑥

𝑝𝐷𝑉
𝛾
𝑚𝑎𝑥 = 𝑝𝐵𝑉

𝛾
𝑐𝑢𝑡 → 𝑝𝐷/𝑝𝐵 = (𝑉𝑐𝑢𝑡/𝑉𝑚𝑎𝑥)𝛾 = 1/(𝑉𝑚𝑎𝑥/𝑉𝑐𝑢𝑡)𝛾

𝑝𝐴𝑉
𝛾
𝑚𝑎𝑥 = 𝑝𝐵𝑉

𝛾
𝑚𝑖𝑛
→ 𝑝𝐴/𝑝𝐵 = (𝑉𝑚𝑖𝑛/𝑉𝑚𝑎𝑥)𝛾 = 1/(𝑉𝑚𝑎𝑥/𝑉𝑚𝑖𝑛)𝛾

𝜂 = 1 − 1
𝛾
(𝑉𝑚𝑎𝑥/𝑉𝑐𝑢𝑡)−𝛾 − (𝑉𝑚𝑎𝑥/𝑉𝑚𝑖𝑛)−𝛾
(𝑉𝑚𝑎𝑥/𝑉𝑐𝑢𝑡)−1 − (𝑉𝑚𝑎𝑥/𝑉𝑚𝑖𝑛)−1

we define 𝑟 = 𝑉𝑚𝑎𝑥/𝑉𝑚𝑖𝑛 as for the Otto cycle, and 𝑟𝑒 = 𝑉𝑚𝑎𝑥/𝑉𝑐𝑢𝑡 in
addition. We may then write the efficiency as:

𝜂 = 1 − 1
𝛾

𝑟
−𝛾
𝑒 − 𝑟−𝛾

𝑟−1
𝑒 − 𝑟−1

(12.2)

12.3 Stirling cycle

Stirling cycle (1816): Regenerative Closed Cycle with a Heat Exchanger.

In a Stirling cycle, a working fluid in a gaseous state is exposed to a hot
and a cold boundary, leading to the cyclic expansion and compression
of the gas. This gas in turn pushes/pulls a piston, resulting in a net
conversion of heat energy to mechanical work.

This cycle has many advantages: The working gas always remains in the
engine (there is no gases admission/exhaust as in the Otto/Diesel cycles.
Stirling engines are therefore very simple and particularly silent.

During its first years, the Stirling cycle was a credible rival to the other
steam engine designs. However, several disadvantages for this process
precluded its more widespread use: the power/weight ratio is smaller
than in other steam engines, preventing its application to locomotion
engines; the starting/shutdown times are quite long; complexity of the
heat exchangers required for this engine; need for the boiler to be manu-
factured from heat-resistant materials to achieve large energy densities;
need for more exotic gases (typically hydrogen/helium) to achieve good
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cold
end

hot end

cold
end

hot
end

fly
wheel

loosely
fitting
piston

Figure 12.11: Two-cylinder – alpha (left)
and One-cylinder – beta (right) Stirling
Engine

Figure 12.12: pV (left) and TS (right) dia-
grams for the Stirling cycle

performances.

The Stirling cycle is nowadays used in cryogenic applications (production
and research on low-temperature materials) where this cycle is used
reversibly as a heat pump. As an example, the Rankine cycle (to be
discussed in Lecture 12), which is the common cycle for refrigerators,
is limited to minimum temperatures of −40 ◦C/−30 ◦C. However the
Stirling cycle allows reaching Temperatures down to −200 ◦C, which is
for example enough for liquefying air. The Rankine cycle cannot reach
such low temperatures owing to the absence of a refrigeration fluid with
practical applications with a vaporization temperature as low as that
temperature.
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12.3.1 Stirling Alpha cycle process

1. Isothermal Expansion 𝐴→ 𝐵:
Most of the gas in the system has just
been driven into the hot cylinder. The
gas heats and expands driving both
pistons outward.

2. Isochoric Transfer 𝐵→ 𝐶:
The gas has expanded (typically about
3 times). Most of the gas (about
2/3) is still located in the hot cylin-
der. Flywheel momentum carries the
crankshaft the next 90 degrees, trans-
ferring the bulk of the gas to the cool
cylinder.

3. Isothermal Contraction 𝐶 → 𝐷:
The majority of the expanded gas has
shifted to the cool cylinder. It cools
and contracts, drawing both pistons
inward.

4. Isochoric Transfer 𝐷 → 𝐴:
The contracted gas is still located in
the cool cylinder. Flywheel momentum
carries the crank another 90 degrees,
transferring the gas to back to the hot
cylinder to complete the cycle.

This engine also features a regenerator, illustrated in green. The regener-
ator is constructed of material that readily conducts heat and has a high
surface area, typically a mesh of closely spaced, thin metal plates. When
hot gas is transferred to the cool cylinder, it is first driven through the
regenerator, where a portion of the heat is deposited. When the cool gas is
transferred back, this heat is reclaimed; thus the regenerator “pre-heats”
and “pre-cools” the working gas, dramatically improving efficiency.
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Figure 12.13: Left: Stirling cycle,
Alpha configuration, animation
(from https://animatedengines.
com/vstirling.html); Right: Stirling
cycle, Ross Yoke (Gamma) config-
uration, animation (from https:
//animatedengines.com/ross.html);
Bottom: Stirling cycle, Beta con-
figuration, animation (from
https://animatedengines.com/
stirling.html)

12.3.2 Efficiency of the Stirling cycle

We have two isotherms and two isochors. Let us calculate the net work
W and the net heat input 𝑄′

𝑖𝑛
to the system. Here we need to account not

only for the heat transferred to the gas by the hot source 𝑄𝑖𝑛 but also the
heat supplied to the regenerator 𝑄𝑟𝑒 𝑔 :

W = 𝑛𝑅𝑇𝐻 ln
(
𝑉𝑚𝑎𝑥

𝑉𝑚𝑖𝑛

)
− 𝑛𝑅𝑇𝐶 ln

(
𝑉𝑚𝑎𝑥

𝑉𝑚𝑖𝑛

)
= 𝑛𝑅 (𝑇𝐻 − 𝑇𝐶) ln

(
𝑉𝑚𝑎𝑥

𝑉𝑚𝑖𝑛

)
𝑄′𝑖𝑛 = 𝑄𝑖𝑛 +𝑄𝑟𝑒 𝑔

= 𝑛𝑅𝑇𝐻 ln
(
𝑉𝑚𝑎𝑥

𝑉𝑚𝑖𝑛

)
+ 𝑛𝐶𝑣 (𝑇𝐻 − 𝑇𝐶)

We may now state the efficiency 𝜂 of the cycle:

𝜂 =
W
𝑄′
𝑖𝑛

=

𝑛𝑅 (𝑇𝐻 − 𝑇𝐶) ln
(
𝑉𝑚𝑎𝑥
𝑉𝑚𝑖𝑛

)
𝑛𝑅𝑇𝐻 ln

(
𝑉𝑚𝑎𝑥
𝑉𝑚𝑖𝑛

)
+ 𝑛𝐶𝑣 (𝑇𝐻 − 𝑇𝐶)

(12.3)

(note that the calculation for the efficiency was very straightforward

https://animatedengines.com/vstirling.html
https://animatedengines.com/vstirling.html
https://animatedengines.com/ross.html
https://animatedengines.com/ross.html
https://animatedengines.com/stirling.html
https://animatedengines.com/stirling.html
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given that this cycle only has a hot 𝑇𝐻 and a cold 𝑇𝐶 temperature, and no
fancy calculations are needed unlike the case of the Otto and Diesel cycles)

We now divide the upper and lower terms, respectively, by 𝑛𝑅 ln
(
𝑉𝑚𝑎𝑥
𝑉𝑚𝑖𝑛

)
1 and 𝑇𝐻 2

𝜂 =
W
𝑄′
𝑖𝑛

=
(𝑇𝐻 − 𝑇𝐶)

𝑇𝐻 +
𝐶𝑣

𝑅

(𝑇𝐻 − 𝑇𝐶)
ln (𝑉𝑚𝑎𝑥/𝑉𝑚𝑖𝑛)

1

=
�����: 𝜂carnot
1 − 𝑇𝐶/𝑇𝐻

𝐶𝑣

𝑅 ln (𝑉𝑚𝑎𝑥/𝑉𝑚𝑖𝑛)
�
�
�
���

𝜂carnot(
1 −

𝑇𝐶

𝑇𝐻

)
+ 1

2

=
𝜂carnot

1 + 𝜂carnot
𝐶𝑣

𝑅 ln (𝑉𝑚𝑎𝑥/𝑉𝑚𝑖𝑛)

< 𝜂carnot. (12.4)

We now may note that we considered the energy 𝑄𝑟𝑒 𝑔 given to the
regenerator to be lost. However, this energy is reclaimed by the fluid once
it traverses the regenerator in the opposite direction. If we consider that
the regenerator is 100% efficient (regenerators with efficiencies of up to
95% are considered to be practically feasible [1]), then we may remove the [1]: Nielsen et al. (2019), Stirling engine

regenerators: How to attain over 95% re-
generator effectiveness with sub-regenerators
and thermal mass ratios

term 𝑛𝐶𝑣 (𝑇𝐻 − 𝑇𝐶) corresponding to𝑄𝑟𝑒 𝑔 from the efficiency expression
in Eq. 12.3, since this input energy is later reclaimed. Then, the efficiency
in Eq. 12.3 becomes simply the Carnot efficiency 𝜂carnot.

How can this be? Is it possible to have a real engine that is equivalent to
the idealized Carnot engine?

Well, yes and no...

Indeed, the idealized cycle corresponds to a Carnot cycle, if we assume
100% efficiency in heat transfer from the regenerator. Looking at the T–S
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diagram, we immediately understand that the areas for the Stirling cycle
and an equivalent Carnot cycle between 𝑇𝐻 and 𝑇𝐶 are equivalent:

Nevertheless, “real-life” irreversibilities work to bring the efficiencies of
the Stirling cycle well below the Carnot cycle. We need to once again
re-examine our regenerator properties. Although 95% efficiencies in heat
transfer are nothing to scoff at, one needs to consider that the regenerator
will induce a considerable amount of drag in the fluid movement, and
the friction losses will be considerable, requiring more work from the
piston to be allocated to moving the fluid back and forth. Further, and
analogously to other cycles, the four processes won’t be exactly isothermal
or isochoric. A comparison of the ideal Stirling cycle with a real one is
presented in Fig. 12.14.

Figure 12.14: Stirling cycle: Ideal (black)
vs. real (red).

All things said, the fact that this cycle operates with an external heat
source, with combustion operating as a steady-process, means that the
potential for optimization is considerable. Since the working fluid is
enclosed in the machine, we may further optimize it, using stable, inert,
and highly conductive gases like hydrogen or helium.

Clearly, research on this class of engines is still ongoing at a steady pace,
and who knows what improvements the future will bring us from the
minds of bright engineers?

What future for Piston engines?

It is likely that we will soon look at Otto and Diesel piston engines as we
look at piston steam-engines from the 19th Century: Great inventions
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that were superseded by more efficient technologies, better adapted
to the realities of the 21st Century. Nowadays, the de-carbonization of
the different World economies moves at a steady pace, and electric
vehicles are slowly displacing ICE (Internal Combustion Engine)
vehicles, owing to a key advantage which is that these vehicles do not
produce greenhouse and other polluting gases, and their batteries
may be charged by renewable power sources.
“Yet, despite their drawbacks, classic engines still have something mythical
about them – their intricate mechanisms are synchronized together to create
carefully controlled conditions for harnessing fire in a truly Promethean way.”
(from https://ciechanow.ski/internal-combustion-engine/)

Figure 12.15: Prometheus Brings Fire to Mankind – Painting by Heinrich Fuger

Supplementary Material

Don’t forget to check this excellent webpage and its animations which will
teach you all you need to know about the inner workings of an Otto cycle
gasoline engine:https://ciechanow.ski/internal-combustion-engine/

https://ciechanow.ski/internal-combustion-engine/
https://ciechanow.ski/internal-combustion-engine/
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Nomenclature

Variables:

▶ 𝑛: Number of moles 𝑛 = 𝑁/𝑁𝑎 [mol]
▶ 𝑁 : Number of particles [-]
▶ 𝑝: Pressure [Pa]
▶ 𝑄: Heat [J]
▶ 𝑆: Entropy [J/K]
▶ 𝑇: Temperature [K]
▶ 𝑉 : Volume [m3]
▶ 𝑊 : Work [J]

▶ 𝑟: Compression ratio of an engine [-]
▶ 𝑟𝑒 : Power stroke ratio for a Diesel engine [-]
▶ 𝐶𝑣 : Molar Specific Heat at Constant Pressure [J/(mol K)]
▶ 𝐶𝑣 : Molar Specific Heat at Constant Volume [J/(mol K)]
▶ 𝛾: Specific Heats ratio 𝛾 = 𝐶𝑝/𝐶𝑣 [-]
▶ 𝜂: Efficiency of an Engine 𝜂 =𝑊/𝑄𝑖𝑛 [-]

Constants:

▶ 𝑅 = 8.31447 [J/(mol K)]: Universal Gas Constant

Acronyms, subscripts and superscripts

▶ 𝐶: cold
▶ 𝐻: hot
▶ 𝑚𝑖𝑛: minimum
▶ 𝑚𝑎𝑥: maximum
▶ 𝑖𝑛: from the outside towards the system
▶ 𝑜𝑢𝑡: from the system towards the outside
▶ 𝑟𝑒 𝑔: regenerator
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Chapter Summary

▶ Otto Cycle (Gasoline Engine);

• Cycle: adiabatic, isochoric, adiabatic, isochoric;
• Efficiency: 𝜂 = 1 − 𝑟(1 − 𝛾) with 𝑟 = 𝑉𝑚𝑎𝑥/𝑉𝑚𝑖𝑛 (engine

compression ratio)

▶ Diesel Cycle;

• Cycle: adiabatic, isobaric, adiabatic, isochoric;
• Efficiency: 𝜂 = 1−(1−𝛾)×[𝑟(𝑐−𝛾)−𝑟(−𝛾)]/[𝑟(𝑐−1)−𝑟(−1)]

with 𝑟 = 𝑉𝑚𝑎𝑥/𝑉𝑚𝑖𝑛 (engine compression ratio), and 𝑟𝑐 =
𝑉𝑚𝑎𝑥/𝑉𝑐𝑢𝑡 (engine cutoff ratio);

▶ Stirling Cycle;

• Cycle: isothermal, isochoric, isothermal, isochoric;
• Efficiency: 𝜂 = 𝜂𝐶𝑎𝑟𝑛𝑜𝑡/{1+𝜂𝐶𝑎𝑟𝑛𝑜𝑡[𝐶𝑣/𝑅 ln(𝑉𝑚𝑎𝑥/𝑉𝑚𝑖𝑛)]}

with 𝑟 = 𝑉𝑚𝑎𝑥/𝑉𝑚𝑖𝑛 (engine compression ratio).

Recommended readings
▶ Moran & Shapiro, “Fundamentals of Engineering Thermodynamics”

[2], for Chapters 9.0, 9.1, 9.2, 9.3, 9.8.

Thermodynamics and Culture: Relevant Works

Chapter 12 has discussed the internal combustion engine (ICE), a mainstay
of the 20th Century of ground, sea and air transportation. The internal
combustion engine made automobiles possible, and the development of
mass production techniques in the 1920’s made the Automobile available
for increasingly higher fractions of the population in industrialized
countries.

The focus of this chapter’s section on Thermodynamics and Culture is
simple the Automobile, whose prevalence in our modern societies has
made it a Cultural Icon.

Automobiles have revolutionized transportation, reshaped cities and sub-
urbs, stimulated economic growth, and transformed social interactions.
Prior to the automobile, travel was limited by the constraints of horse-
drawn carriages and the reach of railroads. Cars enabled individuals and
families to travel farther and more conveniently, fostering a new sense of
independence. The open road became a symbol of freedom, adventure.

Beyond the practicalities of transportation, the automobile represents
the ability to explore new frontiers, seek opportunities, and achieve
personal independence. The pride associated with car ownership, from
the first family vehicle to the dream car in the garage, speaks to a broader
narrative of success and achievement that resonates across generations.

Yet, starting in the 70’s, more dark undertones have been associated to
automobiles, with the newfound awareness of the negative ecological im-
pact of internal combustion engines, and the fear of dwindling resources
which may ultimately lead to societal collapse.
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Our selected work of art is accordingly the original movien from The Mad
Max series. These have for a generation embodied our darker societal
phantasms, depicting a near-future of societal collapse with lawfulness
and anarchy reigning in the wasteland at the hands of marauders rov-
ing in supercharged vehicles, fighting for the last scraps of our fallen
civilization.

George Miller, “Mad Max”, 1979

“She’s the last of the V8s. She sucks nitro... with Phase 4 heads! 600 horsepower through the wheels!
She’s meanness set to music and the bitch is born to run!”

Barry, Main Force Patrol Garage Mechanic
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12.A Appendix: Superchargers and
Turbochargers

The Otto cycle design described in this chapter corresponds to a naturally
aspired internal combustion engine. The power these engines may create
is limited by the amount of air the pistons can pull into the cylinders.

This limitation can be critical for car engines traveling at high altitudes,
and more importantly, for piston aircraft where flying at higher alti-
tudes/lower densities leads to significant reductions in engine power.

To overcome this limitation, so-called Superchargers and Turbochargers
have been designed to force more air into the volume compressed by
the piston engine, by using a compressor that increases the pressure of
the air which is delivered to the engine. The difference between both
concepts lies in the way this compressor is powered:

1. for Superchargers, the compressor is directly driven by the engine
crankshaft through a belt drive;

2. for Turbochargers, the compressor is driven by a small turbine,
powered by the engine exhaust gases which exit the engine at
pressures above atmospheric pressure.

An additional device that can be added between the compressor and the
engine is an Intercooler which will bring down the temperature of the
compressed gas and allow injecting higher quantities of gas (since the
density of the gas will increase as it is cooled).

The diagrams for both systems are presented in Fig. 12.16. Engineering
schematics for both systems are presented in Fig. 12.17. The corresponding
thermodinamic cycle is presented in Fig. 12.18.

Figure 12.16: Supercharger and Tur-
bocharger diagrams

Figure 12.17: Supercharger and Tur-
bocharger schematics
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Figure 12.18: Ideal 𝑝𝑉 diagram for
a turbocharged engine; adapted from:
Nicholas C. Baines, Fundamentals of Tur-
bocharging. Vermont: Concepts NREC,
2004.

The advantages and drawbacks for each system may be defined as
follows:

▶ Supercharger: compressor powered by engine output;
• No turbo-lag;
• Does not impact exhaust treatment;
• Less efficient than turbo-charging;

▶ Turbocharger: compressor powered by exhaust turbine;
• More direct utilization of exhaust energy;
• Turbo-lag problem;
• Affects exhaust treatment;

▶ Intercooler:
• Increase charge density (hence output power) by cooling the

charge;
• Lowers NOx emissions;
• Suppresses knock;

12.A.1 Supercharging Power

The power required for driving the supercharger is determined according
to the equation:

𝑊𝑐 = 𝑚1𝐶
𝑎𝑡𝑚
𝑝 𝑇1/𝜂


(
𝑝2

𝑝1

) 𝛾−1
𝛾

− 1
 (12.5)

Where:

▶ 𝜂: Isentropic efficiency of the supercharger;
▶ 𝑝1,𝑇1: atmospheric air pressure and temperature;
▶ 𝑝2,𝑇2: atmospheric air pressure and temperature at end of compres-

sion.

This power is supplied either by:

▶ Gas turbine driven by exhaust gas energy of the engine;
▶ Separate drive by motor or any other prime mover driving the

supercharger;
▶ Connecting the supercharger to the engine output shaft.
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Figure 12.19: Additional diagrams.

12.A.2 Turbocharged Aircraft Piston Engines

Aircraft piston engines are typically turbocharged. See Fig. 12.20 for a
schematic example.

Figure 12.20: Aeronautic Turbocharged
Engine

One of the most successful aircraft engines of the World War II era was
the British Rolls-Royce Merlin, a liquid-cooled V–12 piston engine with
27-litre capacity, first ran in 1933, with mass production launched in 1936.
The first operational aircraft to enter service using the Merlin were the
Fairey Battle, Hawker Hurricane and Supermarine Spitfire.

The Merlin continued to benefit from a series of rapidly-applied de-
velopments, which markedly improved the engine’s performance and
durability. Starting at 1,000 horsepower (750 kW) for the first production
models, most late war versions produced just under 1,800 horsepower
(1300 kW), and the very latest version as used in the de Havilland Hornet
over 2,000 horsepower (1500 kW).
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Figure 12.21: Rolls–Royce Merlin V–12 engine that powered the Supermarine Spitfire, the legendary WWII plane.



13 Control Volumes, Gas and Vapor Power Sys-
tems

▶ Aeronautics

▶ Trains

▶ Shipping

▶ Electrical Generators

▶ Pumps

▶ Gas Compressors

▶ Tanks
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Working Principles

▶ Axial Compressor and Axial Turbine connected
by a shaft

▶ The turbine is acted by a hot gas which expands
and performs work

▶ The work exerted on the turbine acts the com-
pressor, which returns a part of the work to the
incoming fluid, compressing it

▶ The combustion chamber heats the gas between
the compressor and the turbine

Thermodynamic cycles

Closed cycle

intake
valve

exhaust
valve

crankshaft

piston

spark
plug

The thermodynamic processes occur in a closed volume

Open cycle

The working fluid is injected, travels inside the engine, and is
expelled at the end of the process

Closed cycle Open cycle
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Different Gas engine types

▶ 1 Turbojet

▶ 2 Turboprop

▶ 3 Turboshaft (Generator)

▶ 4 Turbofan

▶ 5 Turbofan with afterburner
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13.1 Open Thermodynamic Cycles and Control
Volumes

We define a control volume such as:

We will now consider a given amount of matter Δ𝑚𝑖𝑛 joining the rest of
the matter in the control volume, pushing an amount of matter Δ𝑚𝑜𝑢𝑡

from the same control volume after a time interval Δ𝑡.

Let us define:𝐸(𝑡) the energy in the control volume at time 𝑡, and𝐸(𝑡+Δ𝑡)
the energy in the control volume at time 𝑡 + Δ𝑡.

On a first approach, we will ignore the potential energy 𝑈𝑝 and the
kinetic energy 𝐾 of the fluid.

We accordingly consider 𝐸 ≡ 𝑈

1
{
𝑈1 = 𝑈(𝑡) +Δ𝑚𝑖𝑛𝑢𝑖𝑛 : energy of the “system” at 𝑡
𝑈2 = 𝑈(𝑡 + Δ𝑡)+Δ𝑚𝑜𝑢𝑡𝑢𝑜𝑢𝑡 : energy of the “system” at 𝑡 + Δ𝑡

2
{
𝑈2 −𝑈1 = 𝑄 −𝑊
𝑊 =𝑊𝑥 − 𝑝𝑖𝑛𝑉𝑖𝑛 + 𝑝𝑜𝑢𝑡𝑉𝑜𝑢𝑡

Here𝑊 is the work performed ont the “system” (where “system”≡quantity
of matter in consideration) and𝑊𝑥 is the work performed on the control
volume. Here the state variables (𝑝, 𝑉, 𝑚, 𝑢) define the red “system” ■
(𝑖𝑛 subscript) and the green “system” ■ (𝑜𝑢𝑡 subscript).

We now adjoin 1 + 2 , replace Volume 𝑉 [m3] by the product of the
Specific Volume and Mass 𝑣 × Δ𝑚 [m3/kg] × [kg] and we may write:
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𝑈(𝑡 + Δ𝑡) −𝑈(𝑡) + Δ𝑚𝑜𝑢𝑡𝑢𝑜𝑢𝑡 − Δ𝑚𝑖𝑛𝑢𝑖𝑛 = 𝑄 −𝑊𝑥 + 𝑝𝑖𝑛𝑉𝑖𝑛 − 𝑝𝑜𝑢𝑡𝑉𝑜𝑢𝑡

Let us now divide this expression by Δ𝑡:

𝑈(𝑡 + Δ𝑡) −𝑈(𝑡)
Δ𝑡

=
𝑄

Δ𝑡
−𝑊𝑥

Δ𝑡
+𝑝𝑖𝑛𝑣𝑖𝑛

Δ𝑚𝑖𝑛

Δ𝑡
−𝑝𝑜𝑢𝑡𝑣𝑜𝑢𝑡

Δ𝑚𝑜𝑢𝑡

Δ𝑡
+Δ𝑚𝑖𝑛

Δ𝑡
𝑢𝑖𝑛−

Δ𝑚𝑜𝑢𝑡

Δ𝑡
𝑢𝑜𝑢𝑡

In the limit Δ𝑡 → 0,

d𝑈
d𝑡

= ¤𝑄 − ¤𝑊𝑥 + ¤𝑚𝑖𝑛 (𝑝𝑖𝑛𝑣𝑖𝑛 + 𝑢𝑖𝑛)︸          ︷︷          ︸
ℎ𝑖𝑛

− ¤𝑚𝑜𝑢𝑡 (𝑝𝑜𝑢𝑡𝑣𝑜𝑢𝑡 + 𝑢𝑜𝑢𝑡)︸              ︷︷              ︸
ℎ𝑜𝑢𝑡

where ℎ is the specific enthalpy (see Chapter 6).

If we further consider the system to be in the stationary regime, we have
d𝑈/d𝑡 = 0 and ¤𝑚𝑖𝑛 = ¤𝑚𝑜𝑢𝑡 (this means that there is a steady mass flow
at a rate measured in kg/s). The equation above simplifies to:

¤𝑄 − ¤𝑊𝑥 + ¤𝑚 (ℎ𝑖𝑛 − ℎ𝑜𝑢𝑡) = 0 (13.1)

Work of a Fluid: Demonstration:

Let us consider the fluid as an imaginary piston which pushes the
fluid element into the control volume:

We have 𝐹 = 𝑝𝐴.

Let us now consider that the fluid must perform work throughout
a length 𝐿 to push the overall fluid element into the control volume:
𝑊𝑓 𝑙𝑢𝑖𝑑𝑜 = 𝐹 · 𝐿. We obtain:

𝑊𝑓 𝑙𝑢𝑖𝑑 = 𝐹𝐿 = 𝑝𝐴𝐿 = 𝑝𝑉

accordingly, the work per unit mass will be:

𝑤 𝑓 𝑙𝑢𝑖𝑑𝑜 [J/kg] = 𝑝 [Pa]𝑉 [m3/kg]

where 𝑣 is now the specific volume.
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13.1.1 Accounting for the fluid potential and kinetic
energy

Potential energy

Let us consider the case of a water dam where the potential energy is
converted into work W:

Here the work is produced through the decrease of the potential energy
Δ𝑈𝑝 of the water and we have

Δ ¤𝑈𝑝 = ¤𝑚𝑜𝑢𝑡 𝑔𝑧𝑜𝑢𝑡 − ¤𝑚𝑖𝑛 𝑔𝑧𝑖𝑛

Kinetic energy

The fluid may have an inlet velocity 𝑣𝑖𝑛 and an outlet velocity 𝑣𝑜𝑢𝑡 with
different magnitudes.

We accordingly have:

Δ ¤𝐾 =
1
2
¤𝑚𝑜𝑢𝑡𝑣

2
𝑜𝑢𝑡 −

1
2
¤𝑚𝑖𝑛𝑣

2
𝑖𝑛

General form for the Energy balance equation (1st Law) for a control
volume

The inclusion of the flow potential energy and kinetic energy changes
yields the general equation for the 1st Law in terms of control volumes:

¤𝑄 − ¤𝑊𝑥 + ¤𝑚
(
ℎ𝑖𝑛 +

𝑣2
𝑖𝑛

2
+ 𝑔𝑧𝑖𝑛 − ℎ𝑜𝑢𝑡 −

𝑣2
𝑜𝑢𝑡

2
− 𝑔𝑧𝑜𝑢𝑡

)
= 0 (13.2)

This energy balance equation may also be expressed in mass unit terms:

¤𝑞 − ¤𝑤𝑥 + ℎ𝑖𝑛 +
𝑣2
𝑖𝑛

2
+ 𝑔𝑧𝑖𝑛 − ℎ𝑜𝑢𝑡 −

𝑣2
𝑜𝑢𝑡

2
− 𝑔𝑧𝑜𝑢𝑡 = 0 (13.3)

with ¤𝑞 = ¤𝑄
𝑚 and ¤𝑤𝑥 =

¤𝑊𝑥

𝑚 in J/(kg s) units.
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13.1.2 Mass balance in a stationary regime

For a stationary regime: ∑
𝑖𝑛

¤𝑚 =
∑
𝑜𝑢𝑡

¤𝑚 [kg/s]

The mass flux may be defined as a function of the flow density 𝜌, its
normal velocity to the flow cross-section area 𝑣𝑛 and its cross-section
area 𝐴:

¤𝑚 =

∫
𝐴

𝜌𝑣𝑛d𝐴

For a quasi-1D flow we will accordingly have:

¤𝑚 = 𝜌𝐴𝑣

If we consider the mass balance in a steady-flow regime ( ¤𝑚𝑖𝑛 = ¤𝑚𝑜𝑢𝑡) we
have:

𝜌𝑖𝑛𝐴𝑖𝑛𝑣𝑖𝑛 = 𝜌𝑜𝑢𝑡𝐴𝑜𝑢𝑡𝑣𝑜𝑢𝑡 (13.4)

For the particular case of an incompressible fluid (for example a liquid)
we may further simplify the previous expression to:

𝐴𝑖𝑛𝑣𝑖𝑛 = 𝐴𝑜𝑢𝑡𝑣𝑜𝑢𝑡

13.1.3 Entropy balance in a stationary regime

For a closed system we have:

Δ𝑆𝑠𝑦𝑠. = 𝑆2 − 𝑆1 =

∫ 2

1

𝛿𝑄
𝑇
+ 𝑆𝑔𝑒𝑛. =

∑
𝑘

𝑄𝑘

𝑇𝑘
+ 𝑆𝑔𝑒𝑛.

The entropy change of a closed system during a process is equal to the
sum of the net entropy transferred through the system boundary by heat
transfer and the entropy generated within the system boundaries.

For a control volume we have:

d𝑆𝑐𝑜𝑛𝑡.𝑣𝑜𝑙.
𝑑𝑡

=
∑
𝑖

¤𝑄𝑖

𝑇𝑖
+ ¤𝑚𝑖𝑛𝑠𝑖𝑛 − ¤𝑚𝑜𝑢𝑡 𝑠𝑜𝑢𝑡 + ¤𝑆𝑔𝑒𝑛.

The rate of entropy change within the control volume during a process
is equal to the sum of the rate of entropy transfer through the control
volume boundary by heat transfer, the net rate of entropy transfer into the
control volume by mass flow, and the rate of entropy generation within
the boundaries of the control volume as a result of irreversibilities.
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If we have a constant mass flux then we have d𝑆𝑐𝑜𝑛𝑡.𝑣𝑜𝑙.
𝑑𝑡

= 0 and the above
expression simplifies to:

− ¤𝑆𝑔𝑒𝑛. =
∑
𝑖

¤𝑄𝑖

𝑇𝑖
+ ¤𝑚 (𝑠𝑖𝑛 − 𝑠𝑜𝑢𝑡)

Further, if the wall is adiabatic ( ¤𝑄 = 0):

− ¤𝑆𝑔𝑒𝑛. = ¤𝑚 (𝑠𝑖𝑛 − 𝑠𝑜𝑢𝑡)

13.2 Ideal Gas Turbine Cycle: The Brayton Cycle

Proposed in 1870.

Figure 13.1: Open (left) and closed (right) Brayton cycles

The cycle is composed by four reversible processes:

▶ 1→ 2 : Isentropic Compression in the Compressor.
▶ 2→ 3 : Isobaric (constant 𝑝) Heat Addition in the Combustion

Chamber (open cycle)/Heat exchanger (closed cycle).
▶ 3→ 4 : Isentropic Expansion in the Turbine.
▶ 4→ 1 : Isobaric (constant 𝑝) Heat Rejection in the Exhaust (open

cycle)/Heat exchanger (closed cycle).

Figure 13.2: pV (left) and TS (right) dia-
grams for the Brayton cycle
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13.3 Efficiency of the Brayton Cycle

Since the working fluid is constantly being injected into the engine, we
need to use the expression of the 1st Law for a control volume in mass
units (Eq. 13.3):

(𝑞𝑖𝑛 − 𝑞𝑜𝑢𝑡) + (𝑤𝑖𝑛 − 𝑤𝑜𝑢𝑡) = ℎ𝑜𝑢𝑡 − ℎ𝑖𝑛

For the heat addition and removal parts of the cycle, 𝑊𝑖𝑛 = 𝑊𝑜𝑢𝑡 = 0.
Considering that Δℎ = 𝐶𝑝Δ𝑇 we have:

{
𝑞𝑖𝑛= ℎ3 − ℎ2 = 𝐶𝑝(𝑇3 − 𝑇2)
𝑞𝑜𝑢𝑡= ℎ4 − ℎ1 = 𝐶𝑝(𝑇4 − 𝑇1)

,

and we may accordingly calculate in a straightforward fashion the
efficiency1 1: 𝑊𝑒 𝑓 𝑓 = 𝑊𝑡𝑢𝑟𝑏 −𝑊𝑐𝑜𝑚𝑝 . The turbine

uses part of the work received by the
fluid to act the compressor. Only the re-
maining work is available in the machine.

for the Brayton cycle:

𝜂Brayton =
𝑊𝑒 𝑓 𝑓

𝑞𝑖𝑛
= 1− 𝑞𝑜𝑢𝑡

𝑞𝑖𝑛
= 1−

𝐶𝑝(𝑇4 − 𝑇1)
𝐶𝑝(𝑇3 − 𝑇2)

= 1− 𝑇1(𝑇4/𝑇1 − 1)
𝑇2(𝑇3/𝑇2 − 1) (13.5)

As processes 1→ 2 and 3→ 4 are isentropic, and as processes 2→ 3
and 4→ 1 are constant pressure we have:


𝑝2 = 𝑝3; 𝑝4 = 𝑝1

𝑇2
𝑇1

=

(
𝑝2

𝑝1

) 𝛾 − 1
𝛾

=

(
𝑝3

𝑝4

) 𝛾 − 1
𝛾

=
𝑇3
𝑇4

,

And we accordingly have

𝑇2
𝑇1

=
𝑇3
𝑇4
⇒ 𝑇4 =

𝑇1𝑇3
𝑇2

Replacing 𝑇4 in Eq. 13.5 we have:

𝜂Brayton = 1 − 𝑇1(��𝑇1𝑇3/𝑇2��/𝑇1 − 1)
𝑇2(𝑇3/𝑇2 − 1)

= 1 − 𝑇1�����(𝑇3/𝑇2 − 1)
𝑇2�����(𝑇3/𝑇2 − 1)

= 1 − 𝑇1
𝑇2

= 1 − 1
𝑇2/𝑇1

Since 𝑇2
𝑇1

=

(
𝑝2

𝑝1

) 𝛾−1
𝛾

we have
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𝜂Brayton = 1 − 1

𝑟

(
𝛾−1
𝛾

)
𝑝

(13.6)

where 𝑟𝑝 = 𝑝2/𝑝1 is the pressure ratio.

Typical compression
ratios for gas-turbine
engines
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Figure 13.3: Theoretical efficiency of the
Brayton cycle as a factor of the pressure
ratio 𝑟𝑝 .

Gas turbines are typically limited by the maximum temperature at tur-
bine inlet (𝑇3), owing to the metallurgical limitations of these devices
(excessively high temperatures may deform the turbine blades and seize
the turbine.

Since the invention of the first turbines in the 1940’s until today, progress
in metallurgy, compounded with new techniques for the internal cooling
of turbine blades, and further compounded with the spray addition of
protective ceramic coatings, have brought the maximum temperature
𝑇𝑚𝑎𝑥3 from about 540 ◦C in 1940 up to 1425 ◦C (or more) today.

Accounting for these temperature limitations, we may verify that there
is an optimized value for the pressure ratio 𝑟𝑝 for which the cycle work
may be maximized:

13.3.1 Application to Aeronautic Gas Turbines

In the case of an aeronautic gas turbine, the main goal is to obtain the
maximum amount of thrust (e.g. maximize the quantity of movement
𝑇 = 𝑚 𝑓 𝑙𝑜𝑤𝑣 𝑓 𝑙𝑜𝑤 that the engine sends backward so that the aircraft may
advance forward (according to Newton’s action/reaction principle). In
this specific case the turbine only produces the minimum amount of
work required for acting the compresssor, and the exhaust gases exit the
turbine at a pressure above the atmospheric pressure, performing less
work.

There is an additional phase in the cycle where the addition of a noz-
zle will contract the gas, leading to its acceleration according to the
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Figure 13.4: For fixed values of 𝑇𝑚𝑖𝑛
and 𝑇𝑚𝑎𝑥 , the net work of the Bray-
ton cycle first increases with the pres-
sure ratio, then reaches a maximum at
𝑟𝑝 = (𝑇𝑚𝑎𝑥/𝑇𝑚𝑖𝑛)𝛾/[2(𝛾−1)], and finally
decreases.

mass conservation principle 𝜌𝐴𝑣 = 𝑐𝑜𝑛𝑠𝑡.. Analogously, a diffuser is
added in front of the compressor, which operates in an opposite fashion,
expanding (and accordingly decelerating) the gas before compressor inlet.

We may invoke the Bernoulli principle:

𝑣2

2
+ 𝑝

𝜌
+��>

usually ignored
𝑔𝑧 = 𝑐𝑜𝑛𝑠𝑡.

to conclude that the pressure of the fluid will be inversely proportional
to the square of its velocity2 2: in the case of a liquid or an incom-

pressible gas this simplifies to 𝑝 + 𝑣2
2 =

𝑐𝑜𝑛𝑠𝑡.

Figure 13.5: pV (left) and TS (right) dia-
grams for the Aeronautic Brayton cycle

One may further note that modern aeronautical gas turbines generate
additional work to action turbofans or turboprops which further accelerate
the fluid (externally to the engine), further increasing the efficiency of
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the momentum transfer (think of a person rowing a boat. maximum
efficiency is achieved by relatively slow paddling, but displacing a high
aount of water).

For these cases, the efficiency is calculated as:

𝑊𝑝 = ¤𝑚
(
𝑣
𝑔𝑎𝑠

𝑜𝑢𝑡 − 𝑣
𝑔𝑎𝑠

𝑖𝑛

)
𝑣𝑎𝑖𝑟𝑐𝑟𝑎 𝑓 𝑡 [kW]

⇒ 𝜂 =
¤𝑊𝑝

¤𝑄𝑖𝑛

where𝑊𝑝 is the “propulsive power” and 𝑄𝑖𝑛 is the added heat.
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13.4 The Rankine Cycle

▶ The Rankine cycle is an idealized cycle for “steam operated engines”
▶ About 80% of the electricity production around the work is carried

out according to the Rankine cycle. And this is not only for fossil
fuels, but for a wide array of heat sources (coal, natural gas, biomass,
nuclear, or solar)

▶ This cycle is often referred as a practical implementation of a Carnot
cycle, since its T–S diagram is very similar to the one from the
Carnot cycle

▶ The main difference lies in the heat addition (boiler) and heat
rejection (condenser) processes are isobaric instead of isothermal
as in Carnot’s cycle

▶ One part of the cycle is performed in the gas phase, the other one in
the liquid phase. Same as a 19th Century vapor engine (see Lecture
6).

▶ One key advantage of a phase change in the cycle is that the liquid
water phase is incompressible, and therefore very little energy is
needed to significantly raise its pressure, compared to the energy
necessary to compress a gas. The pump usually consumes the
equivalent of 1-3% of the energy output of a turbine, and this
energy is frequently omitted in thermodynamic cycles calculations.

▶ The Rankine cycle efficiency is limited by the kind of fluid that
is utilized. The temperature range varies between 500–600 ◦C at
turbine inlet and 30 ◦C at condenser outlet.

▶ For such a temperature range the Carnot efficiency is:

𝜂𝑐𝑎𝑟𝑛𝑜𝑡 = 1 − 30 + 273.15
600 + 273.15

≃ 66% (13.7)

The real efficiency of the best vapor centrals is 𝜂 = 42%.
▶ The fluid runs on a closed cycle and is constantly re-utilized. This

is different from the Otto/Diesel cycles where the working fluid is
renovated after each cycle.

▶ One of the favorite liquids for this cycle is simply water: non-toxic,
cheap, plentiful, and with good thermodynamic properties
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One of the main advantage for this cycle is the low amount of work that
the pump needs to supply to increase the pressure of the fluid: Since the
fluid is in the liquid phase, and is essentially incompressible, very little
work needs to be done by the pump (𝑊 =

∫
𝑝d𝑉 ∼ 0 since d𝑉 → 0).

Typically the pump will only consume around 1–3% of the power sup-
plied by the turbine.

The usual 4 processes are:

▶ 1→ 2: The fluid in its liquid phase is compressed from 𝑝𝑙𝑜𝑤 to 𝑝ℎ𝑖𝑔ℎ .
The pump spends a low amount of energy (adiabatic, reversible→
isentropic process).

▶ 2→ 3: The high-pressure liquid is heated in the boiler at 𝑝 = 𝑐𝑜𝑛𝑠𝑡.,
where heat is added by an external source (usually combustion, but
also heating from nuclear fission reactions). The liquid temperature
raises up until the liquid starts evaporating at 𝑇 = 𝑐𝑜𝑛𝑠𝑡.

▶ 3→ 4: The vapor expands in the turbine, performing work. 𝑇 and
𝑝 decrease (adiabatic, reversible expansion).

▶ 3′→ 4’: We may improve the cycle and perform more work if we
add additional heat, bringing the fluid to a superheated vapor, and
then injecting it into the turbine. Turbine designs work better it
the quality of the steam is high (e.g. little to no condensated water
during the 3′→ 4′ cycle).
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▶ 4 → 1: Constant pressure heat rejection in the condenser, trans-
forming vapor into water.

Note that we do not have an ideal gas in this cycle, but instead a much
more complex two-phase flow. It is not possible to straightforwardly
calculate efficiency 𝜂 from a 𝑝𝑉 diagram. In practical applications we
note that this cycle involves two temperature limits (𝑇𝐻 and 𝑇𝐶) and two
pressure limits (𝑝𝑙𝑜𝑤 and 𝑝ℎ𝑖𝑔ℎ), so we will be instead using steam tables
at given pairs of temperature 𝑇 and pressure 𝑝.

Why using Enthalpy?

The enthalpy of an ideal gas is independent of its pressure or vol-
ume, and depends only on its temperature, which correlates to its
thermal energy. Real gases at common temperatures and pressures
often closely approximate this behavior, which simplifies practical
thermodynamic design and analysis.
Noting that the total energy of a flowing fluid is equal to its en-
thalpy when the kinetic and potential energies are negligible, we
may then use thermodynamic tables to perform cycle analysis more
straightforwardly.

From the definition of Enthalpy we have

𝐻 = 𝑈 + 𝑝𝑉, (13.8)

and from the First Law we have

Δ𝑈 = 𝑄 −𝑊 = 𝑄 − 𝑝d𝑉. (13.9)

For processes at constant pressure, we have

Δ𝐻 = Δ𝑈 + 𝑝Δ𝑉 (13.10)

and injecting Eq. 13.9 into 13.10 we may write

Δ𝐻 = Δ𝑄

which means that

(d𝐻)𝑝 = (d𝑄)𝑝 .

Since heat addition and rejection is carried out at constant pressure, the
amount of added/rejected heat𝑄𝑖𝑛/𝑄𝑜𝑢𝑡 is simply 𝐻3 −𝐻2 and 𝐻4 −𝐻1
respectively3 3: for practical calculations we instead

use the specific enthalpy ℎ considering
𝐻 = 𝑚ℎ

, and the efficiency 𝜂 of the cycle is simply:

𝜂 = 1 − 𝑄𝑜𝑢𝑡

𝑄𝑖𝑛
= 1 − 𝐻4 − 𝐻1

𝐻3 − 𝐻2
≃ 1 − 𝐻4 − 𝐻1

𝐻3 − 𝐻1
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since liquids are incompressible d𝑉 ∼ 0 and the pump work𝑊 = 𝑝d𝑉 ≃
0 adds very little energy to the water. We accordingly have 𝐻2 ≃ 𝐻1.

To close the calculation of the cycle, we may then assume than in process
3→ 4 there is no entropy variation, and we may use the steam tables
assuming4 4: for non-isentropic processes, we may

consider a lower efficiency 𝜂 for the tur-
bine, and then 𝑆4 = 𝑆3/𝜂

that 𝑆4 = 𝑆3 and then finding out the corresponding enthalpy
𝐻4 that has the enthalpy 𝑆3 at the lower pressure 𝑝4 = 𝑝𝑙𝑜𝑤 . The work
supplied by the flow to the turbine is simply:

− ¤𝑊 = ¤𝑚(ℎ4 − ℎ3)

13.4.1 Efficiency of the Rankine Cycle

Considering 𝑄 = 𝑇Δ𝑆 and 𝑆1 = 𝑆2; 𝑆3 = 𝑆4 we have:

𝑄𝐶 = 𝑇𝐶Δ𝑆𝐶 = 𝑇𝐶(𝑆4 − 𝑆1)

𝑄𝐻 = 𝑇𝐻Δ𝑆𝐻 = 𝑇
𝑒 𝑓 𝑓

𝐻
(𝑆3 − 𝑆2)

where 𝑇 𝑒 𝑓 𝑓
𝐻

is an average “effective” temperature for the heat exchange
with the hot source.

In the figure above, the corresponding Carnot cycle has an additional
area which corresponds to the light blue triangle, therefore by visual
inspection we verify that the Rankine cycle adds less heat 𝑄𝑖𝑛 that the
equivalent Carnot cycle, 𝑄𝑜𝑢𝑡 being identical to the Carnot cycle.

Here, 𝑇 𝑒 𝑓 𝑓
𝐻

will yield a rectangle in the 𝑇 − 𝑆 diagram with the same area
than the Rankine cycle represented in red.

We then may write:

𝜂 = 1 − 𝑄𝑜𝑢𝑡

𝑄𝑖𝑛
= 1 − 𝑇𝐶

𝑇
𝑒 𝑓 𝑓

𝐻

< 1 − 𝑇𝐶
𝑇𝐻

< 𝜂𝐶𝑎𝑟𝑛𝑜𝑡

since 𝑇 𝑒 𝑓 𝑓
𝐻

< 𝑇3 = 𝑇𝐻 .
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Why not Carnot?

We notice that in a Rankine cycle, heat addition/rejection processes
may be carried out isothermally it they are carried out exclusively
under the saturated liquid curve, which is great since these are the
optimal theoretical heat addition/rejection processes in a Carnot
cycle. Then, if we account the pumps and turbines in typical Rankine
cycles have very high efficiencies (up to 96%), we may then treat the
compression and expansion processes as fully adiabatic and reversible,
hence isentropic.
This means that we have a practical way to achieve a real-life Carnot
cycle. So why don’t we do so?

There are several practical reasons why this kind of Carnot cycle is
not possible in “real life”:

1. Low-quality steam with a certain amount of condensed water
will cause erosion and wear in turbine blades.

2. Compressors typically handle the gas or the liquid phase and
are designed differently. It is impractical to design a compressor
that handles both phases.

3. It is difficult to control the condensation process to end-up
precisely in point 1 as desired.

Hence the Rankine cycle is the closest to a Carnot cycle we can achieve
in “real life”:

“Rankine converted Carnot’s idea into a practical working heat engine. He
realized a real-life machine cannot be reversible. He also realized that one
major constraint of the Carnot engine is its isothermal heat addition and
heat rejection which limits the hot reservoir temperature and thus limits the
capability of an engine to produce the amount of work. Rankine conceived an
isobaric heat addition/rejection instead of an isothermal process of Carnot. An
isobaric process does maximum thermodynamic work since it receives heat
from outside in proportion to the work it does to keep the pressure constant.
Outside heat continuously compensates for dP in the heat engine and keeps
d𝑃 = 𝑐𝑜𝑛𝑠𝑡. Therefore, while Carnot focused on d𝐸 = 0, Rankine conceived
d𝑃 = 𝑐𝑜𝑛𝑠𝑡. Thus while Carnot got maximum efficiency Rankine achieved
the maximum volume of work.
This opened the opportunity for Rankine to choose any temperature (super-
heat) and maximize the hot reservoir temperature that the system can tolerate.
This is how Rankine converted Carnot’s ideal machine into a real practical
machine.a”
a from:https://www.linkedin.com/pulse/carnot-vs-rankine-cycle-nikhilesh-mukherjee-x3orf/:

https://www.linkedin.com/pulse/carnot-vs-rankine-cycle-nikhilesh-mukherjee-x3orf/
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Nomenclature

Variables:

▶ 𝐴: Cross-Sectional Area [m2]
▶ 𝑔: Acceleration of gravity [m/s2]
▶ 𝐻: Enthalpy [J]
▶ ℎ: Specific Enthalpy [J/Kg]
▶ 𝑚: Mass [Kg]
▶ 𝑛: Number of moles 𝑛 = 𝑁/𝑁𝑎 [mol]
▶ 𝑝: Pressure [Pa]
▶ 𝑄: Heat [W]
▶ 𝑞: Specific Heat [J/Kg]
▶ 𝑟𝑝 : Pressure ratio of an engine [-]
▶ 𝑡: Time [s]
▶ 𝑇: Temperature [K]
▶ 𝑈 : Energy of a system [J]
▶ 𝑢: Energy of a flow unit [J]
▶ 𝑉 : Volume [m3]
▶ 𝑣: Specific Volume [m3/Kg]
▶ 𝑣: Velocity [m/s]
▶ 𝑣𝑛 : Velocity normal to a surface [m/s]
▶ 𝑊 : Work [J]
▶ 𝑊𝑝 : Propulsive power [W]
▶ 𝑊𝑥 : Work performed on the control volume [J]
▶ 𝑤𝑥 : Specific Work performed on the control volume [J/Kg]
▶ 𝑧: Height [m]

▶ 𝐶𝑣 : Molar Specific Heat at Constant Pressure [J/molK]
▶ 𝜌: Density [Kg/m3]
▶ 𝛾: Specific Heats ratio 𝛾 = 𝐶𝑝/𝐶𝑣 [-]
▶ 𝜂: Efficiency of an Engine [-]

Constants:

▶ 𝑅 = 8.31447 [J/molK]: Universal Gas Constant

Acronyms, subscripts and superscripts

▶ 𝐶: cold
▶ 𝐻: hot
▶ 𝑝: constant pressure
▶ 𝑚𝑖𝑛: minimum
▶ 𝑚𝑎𝑥: maximum
▶ 𝑒 𝑓 𝑓 : effective
▶ 𝑖𝑛: from the outside towards the system
▶ 𝑜𝑢𝑡: from the system towards the outside
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Chapter Summary

▶ 1st Law for Control Volumes in stationary regime:
¤𝑄 − ¤𝑊𝑥 + ¤𝑚(ℎ𝑖𝑛 + 𝑣2

𝑖𝑛
/2 + 𝑔𝑧𝑖𝑛 − ℎ𝑜𝑢𝑡 + 𝑣2

𝑜𝑢𝑡/2 + 𝑔𝑧𝑜𝑢𝑡) = 0;

• Mass balance in a steady-state quasi-1D flow regime:
𝑚 = 𝜌𝐴𝑣 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡;

▶ Brayton Cycle (Gas Turbine);

• Cycle: isentropic, isobaric, isentropic, isobaric;
• Efficiency: 𝜂 = 1− 1/𝑟(𝛾 − 1/𝛾)with 𝑟𝑝 = 𝑝2/𝑝1 (pressure

ratio);
• Bernoulli principle: 𝑣2/2 + 𝑝/𝜌 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡;

▶ Rankine Cycle (Vapor Turbine);

• Cycle: isentropic, isobaric, isentropic, isobaric, inside the
saturation curve;

• Efficiency: 𝜂 = (ℎ4 − ℎ1)/(ℎ3 − ℎ2) ≈ (ℎ4 − ℎ1)/(ℎ3 − ℎ1).

Recommended readings
▶ Moran & Shapiro, “Fundamentals of Engineering Thermodynamics”

[7], for Chapters 9.5, 9.6, 9.7, 9.11, 8.1, and 8.2.
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Thermodynamics and Culture: Relevant Works

Chapter 13 discusses the theoretical foundations of gas turbine cycles,
which has allowed developing gas turbines that power most of today’s
commercial and military planes. Since this topic is pervasive to the
discipline of aeronautics, it is only fitting to select a “cool plane” action
movie as our reference work of art for illustrating this chapter. The honour
goes to:

Clint Eastwood, “Firefox”, 1982

Figure 13.6: Firefox Poster, Art by Ro-
drigo Barraza, 2022.

Firefox is a 1982 action movie based upon a 1977 novel of the same name
by Craig Thomas. This techno-thriller action film was produced and
directed by Clint Eastwood, who also stars as the main actor.

The movie focuses on a plot to steal a Soviet MiG–31, NATO reporting
name “Firefox”, and bring it back to a friendly base where it can be
analysed.

This highly advanced stealth interceptor aircraft, is capable of flying up
to Mach 6, and deploys an innovative thought-control weapons system
which gives its pilot a 2–3 seconds edge in air-to-air dogfights.

The protagonist will have to fly this experimental plane through Soviet
airspace, evading interceptions up until he can reach friendly airspace.
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The fictional specifications of the plane are described in the defunct
website thinkinrussian.org.

Of particular interest to us is the aircraft twin gas turbine powerplant,
which consisted on a fictional evolution of the Tumansky R-15BD–300
gas turbine which powered the real-life Mig–25, NATO reporting name
“Foxbat” at 100 kN thrust (with afterburners on). This fictional Tumansky
R-15BD–600 would supply an astounding 222 kN of thrust apiece. The
aircraft would also have 6 fictional Soyuz/Komarov solid rocket boosters,
providing an extra 70 kN of thrust, available during take-off or high-speed
dash acceleration.

Overall the aircraft’s powerplant would allow sustained cruise speeds
between Mach 3.8 to 5.2 at 85,000–95,000 ft (26–29 km) altitudes.

https://web.archive.org/web/20060514191503/http://www.thinkinrussian.org/docs/whitepaper_2005.pdf
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A.1 The Factorial Integral

One of the most useful integrals in thermodynamics problems is the
following one (which is worth memorizing):

This appendix is taken from Blundell,
“Concepts in Thermal Physics”, 2nd Ed.,
Appendix C1 and C2.𝑛! =

∫ ∞

0
𝑥𝑛e−𝑥d𝑥 (A.1)

This integral is simple to prove by induction as follows. First, show that it
is true for the case 𝑛 = 0. Then assume it is true for 𝑛 = 𝑘 and prove it is
true for 𝑛 = 𝑘 + 1. (Hint: integrate (𝑘 + 1)! =

∫ ∞
0 𝑥𝑘+1e−𝑥d𝑥 by parts.)

A.1.1 The Gamma Function

It allows you to define the factorial of non-integer numbers. This is so
useful that the integral is given a special name, the gamma function. The
traditional definition of the gamma function is

Γ(𝑛) =
∫ ∞

0
𝑥𝑛−1e−𝑥d𝑥 (A.2)

so that Γ(𝑛) = (𝑛 − 1)!, i.e., the factorial function and the gamma function
are “out of step” with each other, a rather confusing feature. The gamma
function is plotted in Fig. C.1 and has a surprisingly complicated structure
for negative 𝑛. Selected values of the gamma function are listed in Table
A.1. The gamma function will appear again in later integrals.

𝑧 − 3
2 − 1

2
1
2 1 3

2 2 5
2 3 7

2 4

Γ(𝑧) 4
√
𝜋

3 −2
√
𝜋
√
𝜋 1

√
𝜋

2 1 3
√
𝜋

4 2 15
√
𝜋

8 6

Table A.1: Selected values of the gamma
function. Other values can be generated
using Γ(𝑧 + 1) = 𝑧Γ(𝑧).
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Figure A.1: The gamma function Γ(𝑛)
showing the singularities for integer val-
ues of 𝑛 ≤ 0. For positive, integer 𝑛,
Γ(𝑛) = (𝑛 − 1)!.

A.2 the Gaussian Integral

The Gaussian is a function of the form e−𝛼𝑥2 , and is plotted in Fig. C.2. It
has a maximum at 𝑥 = 0 and a shape that has been likened to that of a
bell. It turns up in many statistical problems, often under the name of
the normal distribution. The integral of a Gaussian is another extremely
useful integral: ∫ ∞

−∞
e−𝛼𝑥

2
d𝑥 =

√
𝜋
𝛼

(A.3)

-,-1/2 0 ,
-1/2

x

e!,x
2

Figure A.2: A Gaussian e−𝛼𝑥2 .

It can be proved by evaluating the two-dimensional integral∫ ∞

−∞
d𝑥

∫ ∞

−∞
d𝑦 e−𝛼𝑥

2+𝑦2
=

(∫ ∞

−∞
d𝑥 e−𝛼𝑥

2
) (∫ ∞

−∞
d𝑦 e−𝛼𝑦

2
)

= 𝐼2 , (A.4)

where 𝐼 is our desired integral. We can evaluate the left-hand side using
polar coordinates, so that

𝐼2 =

∫ 2𝜋

0
d𝜃

∫ ∞

0
d𝑟 𝑟e−𝛼𝑟

2
, (A.5)

which with the substitution 𝑧 = 𝛼𝑟2 (and hence 𝑑𝑧 = 2𝛼𝑟d𝑟) gives

𝐼2 = 2𝜋 × 1
2𝛼

∫ ∞

0
d𝑧 e𝑧 =

𝜋
𝛼
, (A.6)

and hence 𝐼 =
√
𝜋/𝛼 is proved.

Even more fun begins when we employ a cunning stratagem: we dif-
ferentiate both sides of the equation with respect to 𝛼. Because 𝑥 does
not depend on 𝛼, this is easy to do. Hence (d/d𝛼)e−𝛼𝑥2

= −𝑥2e−𝛼𝑥2 and
(d/d𝛼)

√
𝜋/𝛼 = −

√
𝜋/2𝛼3/2 so that∫ ∞

−∞
𝑥2e−𝛼𝑥

2
d𝑥 =

1
2

√
𝜋

𝛼3 (A.7)
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This trick can be repeated with equal ease. Differentiating again gives∫ ∞

−∞
𝑥4e−𝛼𝑥

2
d𝑥 =

3
4

√
𝜋

𝛼5 (A.8)

Therefore we have a way of generating the integrals between −∞ and∞
of 𝑥2𝑛e−𝛼𝑥2 , where 𝑛 ≥ 0 is an integer1. Because these functions are even, 1: A general formula is∫ ∞

−∞ 𝑥
2𝑛e−𝛼𝑥2 d𝑥 =

(2𝑛)!
𝑛!22𝑛

√
𝜋

𝛼2𝑛+1 ,

for integer 𝑛 ≥ 0.
the integrals of the same functions between 0 and∞ are just half of these
results: ∫ ∞

0
e−𝛼𝑥

2
d𝑥 =

1
2

√
𝜋
𝛼
, (A.9)∫ ∞

0
𝑥2e−𝛼𝑥

2
d𝑥 =

1
4

√
𝜋

𝛼3 , (A.10)∫ ∞

0
𝑥4e−𝛼𝑥

2
d𝑥 =

3
8

√
𝜋

𝛼5 . (A.11)

To integrate 𝑥2𝑛+1e−𝛼𝑥2 between −∞ and∞ is easy: the functions are all
odd and so the integrals are all zero. To integrate between 0 and∞, start
off with

∫ ∞
0 𝑥e−𝛼𝑥2 d𝑥, which can be evaluated by noticing that 𝑥e−𝛼𝑥2 is

almost what you get when you differentiate e−𝛼𝑥2 . All the odd powers of
x can now be obtained 2 by differentiating that integral with respect to 𝛼. 2: A general formula is∫ ∞

−∞ 𝑥
2𝑛+1e−𝛼𝑥2 d𝑥 = 𝑛!

2𝛼𝑛+1 ,

for integer 𝑛 ≥ 0.
Hence, ∫ ∞

0
𝑥e−𝛼𝑥

2
d𝑥 =

1
2𝛼
, (A.12)∫ ∞

0
𝑥3e−𝛼𝑥

2
d𝑥 =

1
2𝛼2 , (A.13)∫ ∞

0
𝑥5e−𝛼𝑥

2
d𝑥 =

1
𝛼3 . (A.14)

A useful expression for a normalized Gaussian (one whose integral is
unity) is

1√
2𝜋𝜎2

e−(𝑥−𝜇)
2/2𝜎2

(A.15)

This has mean ⟨𝑥⟩ = 𝜇 and variance ⟨(𝑥 − ⟨𝑥⟩)2⟩ = 𝜎2.



B Basic Integral Tables

∫
𝑥𝑛 d𝑥 =

1
𝑛 + 1

𝑥𝑛+1 , 𝑛 ≠ −1 (B.1)

∫
1
𝑥

d𝑥 = ln |𝑥 | (B.2)

∫
𝑢 d𝑣 = 𝑢𝑣 −

∫
𝑣 d𝑣 (B.3)

∫
𝑒𝑥 d𝑥 = 𝑒𝑥 (B.4)

∫
𝑎𝑥 d𝑥 =

1
ln 𝑎

𝑎𝑥 (B.5)

∫
ln 𝑥 d𝑥 = 𝑥 ln 𝑥 − 𝑥 (B.6)

∫
sin 𝑥 d𝑥 = − cos 𝑥 (B.7)

∫
cos 𝑥 d𝑥 = sin 𝑥 (B.8)

∫
tan 𝑥 d𝑥 = ln | sec 𝑥 | (B.9)

∫
sec 𝑥 d𝑥 = ln | sec 𝑥 + tan 𝑥 | (B.10)

∫
sec2 𝑥 d𝑥 = tan 𝑥 (B.11)

∫
sec 𝑥 tan 𝑥 d𝑥 = sec 𝑥 (B.12)

∫
𝑎

𝑎2 + 𝑥2 d𝑥 = tan−1 𝑥

𝑎
(B.13)

∫
𝑎

𝑎2 − 𝑥2 d𝑥 =
1
2

ln
���𝑥 + 𝑎
𝑥 − 𝑎

��� (B.14)

∫
1√

𝑎2 − 𝑥2
d𝑥 = sin−1 𝑥

𝑎
(B.15)

∫
𝑎

𝑥
√
𝑥2 − 𝑎2

d𝑥 = sec−1 𝑥

𝑎
(B.16)

∫
1√

𝑥2 − 𝑎2
d𝑥 = cosh−1 𝑥

𝑎
(B.17)

= ln(𝑥 +
√
𝑥2 − 𝑎2)

∫
1√

𝑥2 + 𝑎2
d𝑥 = sinh−1 𝑥

𝑎
(B.18)

= ln(𝑥 +
√
𝑥2 + 𝑎2)
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This section is borrowed practically
verbatim from Chapter 2 of the book
“Heat and Thermodynamics” by Prof.
Jeremy Tatum, from the University of
Victoria, Canada. The book is available
online at https://phys.libretexts.

org/Bookshelves/Thermodynamics_

and_Statistical_Mechanics/Heat_

and_Thermodynamics_(Tatum)

C.1 Introduction

Any text on thermodynamics is sure to be liberally sprinkled with partial
derivatives on many pages, so it may be helpful to give a brief summary
of some of the more useful formulas involving partial derivatives are
used in this textbook suite.

C.2 Partial Derivatives

The equation

𝑧 = 𝑧(𝑥, 𝑦) (C.1)

represents a two-dimensional surface in three-dimensional space. The
surface intersects the plane 𝑦 = constant in a plane curve in which 𝑧

is a function of 𝑥. One can then easily imagine calculating the slope or
gradient of this curve in the plane 𝑦 = constant. This slope is

(
𝜕𝑧
𝜕𝑥

)
𝑦

– the

partial derivative of 𝑧 with respect to 𝑥, with 𝑦 being held constant. For
example, if

𝑧 = 𝑦 ln 𝑥, (C.2)

then (
𝜕𝑧

𝜕𝑥

)
𝑦

=
𝑦

𝑥
, (C.3)

𝑦 being treated as though it were a constant, which, in the plane 𝑦 =

constant, it is. In a similar manner the partial derivative of 𝑧 with respect
to 𝑦, with 𝑥 being held constant, is

https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Heat_and_Thermodynamics_(Tatum)
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Heat_and_Thermodynamics_(Tatum)
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Heat_and_Thermodynamics_(Tatum)
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Heat_and_Thermodynamics_(Tatum)
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(
𝜕𝑧

𝜕𝑦

)
𝑥

= ln 𝑥 (C.4)

When you have only three variables – as in this example – it is usually
obvious which of them is being held constant. Thus 𝜕𝑧/𝜕𝑦 can hardly
mean anything other than at constant 𝑥. For that reason, the subscript
is often omitted. In thermodynamics, there are often more than three
variables, and it is usually (One would say always) essential to indicate
by a subscript which quantities are being held constant.

Let us suppose that we have evaluated 𝑧 at (𝑥, 𝑦). Now if you increase 𝑥
by 𝛿𝑥, what will the resulting increase in 𝑧 be? Obviously, to first order,
it is 𝜕𝑥

𝜕𝑥 𝛿𝑥. And if 𝑦 increases by 𝛿y, the increase in z will be 𝜕𝑧
𝜕𝑦 𝛿𝑦. And if

both 𝑥 and 𝑦 increase, the corresponding increase in 𝑧, to first order, will
be

𝛿𝑧 =
𝜕𝑧

𝜕𝑥
𝛿𝑥 + 𝜕𝑧

𝜕𝑦
𝛿𝑦 (C.5)

No great and difficult mathematical proof is needed to “derive” this; it is
just a plain English statement of an obvious truism. The increase in 𝑧 is
equal to the rate of increase of 𝑧 with respect to 𝑥 times the increase in 𝑥
plus the rate of increase of 𝑧 with respect to 𝑦 times the increase in 𝑦.

Likewise if 𝑥 and 𝑦 are increasing with time at rates 𝑑𝑥
𝑑𝑡

and 𝑑𝑦

𝑑𝑡
, the rate

of increase of 𝑧 with respect to time is

𝑑𝑧

𝑑𝑡
=

𝜕𝑧

𝜕𝑥

𝑑𝑥

𝑑𝑡
+ 𝜕𝑧

𝜕𝑦

𝑑𝑦

𝑑𝑡
. (C.6)

C.3 Implicit Differentiation

Equation C.5 can be used to solve the problem of differentiation of an
implicit function. Consider, for example, the unlikely equation

ln(𝑥𝑦) = 𝑥2𝑦3 (C.7)

Calculate the derivative 𝑑𝑦/𝑑𝑥. It would be easy if only one could write
this in the form 𝑦 = something; but it is difficult (impossible as far as
we know) to write 𝑦 explicitly as a function of 𝑥. Equation C.7 implicitly
relates 𝑦 to 𝑥. How are we going to calculate 𝑑𝑦/𝑑𝑥?

The curve 𝑓 (𝑥, 𝑦) = 0 might be considered as being the intersection of
the surface 𝑧 = 𝑓 (𝑥, 𝑦) with the plane 𝑧 = 0. Seen thus, the derivative
𝑑𝑦/𝑑𝑥 can be thought of as the limit as 𝛿𝑥 and 𝛿𝑦 approach zero of the
ratio 𝛿𝑦/𝛿𝑥 within the plane 𝑧 = 0; that is, keeping z constant and hence
𝛿𝑧 equal to zero. Thus equation C.5 gives us that

𝑑𝑦

𝑑𝑥
= −

(
𝜕 𝑓

𝜕𝑥

)
/
(
𝜕 𝑓

𝜕𝑦

)
. (C.8)

For example, show that, for Equation C.7,
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𝑑𝑦

𝑑𝑥
=
𝑦(2𝑥2𝑦3 − 1)
𝑥(1 − 3𝑥2𝑦3) . (C.9)

C.4 Product of Three Partial Derivatives

Suppose 𝑥, 𝑦 and 𝑧 are related by some equation and that, by suitable
algebraic manipulation, we can write any one of the variables explicitly
in terms of the other two. That is, we can write

𝑥 = 𝑓 (𝑦, 𝑧), (C.10a)

𝑦 = 𝑦(𝑧, 𝑥), (C.10b)

𝑧 = 𝑧(𝑥, 𝑦). (C.10c)

Then

𝛿𝑥 =
𝜕𝑥

𝜕𝑦
𝛿𝑦 + 𝜕𝑥

𝜕𝑧
𝛿𝑧, (C.11a)

𝛿𝑦 =
𝜕𝑦

𝜕𝑧
𝛿𝑧 +

𝜕𝑦

𝜕𝑥
𝛿𝑥 (C.11b)

𝛿𝑧 =
𝜕𝑧

𝜕𝑥
𝛿𝑥 + 𝜕𝑧

𝜕𝑦
𝛿𝑦. (C.11c)

Eliminating 𝛿𝑦 from Equations C.11a and C.11b and 𝛿𝑧 from Equations
C.11a and C.11c:

𝛿𝑥

(
1 − 𝜕𝑥

𝜕𝑦

𝜕𝑦

𝜕𝑥

)
= 𝛿𝑧

(
𝜕𝑥

𝜕𝑧
+ 𝜕𝑥

𝜕𝑦

𝜕𝑦

𝜕𝑧

)
, (C.12a)

𝛿𝑥

(
1 − 𝜕𝑥

𝜕𝑧

𝜕𝑧

𝜕𝑥

)
= 𝛿𝑦

(
𝜕𝑥

𝜕𝑦
+ 𝜕𝑥

𝜕𝑧

𝜕𝑧

𝜕𝑦

)
. (C.12b)

Since 𝑧 and 𝑥 can be varied independently, and 𝑥 and 𝑦 can be varied
independently, the only way in which Equations C.12a and C.12b can
always be true is for all of the expressions in parentheses to be zero.
Equating the left-hand parentheses to zero shows that

𝜕𝑥

𝜕𝑦
= 1/𝜕𝑦

𝜕𝑥
(C.13a)

𝜕𝑥

𝜕𝑧
= 1/ 𝜕𝑧

𝜕𝑥
. (C.13b)

These results may seem to be trivial and “obvious” – and so they are,
provided that the same quantity is being kept constant in the derivatives
of both sides of each equation. In thermodynamics we are often dealing
with more variables than just 𝑥, 𝑦 and 𝑧, and we must be careful to
specify which quantities are being held constant. If, for example, we are
dealing with several variables, such as 𝑢, 𝑣, 𝑤, 𝑥, 𝑦, 𝑧, it is not in general
true that 𝜕𝑢

𝜕𝑦 = 1/ 𝜕𝑦𝜕𝑢 , unless the same variables are being held constant
on both sides of the equation.
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Let us return now to Equation C.12a. The left hand parenthesis is zero, and
this, together with Equation C.13b, results in the important relation:(

𝜕𝑥

𝜕𝑦

)
𝑧

(
𝜕𝑦

𝜕𝑧

)
𝑥

(
𝜕𝑧

𝜕𝑥

)
𝑦

= −1. (C.14)

C.5 Second Derivatives and Exact Differentials

If 𝑧 = 𝑧(𝑥, 𝑦), we can go through the motions of calculating 𝜕𝑧
𝜕𝑥 and 𝜕𝑧

𝜕𝑦 ,

and we can then further calculate the second derivatives 𝜕2𝑧
𝜕𝑥2 , 𝜕2𝑥

𝜕𝑦2 , 𝜕2𝑧
𝜕𝑦𝜕𝑥

and 𝜕2𝑧
𝜕𝑦𝜕𝑥 . It will usually be found that the last two, the mixed second

derivatives, are equal; that is, it doesn’t matter in which order we perform
the differentiations.

Example C.5.1
Let 𝑧 = 𝑥 sin 𝑦. Show that

𝜕2𝑧

𝜕𝑥𝜕𝑦
=

𝜕2𝑧

𝜕𝑦𝜕𝑥
= cos 𝑦. (C.15)

Solution

We examine in this section what conditions must be satisfied if the
mixed derivatives are to be equal.
Figure C.5.1 depicts 𝑧 as a “well-behaved” function of 𝑥 and 𝑦. By
“well-behaved” in this context we mean that 𝑧 is everywhere single-
valued (that is, given 𝑥 and 𝑦 there is just one value of 𝑧), finite and
continuous, and that its derivatives are everywhere continuous (that
is, no sudden discontinuities in either the function itself or its slope).
“Good behaviour” in this sense is the sufficient condition that the mixed
second derivatives are equal.

Let us calculate the difference 𝛿𝑧 in the heights of A and C. We can go
from A to C via B or via D, and 𝛿𝑧 is route-independent. That is, to
first order,

𝛿𝑧 =

(
𝜕𝑧

𝜕𝑥

) (𝐴)
𝑦

𝛿𝑥 +
(
𝜕𝑧

𝜕𝑦

) (𝐵)
𝑥

𝛿𝑦 =

(
𝜕𝑧

𝜕𝑦

) (𝐴)
𝑥

𝛿𝑦 +
(
𝜕𝑧

𝜕𝑥

) (𝐷)
𝑦

𝛿𝑥. (C.16)
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Here the superscript (A) means “evaluated at A”.

Divide both sides by 𝛿𝑥𝛿𝑦:(
𝜕𝑧
𝜕𝑦

) (𝐵)
𝑥
−

(
𝜕𝑧
𝜕𝑦

) (𝐴)
𝑥

𝜕𝑥
=

(
𝜕𝑧
𝜕𝑥

) (𝐷)
𝑦
−

(
𝜕𝑧
𝜕𝑥

) (𝐴)
𝑦

𝜕𝑦
. (C.17)

If we now go to the limit as 𝛿𝑥 and 𝛿𝑦 approach zero (the equation
now becomes exact rather than merely “to first order”), this becomes:

𝜕2𝑧

𝜕𝑥𝛿𝑦
=

𝜕2𝑧

𝜕𝑦𝛿𝑥
. (C.18)

A further property of a function that is well-behaved in the sense
described is that if the differential 𝑑𝑧 can be written in the form

𝑑𝑧 = 𝐴(𝑥, 𝑦)𝑑𝑥 + 𝐵(𝑥, 𝑦)𝑑𝑦, (C.19)

then Equation C.17 implies that,

𝜕𝐴

𝜕𝑦
=

𝜕𝐵

𝜕𝑥
. (C.20)

A differential 𝑑𝑧 is said to be exact if the following conditions are
satisfied: The integral of 𝑑𝑧 between two points is route-independent,
and the integral around a closed path (i.e. you end up where you
started) is zero, and if equations C.17 and C.19 are satisfied.

If a differential such as Equation C.18 is exact – i.e., if it is found to
satisfy the conditions for exactness – then it should be possible to
integrate it and determine 𝑧(𝑥, 𝑦). Let us look at an example. Suppose
that

𝑑𝑧 = (4𝑥 − 3𝑦 − 1)𝑑𝑥 + (−3𝑥 + 2𝑦 + 4)𝑑𝑦. (C.21)

It is readily seen that this is exact. The problem now, therefore, is to
find 𝑧(𝑥, 𝑦).

Let 𝑢 =
∫
(4𝑥 − 3𝑦 − 1)𝑑𝑥

So that

𝑢 = 2𝑥2 − 3𝑦𝑥 − 𝑥 + 𝑔(𝑦). (C.22)

Note that we are treating 𝑦 as constant. The “constant” of integration
depends on the value of 𝑦 – i.e. it is an arbitrary function of 𝑦.

Of course 𝑢 is not the same as 𝑧 – unless we can find a particular
function 𝑔(𝑦) such that 𝑢 indeed is the same as 𝑧.

Now 𝑑𝑢 = 𝜕𝑢
𝜕𝑥 +

𝜕𝑢
𝜕𝑦 𝑑𝑦; that is,

𝑑𝑢 = (4𝑥 − 3𝑦 − 1)𝑑𝑥 +
(
−3𝑥 + 𝑑𝑔

𝑑𝑦

)
𝑑𝑦. (C.23)

Then 𝑑𝑢 = 𝑑𝑧 (and 𝑢 = 𝑧 plus an arbitrary constant) provided that
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𝑑𝑔

𝑑𝑦
= 2𝑦 + 4. That is,

𝑔(𝑦) = 𝑦2 + 4𝑦 + constant. (C.24)

Thus

𝑧 = 2𝑥2 − 3𝑥𝑦 + 𝑦2 − 𝑥 + 4𝑦 + constant (C.25)

The reader should verify that this satisfies equation C.20. The reader
should also try letting

𝜈 = −3𝑥𝑦 + 𝑦2 + 4𝑦 + 𝑓 (𝑥) (C.26)

(where did this come from?) and go through a similar argument to
arrive again at equation C.24.

Consider another example,

Example C.5.2
𝑑𝑧 = 3 ln 𝑦 𝑑𝑥 + 𝑥

𝑦
𝑑𝑦. (C.27)

You should immediately find that this differential is not exact, and,
to emphasize that, we shall use the symbol �̄�𝑧, the special symbol �̄�
indicating an inexact differential. However, given an inexact differential
�̄�𝑧, it is very often possible to find a function 𝐻(𝑥, 𝑦) such that the
differential 𝑑𝑤 = 𝐻(𝑥, 𝑦)�̄�𝑧 is exact, and 𝑑𝑤 can then be integrated
to find 𝑤 as a function of 𝑥 and 𝑦. The function 𝐻(𝑥, 𝑦) is called an
integrating factor. There may be more than one possible integrating
factor; indeed it may be possible to find one simply of the form 𝐹(𝑥)
or maybe 𝐺(𝑦). There are several ways for finding an integrating
factor. We’ll do a simple and straightforward one. Let us try and find
an integrating factor for the inexact differential �̄�𝑧 above. Thus, let
𝑑𝑤 = 𝐹(𝑥)𝑑𝑧, so that

𝑑𝑤 = 3𝐹 ln 𝑦 𝑑𝑥 + 𝑥𝐹
𝑦
𝑑𝑦. (C.28)

For 𝑑𝑤 to be exact, we must have

𝜕

𝜕𝑦
(3𝐹 ln 𝑦) = 𝜕

𝜕𝑥

(
𝑥𝐹

𝑦

)
. (C.29)

That is,

3𝐹
𝑦

=
1
𝑦

(
𝐹 + 𝑥 𝑑𝐹

𝑑𝑥

)
. (C.30)

Upon integration and simplification we find that

𝐹 = 𝑥2 , (C.31)

or any multiple thereof, is an integrating factor, and therefore

𝑑𝑤 = 3𝑥2 ln 𝑦 𝑑𝑥 + 𝑥
3

𝑦
𝑑𝑦 (C.32)

is an exact differential. The reader should confirm that this is an exact
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differential, and from there show that

𝑤 = 𝑥3 ln 𝑦 + constant (C.33)

To anticipate – what has this to do with thermodynamics? To give an
example, the state of many simple thermodynamical systems can be
specified by giving the values of three intensive state variables, 𝑝, 𝑉 and
𝑇, the pressure, molar volume and temperature. That is, the state of the
system can be represented by a point in pVT space. Often, there will be a
known relation (known as the equation of state) between the variables;
for example, if the substance involved is an ideal gas, the variables will be
related by 𝑝𝑉 = 𝑅𝑇, which is the equation of state for an ideal gas; and
the point representing the state of the system will then be represented by
a point that is constrained to lie on the two-dimensional surface 𝑝𝑉 = 𝑅𝑇

in three-dimensional pVT space. In that case it will be necessary to specify
only two of the three variables. On the other hand, if the equation of state
of a particular substance is unknown, you will have to give the values of
all three variables.

Now there are certain quantities that one meets in thermodynamics that
are functions of state. Two that come to mind are entropy 𝑆 and internal
energy 𝑈 . By function of state it is meant that 𝑆 and 𝑈 are uniquely
determined by the state (i.e. by 𝑝,𝑉 and 𝑇). If you know 𝑝,𝑉 and 𝑇, you
can calculate 𝑆 and 𝑈 or any other function of state. In that case, the
differentials d𝑆 and d𝑈 are exact differentials.

The internal energy𝑈 of a system is defined in such a manner that when
you add a quantity d𝑄 of heat to a system and also do an amount of
work d𝑊 on the system, the increase d𝑈 in the internal energy of the
system is given by

d𝑈 = d𝑄 + d𝑊. (C.34)

Here d𝑈 is an exact differential, but d𝑄 and d𝑊 are clearly not. You can
achieve the same increase in internal energy by any combination of heat
and work, and the heat you add to the system and the work you do on it
are clearly not functions of the state of the system.

Some authors like to use a special symbol, such as �̄�, to denote an inexact
differential (but beware, this symbol has been used used to denote an
exact differential in some sources!). We shall not in general do this,
because there are many contexts in which the distinction is not important,
or, if it is, it is obvious from the context whether a given differential is
exact or not. If, however, there is some context in which the distinction
is important (and there are many) and in which it may not be obvious
which is which, we may, with advance warning, use a special �̄� for an
inexact differential, and indeed we have already done so earlier in this
section.
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C.6 Euler’s Theorem for Homogeneous
Functions

There is a theorem, usually credited to Euler, concerning homogenous
functions that we might be making use of.

A homogenous function of degree 𝑛 of the variables 𝑥, 𝑦, 𝑧 is a function
in which all terms are of degree 𝑛. For example, the function 𝑓 (𝑥, 𝑦, 𝑧) =
𝐴𝑥3 + 𝐵𝑦3 + 𝐶𝑧3 + 𝐷𝑥𝑦2 + 𝐸𝑥𝑧2 + 𝐺𝑦𝑥2 + 𝐻𝑧𝑥2 + 𝐼𝑧𝑦2 + 𝐽𝑥𝑦𝑧 is a
homogenous function of 𝑥, 𝑦, 𝑧, in which all terms are of degree three.

The reader will find it easy to evaluate the partial derivatives 𝜕 𝑓
𝜕𝑥 ,

𝜕 𝑓
𝜕𝑥 ,

𝜕 𝑓
𝜕𝑥

and equally easy (if slightly tedious) to evaluate the expression 𝑥 𝜕 𝑓
𝜕𝑥 +

𝑦
𝜕 𝑓
𝜕𝑦 + 𝑧

𝜕 𝑓
𝜕𝑧 . Tedious or not, we do urge the reader to do it. You should

find that the answer is 3𝐴𝑥3 + 3𝐵𝑦3 + 3𝐶𝑧3 + 3𝐷𝑥𝑦2 + 3𝐸𝑥𝑧2 + 3𝐹𝑦𝑧2 +
3𝐺𝑦𝑥2 + 3𝐻𝑧𝑥2 + 3𝐼𝑧𝑦2 + 3𝐽𝑥𝑦𝑧.

In other words, 𝑥 𝜕 𝑓
𝜕𝑥 + 𝑦

𝜕 𝑓
𝜕𝑦 + 𝑧

𝜕 𝑓
𝜕𝑧 = 3 𝑓 . If you do the same thing with a

homogenous function of degree 2, you will find that 𝑥 𝜕 𝑓
𝜕𝑥 +𝑦

𝜕 𝑓
𝜕𝑦 +𝑧

𝜕 𝑓
𝜕𝑧 = 2 𝑓 .

And if you do it with a homogenous function of degree 1, such as
𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧, you will find that 𝑥 𝜕 𝑓

𝜕𝑥 + 𝑦
𝜕 𝑓
𝜕𝑦 + 𝑧

𝜕 𝑓
𝜕𝑧 = 𝑓 . In general, for a

homogenous function of 𝑥, 𝑦, 𝑧... of degree 𝑛, it is always the case that

𝑥
𝜕 𝑓

𝜕𝑥
+ 𝑦 𝜕 𝑓

𝜕𝑦
+ 𝑧 𝜕 𝑓

𝜕𝑧
+ ... = 𝑛 𝑓 . (C.35)

This is Euler’s theorem for homogenous functions.

C.7 Undetermined Multipliers

Let 𝜓(𝑥, 𝑦, 𝑧) be some function of 𝑥, 𝑦 and 𝑧. Then if 𝑥, 𝑦 and 𝑧 are
independent variables, one would ordinarily understand that, where 𝜓
is a maximum, the derivatives are zero:

𝜕𝜓

𝜕𝑥
=

𝜕𝜓

𝜕𝑦
=

𝜕𝜓

𝜕𝑧
= 0. (C.36)

However, if 𝑥, 𝑦 and 𝑧 are not completely independent, but are related
by some constraining equation such as 𝑓 (𝑥, 𝑦, 𝑧) = 0, the situation is
slightly less simple. (In a thermodynamical context, the three variables
may be, for example, three “intensive state variables”, 𝑝, 𝑉 and 𝑇, and 𝜓
might be the entropy, which is a function of state. However the intensive
state variables may not be completely independent, since they are related
by an “equation of state”, such as 𝑝𝑉 = 𝑅𝑇.)

If we move by infinitesimal displacements 𝑑𝑥, 𝑑𝑦, 𝑑𝑧 from a point where
𝜓 is a maximum, the corresponding changes in 𝜓 and 𝑓 will both be
zero, and therefore both of the following equations must be satisfied.

𝑑𝜓 =
𝜕𝜓

𝜕𝑥
𝑑𝑥 + 𝜕𝜓

𝜕𝑦
𝑑𝑦 + 𝜕𝜓

𝜕𝑧
𝑑𝑧 = 0, (C.37)
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𝑑𝑓 =
𝜕 𝑓

𝜕𝑥
𝑑𝑥 + 𝜕 𝑓

𝜕𝑦
𝑑𝑦 + 𝜕 𝑓

𝜕𝑧
𝑑𝑧 = 0. (C.38)

Consequently any linear combination of 𝜓 and 𝑓 , such as 𝜙 = 𝜓 +
𝜆 𝑓 , where 𝜆 is an arbitrary constant, also satisfies a similar equation.
The constant 𝜆 is sometimes called an “undetermined multiplier” or a
“Lagrangian multiplier”, although often some additional information in
an actual problem enables the constant to be identified.

In summary, the conditions that 𝜓 is a maximum (or minimum or saddle
point), if 𝑥, 𝑦 and 𝑧 are related by a functional constraint 𝑓 (𝑥, 𝑦, 𝑧) = 0,
are

𝜕Φ
𝜕𝑥 = 0 𝜕Φ

𝜕𝑦 = 0, 𝜕Φ
𝜕𝑧 = 0, (C.39)

where

Φ = 𝜓 + 𝜆 𝑓 . (C.40)

Of course, if 𝜓 is a function of many variables 𝑥1 , 𝑥2 , 𝑥3..., and the
variables are subjected to several constraints, such as 𝑓 = 0, 𝑔 = 0, ℎ = 0,
etc., where 𝑓 , 𝑔, ℎ, etc..., are functions connecting all or some of the
variables, the conditions for 𝜓 to be a maximum (etc...) are

𝜕𝜓

𝜕𝑥𝑖
+ 𝜆 𝜕𝜓

𝜕𝑥𝑖
+ 𝜇 𝜕𝜓

𝜕𝑥𝑖
+ 𝜈

𝜕𝜓

𝜕𝑥𝑖
+ ... = 0, 𝑖 = 1, 2, 3 (C.41)

C.8 Dee and Delta

We have discussed the special meanings of the symbols 𝜕 and �̄�, but we
also need to be clear about the meanings of the more familiar differential
symbols Δ, 𝛿, and 𝑑. It is often convenient to use the symbol Δ to indicate
an increment (not necessarily a particularly small increment) in some
quantity. We can then use the symbol 𝛿 to mean a small increment. We
can then say that if, for example, 𝑦 = 𝑥2, and if 𝑥 were to increase by
a small amount 𝛿𝑥, the corresponding increment in 𝑦 would be given
approximately by

𝛿𝑦 � 2𝑥𝛿𝑥 (C.42)

That is,

𝜕𝑦

𝜕𝑥
� 2𝑥. (C.43)

This doesn’t become exact until we take the limit as 𝛿𝑥 and 𝛿𝑦 approach
zero. We write this limit as 𝑑𝑦

𝑑𝑥
and then it is exactly true that

𝑑𝑦

𝑑𝑥
= 2𝑥. (C.44)
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There is a valid point of view that would argue that you cannot write 𝑑𝑥
or 𝑑𝑦 alone, since both are zero; you can write only the ratio 𝑑𝑥

𝑑𝑦
. It would

be wrong, for example, to write

𝑑𝑦 = 2𝑥 𝑑𝑥, (C.45)

or at best it is tantamount to writing 0 = 0. We are not going to contradict
that argument, but, at the risk of incurring the wrath of some readers,
we are often going to write equations such as Equation C.45, or, more
likely, in a thermodynamical context, equations such as

d𝑈 = 𝑇d𝑆 − 𝑝d𝑉, (C.46)

even though you may prefer one to say that, for small increments,

𝛿𝑈 � 𝑇𝛿𝑆 − 𝑝𝛿𝑉. (C.47)

We are going to argue that, in the limit of infinitesimal increments, it is
exactly true that d𝑈 = 𝑇d𝑆 − 𝑝d𝑉 . After all, the smaller the increments,
the closer it becomes to being true, and, in the limit when the increments
are infinitesimally small, it is exactly true, even if it does just mean that
zero equals zero. We hope this does not cause too many conceptual
problems.
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E.1 Boltzmann Distribution . 239
E.2 Random Walk . . . . . . . 241

The scripts presented here were originally developed in Matlab language.
They have been translated to python language using the ChatGPT AI
assistant.

E.1 Boltzmann Distribution

This python3 script (requiring the numpy and matplotlib libraries) is
invoked in Cahpter 2, Section 2.1.2. It runs 3 different examples:

1. Creates a 10x10 grid square with one particle in each box. Pressing
space aleatorily takes a particle from a box and puts it in another
one. 20 manual steps.

2. Same as 1) for a 10x10 grid except now the code runs automatically
for 1000 iterations with a 0.2 s pause for the first 100 and an
infinitesimal pause for the remainder ones.

3. The code makes the same 100,000 iterations for a 100x100 grid and
just displays the final distribution.

Which all yield a Boltzmann distribution for a sufficiently large number
of events.

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 # Function to display options and get user input

5 def choose_option():

6 print(’Choose an option: 1, 2, or 3’)

7 print(’Option 1: Press space to aleatorily take a particle

from a box and put it in another in a 10x10 grid square. 20

manual steps’)

8 print(’Option 2: Code runs automatically to aleatorily take a

particle from a box and put it in another in a 10x10 grid

square. 1000 steps’)

9 print(’Option 3: Code runs automatically to take a particle

from a box and put it in another in a 100x100 grid square.

100,000 steps’)

10 example = int(input(’Enter a number: ’))
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11 return example

12

13 # Get the chosen option

14 example = choose_option()

15

16 # Setup variables based on the chosen option

17 if example == 1:

18 boxsize = 10

19 iterations = 20

20 plot_iter = True

21 pause_iter = True

22 elif example == 2:

23 boxsize = 10

24 iterations = 1000

25 plot_iter = True

26 pause_iter = False

27 elif example == 3:

28 boxsize = 100

29 iterations = 100000

30 plot_iter = False

31 pause_iter = False

32

33 # Initialize the box

34 box = np.ones((boxsize, boxsize))

35

36 # Create the figure

37 fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 6))

38 ax1.set_title(’Box State’)

39 ax2.set_title(’Histogram’)

40

41 # Display the initial state

42 heatmap = ax1.imshow(box, cmap=’jet’, vmin=0, vmax=9)

43 plt.colorbar(heatmap, ax=ax1)

44 histogram = ax2.hist(box.ravel(), bins=np.arange(-0.5, 10.5, 1),

edgecolor=’black’)

45 ax2.set_xlim([-0.5, 10])

46 ax2.set_ylim([0, 100])

47 plt.pause(0.01) # To allow the figure to render

48

49 if example == 1:

50 input("Press Enter to continue...")

51

52 # Main iteration loop

53 for i in range(1, iterations + 1):

54 initial = [np.random.randint(1, boxsize + 1), np.random.

randint(1, boxsize + 1)]

55 final = [np.random.randint(1, boxsize + 1), np.random.randint

(1, boxsize + 1)]

56

57 if box[initial[0] - 1, initial[1] - 1] != 0: # Check if there

is a particle

58 box[initial[0] - 1, initial[1] - 1] -= 1

59 box[final[0] - 1, final[1] - 1] += 1

60

61 if plot_iter:

62 heatmap.set_data(box)

63 # plt.colorbar(heatmap, ax=ax1) # commented otherwise it is

doing new colormap over and over
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64 ax2.clear()

65 ax2.hist(box.ravel(), bins=np.arange(-0.5, 10.5, 1),

edgecolor=’black’)

66 ax2.set_xlim([-0.5, 10])

67 ax2.set_ylim([0, 100])

68

69 # Slow down first 100 iterations in example 2

70 if example == 2 and i < 100:

71 plt.pause(0.2)

72

73 plt.pause(0.000001)

74

75 if pause_iter:

76 input("Press Enter to continue...")

77

78 print(f’iteration {i}’)

79

80 # Final display

81 heatmap.set_data(box)

82 # plt.colorbar(heatmap, ax=ax1) # commented otherwise it is doing

new colormap over and over

83 ax2.clear()

84 ax2.hist(box.ravel(), bins=np.arange(-0.5, 10.5, 1), edgecolor=’

black’)

85

86 if example == 3:

87 ax2.set_yscale(’log’)

88

89 plt.show()

E.2 Random Walk

This python3 script (requiring the numpy, matplotlib, and tkinter libraries)
is invoked in Chapter ??, Section ??. It simulates the random walk motion
of 𝑁 particles whith an equivalent diffusion coefficient 𝐷, for a set of
time intervals d𝑡. The values can be adjusted by the user using a small
Graphical User Interface.

The user can for example run the simulation with the following parame-
ters: 𝑁 = 1000, 𝐷 = 10, d𝑡 = 10.

1 import tkinter as tk

2 from tkinter import messagebox

3 import numpy as np

4 import matplotlib.pyplot as plt

5

6 class RunMeApp:

7 def __init__(self, master):

8 self.master = master

9 master.title("Run Me App")

10

11 self.isrun = False

12

13 self.N_label = tk.Label(master, text="N:")

14 self.N_label.pack()

15 self.N_entry = tk.Entry(master)
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16 self.N_entry.pack()

17

18 self.D_label = tk.Label(master, text="D:")

19 self.D_label.pack()

20 self.D_entry = tk.Entry(master)

21 self.D_entry.pack()

22

23 self.dt_label = tk.Label(master, text="dt:")

24 self.dt_label.pack()

25 self.dt_entry = tk.Entry(master)

26 self.dt_entry.pack()

27

28 self.dx_label = tk.Label(master, text="dx:")

29 self.dx_label.pack()

30 self.dx_entry = tk.Entry(master)

31 self.dx_entry.config(state=’readonly’)

32 self.dx_entry.pack()

33

34 self.track_var = tk.BooleanVar()

35 self.track_check = tk.Checkbutton(master, text="Track",

variable=self.track_var)

36 self.track_check.pack()

37

38 self.run_button = tk.Button(master, text="Run", command=

self.run_simulation)

39 self.run_button.pack()

40

41 self.stop_button = tk.Button(master, text="Stop", command=

self.stop_simulation)

42 self.stop_button.pack()

43

44 self.canvas = None

45

46 def run_simulation(self):

47 self.isrun = True

48 self.clear_canvas()

49

50 N = int(self.N_entry.get())

51 D = float(self.D_entry.get())

52 dt = float(self.dt_entry.get())

53 dx = np.sqrt(dt * D)

54

55 self.dx_entry.config(state=’normal’)

56 self.dx_entry.delete(0, tk.END)

57 self.dx_entry.insert(0, f"{dx:.6f}")

58 self.dx_entry.config(state=’readonly’)

59

60 L2 = 100 * dx # axes limits

61 r = np.zeros((2, N)) # points positions

62

63 plt.ion()

64 self.figure, self.ax = plt.subplots()

65 hp, = self.ax.plot(r[0, :], r[1, :], ’k.’)

66

67 if self.track_var.get():

68 rhist1 = np.zeros((2, 1)) # position history for

particle #1

69 rhist2 = np.zeros((2, 1)) # position history for
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particle #2

70 histp1, = self.ax.plot(rhist1[0, :], rhist1[1, :], ’b-

’, linewidth=1.5)

71 histp2, = self.ax.plot(rhist2[0, :], rhist2[1, :], ’r-

’, linewidth=1.5)

72

73 self.ax.set_xlim([-L2, L2])

74 self.ax.set_ylim([-L2, L2])

75 self.ax.set_aspect(’equal’)

76

77 while self.isrun:

78 r += dx * np.random.randn(2, N)

79 hp.set_xdata(r[0, :])

80 hp.set_ydata(r[1, :])

81

82 if self.track_var.get():

83 rhist1 = np.hstack((rhist1, r[:, 0:1]))

84 rhist2 = np.hstack((rhist2, r[:, 1:2]))

85 histp1.set_xdata(rhist1[0, :])

86 histp1.set_ydata(rhist1[1, :])

87 histp2.set_xdata(rhist2[0, :])

88 histp2.set_ydata(rhist2[1, :])

89

90 plt.xlim([-L2, L2])

91 plt.ylim([-L2, L2])

92 plt.draw()

93 plt.pause(0.01) # brief pause to update the plot

94

95 def stop_simulation(self):

96 self.isrun = False

97

98 def clear_canvas(self):

99 if self.canvas is not None:

100 self.canvas.delete("all")

101

102 if __name__ == "__main__":

103 root = tk.Tk()

104 app = RunMeApp(root)

105 root.mainloop()
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