Quasi-Synchronous Orbits and Preliminary Mission Analysis for Phobos Observation and Access Orbits

Paulo J. S. Gil

Instituto Superior Técnico

Simpósio Espaço “50 anos do 1º Voo Espacial Tripulado”
12 de Abril de 2011
Outline

- Introduction
- Distant Satellite Orbits
- Quasi-Satellite Orbits around Phobos
- Phobos Mission Analysis Issues
- Future Work
Introduction – Target: Phobos

- Mars 1st and largest Moon
- Orbital major axis $a = 9377 \text{ km}$, with sidereal period $T = 0.32 \text{ d}$
- Almost, but not exactly, circular equatorial orbit $e = 0.0151$, $i \sim 1^\circ$
- Small, $m \sim 10^{16}$, irregular shape
 - Ellipsoidal shape with mean radius 11.32 km; huge crater: Stickney
 - Very small gravity at surface $g \sim 10^{-3} \text{ m/s}^2$
- Tidally locked to Mars
- Particularly interesting for a sample return mission
 - Possibly a captured asteroid
 - Studies of the minor bodies of the solar system

http://www.esa.int/SPECIALS/Mars_Express/SEM21TVJD1E_0.html
Missions to Phobos

■ Past Missions
 ▪ Phobos 1 & 2 launched in 1988 by Soviet Union - Failed

■ Future Missions
 ▪ Phobos Grunt - Sample Return Mission to Phobos
 ◦ To be launched in 2012?
 ▪ Future ESA mission?

■ Challenges when approaching Phobos
 ▪ Phobos: small mass… – impossible to orbit it a keplerian way
 ◦ There is a need to orbit it somehow
 ▪ …but not negligible – orbit not Martian
 ▪ Irregular gravitational field
 ▪ Ephemeris not well known
Challenge: Force Field at Phobos and 3BP

- In the case of a larger body e.g. the Moon, there is no problem orbiting it
 - The region of influence is sufficiently large to allow keplerian-type orbits, where the Earth is a small perturbation
- The Hill sphere, where the Lagrange points are located, is large enough
- Problems appear when the “moon” is smaller and smaller – the Hill’s problem, when the mass ratio of the primaries goes to zero in a certain way

Case of Moon

Hill’s sphere
Region of influence

0

0.5

-0.5

P.J.S. Gil, Quasi-Synchronous Orbits around Phobos

Simpósio Espaço, IST, 12 de Abril, 2011; Page: 5
Challenge: Force Field at Phobos and 3BP

- Ellipsoidal model of Phobos
 - The thinnest axis is represented by the solid line

- Hill’s sphere just above Phobos (outer dashed line)

\[r_H = \left(\frac{\mu_{Ph}}{3\mu_M} \right)^{1/3} \approx 16.6 \text{ km} \]

- Region of influence below the surface (inner dashed line): usual orbits impossible

\[r_{\text{inf}} = \left(\frac{\mu_{Ph}}{\mu_M} \right)^{2/5} \approx 7.2 \text{ km} \]

- But mass is not negligible...

How to orbit Phobos?

P.J.S. Gil, Quasi-Synchronous Orbits around Phobos
Equilibrium of Forces

- Delicate equilibrium of forces
- Mars and centrifugal force tend to cancel
- Gravitational field of Phobos plays a role
- Eccentricity is very important; cannot be discarded
- Phobos J2 and other higher order terms are important at small distances

Orbit is not completely determined by Mars
Families of distant orbits in the 3BP, stable or quasi-stable

- Tadpole orbits (elongated shapes around $L_{4,5}$)...

- ...Horseshoe orbits (light blue)...

- ... and Quasi-satellite (or quasi-synchronous) orbits (next slide)
Relatively extensive literature about QSO orbits

- Root on a problem stated by Hill
- Stability, movement of the guiding center, small values of μ, problem in 2D

All figures from Benest (1976)
Quasi-Synchronous Orbits (QSO)

- Quasi-stable orbits around Phobos also called Quasi-Satellite Orbits
- Appear in the context of the 3BP, existing beyond the region of influence of the M_2
- Motion is dominated by Mars gravity but the gravitational field of Phobos plays a role
- (quasi) stable orbits circumventing Phobos, observation and preparation for landing becomes possible

QSO in the synodic or LVLH ref. frame
Quasi-Synchronous Orbits (QSO)

- QSO and 2-body orbits (neglecting Phobos attraction) are not too different.

- In reality:
 - Phobos has to be taken into account.
 - QSO must be used to address the problem.

- QSO are more stable due to the restoring force of Phobos.
QSO and Mars Orbits

- QSO are still orbits around Mars
- Almost indistinguishable from “normal” orbits
- How orbital elements vary?
Variation of Orbital Elements of QSO I

Example - QSO1 and an orbit with no Phobos gravity but same initial conditions; differences between both are striking.
Variation of Orbital Elements of QSO II

Eccentricity

S/C with Phobos (green)
S/C without Phobos (blue)
Phobos (red)

P.J.S. Gil, Quasi-Synchronous Orbits around Phobos

Simpósio Espaço, IST, 12 de Abril, 2011; Page: 14
Variation of Orbital Elements of QSO III

Orbital inclination and longitude of ascending node present practically no variation; the same is not true for Arg. Perimartem:

![Graph showing variation of Argument of Perimartem over time](image)

P.J.S. Gil, Quasi-Synchronous Orbits around Phobos
Historical Developments

- Henon, Benest (1970’s) – identification of QSO in the context of the 3BP
- Kogan (1987,1990), others - First order perturbation methods and averaging techniques; Constants of motion of approximate equations
 - Lie perturbation method applied to the study of QSO (very complicated)
- Difficulties and Limitations (Lie method)
 - Relative order of magnitude of the several parameters (μ, e, etc.) appearing in the problem is huge, making the theory of restrictive application – in particular in the case of Phobos; higher order gravity terms not considered.
- Wiesel (1993) - 2D model including eccentricity, Mars oblateness, ellipsoidal model for Phobos,
 - Zero eccentricity model as stepping stone to the more complex case – from periodic orbits when $e = 0$ at any distance from Phobos to resonant orbits and non-periodic orbits in the $e \neq 0$ case
 - Floquet theory used after a periodic orbit has been found to determine the Poincaré exponents
 - Numerical exploration of the phase space
Geometry description of QSOs

- Kogan (1987, 1990); approximate solution in terms of parameters

Fig: 3D geometry of the problem, with its natural parameters (from Kogan, 1990)
Wiesel’s approach

- 25 day integrations
- Assessment of “mortality rate” of quasi-orbits with successive longer integrations
- V_y must be controlled to within a fraction of a m/s to establish stable orbits
- No assessment of V_x in this work

Resonant periodic orbits ($e\neq 0$)

Fig. from Wiesel, 1993
Phobos ‘Grunt’ Approach

- Tuchin et al, Akim et al, 2002+
- Planar elliptical 3BP, no J2
- Case $e = 0, \mu = 0$ used for insight and zero order solution
- Linearized equations for analytical simplified solution
 - Const. of solution from const. Motion of model and initial conditions
 - Phase space scan – general behavior of QSO
- Chosen solutions checked against full numerical model
- Semi-numerical approach seems the best for solving practical problems

\[
\frac{d^2\hat{\xi}}{d\phi^2} = 2 \frac{d\hat{\eta}}{d\phi} + (3\rho - k\rho)\hat{\xi}
\]

\[
\frac{d^2\hat{\eta}}{d\phi^2} = -2 \frac{d\hat{\xi}}{d\phi} - \rho k\hat{\eta}
\]

Linear equations if \(\rho \) considered const.

QSO classification scheme
Objectives

- Acquire capabilities and experience in QSO for the possibility of a future ESA sample return mission to Phobos
- Knowledge and experience in dealing with QSO
- Mission design capabilities in problems involving QSO; applications to Phobos and possibly other minor bodies
- Search for better method to describe QSOs (e.g. 3D case) and search for enough stable solutions for practical problems ($e \neq 0$)
- First step: full numerical simulations of QSO around Phobos; assessment of how to search for (quasi-)stable solutions; mission design issues
2D QSO quasi-stable solutions

- Stable = stable for at least 30 days
- Easy to generate stable QSO
- Points at equal times in fig:
- QSO easily obtained in the x-y plane
 - 127×72, 103×62, 61×44, 42×34, ...
- Demonstration 3D QSO (next slides):
 - $(x,y,z) = (0,-100,40)$ [km]
 - $(v_x,v_y,v_z) = (-20,0,10)$ [m/s]
3 day simulation

x-y view of a test QSO with
\[(x, y, z) = (0, -100, 40) \text{ [km]}, (v_x, v_y, v_z) = (-20, 0, 10) \text{ [m/s]}\]

y-z view of a test QSO with
\[(x, y, z) = (0, -100, 40) \text{ [km]}, (v_x, v_y, v_z) = (-20, 0, 10) \text{ [m/s]}\]
3 day simulation (cont’d)

x-z view of a test QSO with
\((x, y, z) = (0, -100, 40) \text{ [km]}; (v_x, v_y, v_z) = (-20, 0, 10) \text{ [m/s]}\)

P.J.S. Gil, Quasi-Synchronous Orbits around Phobos

Simpósio Espaço, IST, 12 de Abril, 2011; Page: 23
30 day simulation

\[
x, y, z \text{ view of a test QSO with} \\
(x, y, z) = (0, -100, 40) \text{ [km]}, \ (v_x, v_y, v_z) = (20, 0, 10) \text{ [m/s]}
\]

\[
y, z \text{ view of a test QSO with} \\
(x, y, z) = (0, -100, 40) \text{ [km]}, \ (v_x, v_y, v_z) = (20, 0, 10) \text{ [m/s]}
\]

P.J.S. Gil, Quasi-Synchronous Orbits around Phobos

Simpósio Espaço, IST, 12 de Abril, 2011; Page: 24
30 day simulation (cont’d)

\((x,y,z) = (0,-100,40) \) [km], \((v_x,v_y,v_z) = (-20,0,10) \) [m/s]

\(x\text{-}z \) view of a test QSO with

\((x,y,z) = (0,-100,40) \) [km], \((v_x,v_y,v_z) = (-20,0,10) \) [m/s]

\(x\text{-}y\text{-}z \) view of a test QSO with

P.J.S. Gil, Quasi-Synchronous Orbits around Phobos

Simpósio Espaço, IST, 12 de Abril, 2011; Page: 25
Preliminary phase space exploration

- Assess and test the search for stable QSO;
- Point \((x,y,z) = (0,-100,0)\) [km] seems much more forgiving than the x axis chosen by Wiesel
- Search for stable QSO varying the velocity components
- Start with a broad search and fine tune latter
- \((v_x,v_y,v_z) = (10i,j,10k),\) \(i,j,k = -4,...,4\) [m/s] – a 1st broad exploration

Starting point
1day simulation

- Variation in v_z, then v_y and then v_x with max and min altitudes
1day simulation

- Order of variation of velocities gives information: v_y most crucial
Another order of variation of velocities
1day simulation

- Less higher “frequencies” are easier to analyze since variation is slower
1 day simulation - detail

- Analysis to prepare a refinement
7 day simulation

- Extending the simulation more and more instabilities grow and less QSO remain stable

Variation in vel. at (0,-100km,0) - 7 day simulation
30 day simulation

- Extending the simulation more and more instabilities grow and less QSO remain stable
- 30 days provide a good margin for correcting trajectories
30 day simulation

- Detail
Refinement of Simulations

- \(\mathbf{V} = (-36+2i, 0.1j, 2k), i=[0,8], j=[-10,5], k=[-4,4]; \) \(v_y \) is the most critical parameter; must be within an interval of \(~1\ m/s\)
Detail

Variation in vel. at (0,-100km,0) - 30 day simulation

Max. and Min. Altitudes [km]

Vx, Vy, 10*Vz [m/s]

Simul. #
Another Simulation Example

- Other types of simulations possible e.g. Variation of $|v|$, Az, El at the initial point
- Example: variation of y and v_x with $(0,y,0), (v_x,0,0), y, v_x < 0$
- Stable v_x negative since at the initial point $\vec{\omega} \times \vec{r} \approx -22.8$ m/s
- Include additional information about QSO
 - Average dimensions in x and y
 - QSO period, normalized by Phobos period of revolution
- Interesting features:
 - Relation between the period and velocity, more than with distance
 - Relation between max and min altitudes and axes of the QSO ellipse (distances)
 - Results need to be interpreted
Total of simulation
Detail – some interesting observations

P.J.S. Gil, Quasi-Synchronous Orbits around Phobos

Simpósio Espaço, IST, 12 de Abril, 2011; Page: 39
Mission Design Include

- Observation of Phobos surface and choice of QSO
- Illumination of observed surface
- Occurrence of eclipses and Earth occultation
- Insertion into a QSO for observation and approach of Phobos
 - Geometry
 - The best choice for minimizing possible insertion errors
- Trajectory for landing
Eclipse and Occultation

- Using the QSO example
Ground Track

- Motion relative to the surface: cf. QSO initial cond. (rel. inc.)

Phobos Longitude-Latitude coverage of a test QSO with
\((x, y, z) = (0, -100, 40)\) [km], \((v_x, v_y, v_z) = (-20, 0, 10)\) [m/s]
Sun's elevation varies a lot... and eclipses can take time
Eclipse at ground track point can last for days

Eclipse for a long time; sun too low

Whole simulation
Open questions

- **QSO insertion strategy**
 - Phobos ephemeris not well known
 - Need for prior observation
 - Small delta-V but high precision required

 Fig. from Akim et al, 1993

- **Approach and Landing**
 - Avoid crash => small delta-V
 - Highly irregular gravity field
 - Velocity at surface from a QSO is several dozens of m/s

 Fig. 3. Transition from observation orbit on QSO

- **3D QSO**
 - Application to Saturn system and other minor bodies

Fig. from Akim et al, 1993

Fig. 3. Transition from observation orbit on QSO
Search Stability Using Fast Lyapunov Indicators

- Fast Lyapunov Indicator (FLI)
 - What: Chaoticity analysis technique
 - Who: Pioneer work by Froehlé, Lega & Gonczi (1997)
 - Objective: Distinguish regular from chaotic motion
 - Technique derived from Lyapunov Characteristics Exponents (LCEs)

FLI value has a different behavior for regular and chaotic motion.

![Graph showing FLI values for regular and chaotic trajectories over time](image-url)
FLI Maps

- FLI Maps distinguishes the stability islands (purple) from the chaotic sea (yellow/orange), Villac & Lara 2005

- Goal: generalization to the elliptical Case (in course, Gil & Cabral, 2011)
Summary

- QSOs can be used to orbit small bodies
- Lots of features and things to worry about
- Numerical application to the case of Phobos
- Mission design issues
- 3D QSOs can be interesting
 - Need for approximate solutions
 - New perturbation methods
- New techniques to
 - Search for stable QSOs in the cases with eccentricity
 - Approach and landing strategies
 - Special QSO for special purposes
Summary

- Still many open questions => Lots of further work
Still many open questions => Lots of further work