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General Models for V=T, V=-V-T and V-D Processes
Simulation

@ Progresses in Quantum chemistry have introduced =) FHo sy
increasingly accurate atom-diatom and Collision 1D repulsive 1D repulsive/attractive 3D
disiemel siemm potentials Trajectories attractive 3D repulsive

: Collison perturbative Any Any

@ Trajectory methods over such potentials can Energy (only low T)

. . e AE;_, AE;, Al A
provide very detailed state-specific data. But these jime o > v
methods revain very intensive for the systematic  muttiquantum No Yes Yes
production of rate databases Transition Non-Reactive Non-Reactive Non-Reactive

Type & Reactive
@ Over the last decades, FOPT methods (Such as Iy b Isotropic Any
e . otential
the SSH approach) have been utilized, with a
relative degree of success, for the modeling of Respective characteristics of FOPT, FHO, and trajectory
heavy-impact processes in low-T plasmas methods
@ FHO model proposed at the same time than FOPT models (Rapp&Sharp:1963,
elechow: , but only systematica eployed much later due to computationa
Zelechow:1968), but only syst tically deployed h later due t putat |
constraints (Adamovich:1995, LinodaSilva:2007).
SUrenion
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An Accurate, Physically-Consistent, Semianalytic Model
for the prediction of V=T, V=V-T and V-D Processes

@ FHO model nicely reproduces results
from more sophisticated approaches
(QCT methods, etc...), and is
physically consistent at high T.
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@ The FHO model provides an interesting bridging theory for the modeling of .Y, .

“contemporary” plasma sources.
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The Forced Harmonic Oscillator Model in 2 Slides

— V=T transition probabilities for collinear atom-diatom non-reactive collisions are given by Kerner and Treanor

’ (-1 :
Z ri(i — r)i(f

P(i — f,€) = ilfle’™ exp (—e)
= r)ler

with n = min(i, f).
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The Forced Harmonic Oscillator Model in 2 Slides

— V=T transition probabilities for collinear atom-diatom non-reactive collisions are given by Kerner and Treanor

. (-1)" :
D e e T

P(i — f,€) = ilfle’™ exp (—e)
= r)ler

with n = min(i, f).

— V=V-T transition probabilities for collinear diatom-diatom collisions are given1 by Zelechow
. i L (i1p+fip—22+2)
P _ _ i +1) ~1 _5 (12 —2g+
Pliv,io = fi, o, p) = | D (~1)(127€ >cg1_§2 et Sece e exp (—e/2)
g=1

] 2

><\/(f —g+1)(fip — g+ 1) exp[—i(fin — +1)],§ =)' |
12— & (2 — g !exp 12— & P S (ip —g+1— Ni(fia—g+1— Nltel |

with iip = ip + iy, fip = f + fh and n = min(iy + ip +1,f + f» + 1).
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— V=T transition probabilities for collinear atom-diatom non-reactive collisions are given by Kerner and Treanor

. (-1)" :
D e e T

P(i — f,€) = ilfle’™ exp (—e)
= r)ler

with n = min(i, f).

— V=V-T transition probabilities for collinear diatom-diatom collisions are given1 by Zelechow
. i L (i1p+fip—22+2)
P _ _ i +1) ~1 _5 (12 —2g+
Pliv,io = fi, o, p) = | D (~1)(127€ >cg1_§2 et Sece e exp (—e/2)
g=1

] 2

><\/(f —g+1)(fip — g+ 1) exp[—i(fin — +1)],§ =)' |
12— & (2 — g !exp 12— & P S (ip —g+1— Ni(fia—g+1— Nltel |

with iip = ip + iy, fip = f + fh and n = min(iy + ip +1,f + f» + 1).

In these equations £ and p are related to the two-state FOPT transition probabilities, with £ = Ppropr (1 — 0)
and p = [4- Ppopr(1,0 — 0, 1)]*/2.

Ck is a transformation matrix calculated according to the e><pression1

Ul
ck_oni2( K =120 g \L/2 42l k—i41y -1
i = ; ; x > (=1)“( . :
i—1 J—1 o Jj—v-—1 v InsTiTUTO
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For a purely repulsive intermolecular potential V/(r) ~ exp(—cr), expressions for € and p are given by Zelechow

£ =

3 2 2
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The Forced Harmonic Oscillator Model in 2 Slides

For a purely repulsive intermolecular potential V/(r) ~ exp(—cr), expressions for € and p are given by Zelechow

_ 8w (/1) 72 a2 (E) ’

2 p:2(ﬁ12/u) 'yzav/w.

av

For a Morse intermolecular potential V/(r) ~ Ey,(1 — exp(—cr))?, the expression for ¢ is given by Cottrell (the
expression for p remains identical)

8miw (r'nz/,u) ~2 cosh? [%]
-1 ~
e = 2 3 ¢ = (2/m)tan” " 4/ (2Em/mV2).

sinh2 (2%0)

Em represents the potential well, w denotes the oscillator frequency, and p, «y, and /M are mass parameters
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The Forced Harmonic Oscillator Model in 2 Slides

For a purely repulsive intermolecular potential V/(r) ~ exp(—cr), expressions for € and p are given by Zelechow

ST i (2). pma(E e

a?h av
For a Morse intermolecular potential V/(r) ~ Ey,(1 — exp(—cr))?, the expression for ¢ is given by Cottrell (the
expression for p remains identical)

3 a2 2 2 [(+¢)rw
__ 8m w (C’;h/l‘) v co:?nhz[ (i) ] , ¢ = (2/7) tan—! (2Em /mv2).

Em represents the potential well, w denotes the oscillator frequency, and p, «y, and /M are mass parameters

Adamovich and Macheret summarized and introduced a few improvements for generalizing the FHO theory for
arbitrary molecular collisions:
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The Forced Harmonic Oscillator Model in 2 Slides

For a purely repulsive intermolecular potential V/(r) ~ exp(—cr), expressions for € and p are given by Zelechow

2 " p:2(ﬁ12/u) 'yzav/w.

_ 8w (/1) 72 a2 (E) ’

For a Morse intermolecular potential V/(r) ~ Ey,(1 — exp(—cr))?, the expression for ¢ is given by Cottrell (the
expression for p remains identical)

8miw (r'nz/,u) ~2 cosh? [%]

— =1 =2
2 e (%) 3 ¢ = (2/m) tan (2Em /mv?).

e =

Em represents the potential well, w denotes the oscillator frequency, and p, «y, and /M are mass parameters

Adamovich and Macheret summarized and introduced a few improvements for generalizing the FHO theory for
arbitrary molecular collisions:

@ symmetrization of the collision velocity to enforce detailed balance (median collision velocity v = (v; + vf)/2);

@ accounting for the anharmonicity of the oscillator potential curve using an average frequency w = |(E; — Ef)/(i — f)| if
i#f andw=|Ey — E|ifi=f;

@ Generalization of the model for nonresonant V-V-T transitions and V-V-T transitions between different species,
by replacing p — p X &/ sinh(§), with £ = 7r2(w1 — wy)/4av;
@ Generalization of the FHO model to non-collinear collisions (general case) through the multiplication of the INSTITUTO

SUPERIOR
parameters € and p by steric factors such that e = ¢ X Sy and p = p X /Syy, using the values Sy = 4/9  "f<M'ce
and Syy = 1/27, as proposed by Adamovich
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Some Further Assumptions (Extra Slide 3)

At high T, multiquantum V=V-T transitions have to be accounted for. This is
impractical as the number of transitions becomes N* where N is the number of
vibrational levels (ex. N=61 for N»).

Adamovich verified that for E;, > E,;,, V-V—T processes occur as two independent
V-T processes, and pure V-V exchanges can be neglected (roughly for

T > 10,000K). We then have:

Pwr (i, o = fi, 2,6, p) = Pyr(ih — fi,€) - Pyr(i2 — f,€)
Pyr(i,all = fi,all,e, p) = Pyr(in — fi,€)

which leads to a more practical calculation of N2 rates.

V-D processes such as AB(i) + M = A+ B + M are modeled according to the

approach proposed by Macheret and Adamovich. The probability for dissociation as

the product of the transition probability to a quasi-bound state such that v > vy,

times the probability of the subsequent decay of the energetic complex @
(1)

P(’ %15) = P(I — quaundag) : Pdecay

TECNICO

With Pyecay ~ 1.
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Numerical Implementation of the FHO Model

Factorials in denominators/numerators of probabilities expressions lead to
overflows/underflows for high quantum numbers

Factorial—Bessel

P(i — f,€) = JZ (2y/ms€)

for i, f > s = |i — f|, and ns = [max(i, f)!min(i, f)!] ~*,
and

1/2
Plis i > e, ) = 2 [2 (o00D0 /)]

foriy +ip=f +h,and iy +ip + A+ hHh >s=|ip —f].

Mario Lino da Silva, IPFN-IST

Bessel—Polynom

P =2
-/52 (24/nse) == (ns) £° exp ( nse) ;
(s! s+1

1/2
2 [2 (nDn@ o2 /4)" ] o~

[ngl)ng)]s é se>< 7n§1)n£2) Jir3
(s1)? 4 2 s+1 4 @

STELLAR Database, RHTGAES5
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Numerical Implementation of the FHO Model

Factorials in denominators/numerators of probabilities expressions lead to
overflows/underflows for high quantum numbers
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Numerical Implementation of the FHO Model

Factorials in denominators/numerators of probabilities expressions lead to
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Only the Bessel approximation can be recommended for low-intermediate st

temperatures
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The Question of Accurate Level Energies Calculations

@ Typical level energies calculations rely on -
. . x 10
polynomial expansions. These are not
accurate outside their initial fit range. B e e
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The Question of Accurate Level Energies Calculations

@ Typical level energies calculations rely on
polynomial expansions. These are not
accurate outside their initial fit range.

@ Potential reconstruction methods (+
solving the radial Schrédinger equation)
allow accurate extrapolations up to the

dissociation energy.

Mario Lino da Silva, IPFN-IST
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The Question of Accurate Level Energies Calculations

@ Typical level energies calculations rely on

polynomial expansions. These are not O e

accurate outside their initial fit range. or . - P°'V"°;/// mm///\
@ Potential reconstruction methods (+ j //

solving the radial Schrédinger equation) E /

allow accurate extrapolations up to the fEi sl Vs

dissociation energy. § 4 //
@ For N2(X), a RKR method and a more &/

sophisticated DPF method both yield z /

Vmax=60 instead of the traditional "/ |

Vmax=45-47. The 2D limit of the Lagana % 20 40 60 80 100

Vibrational Level

N3 potential considered by the Bari team
yields vmax=67.
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The Question of Accurate Level Energies Calculations

@ Typical level energies calculations rely on

polynomial expansions. These are not T
accurate outside their initial fit range. :: k]
@ Potential reconstruction methods (+ b I
solving the radial Schrédinger equation) e
allow accurate extrapolations up to the %o JUUOUTDERRDeSS
dissociation energy. G gl /ﬂ”
@ For N2(X), a RKR method and a more °F %
sophisticated DPF method both yield ‘ /
Vmax=60 instead of the traditional SR
Vmax—=45-47. The 2D limit of the Lagana bs i R s s
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The Question of Accurate Level Energies Calculations

@ Typical level energies calculations rely on
polynomial expansions. These are not
accurate outside their initial fit range. I

/
|

@ Potential reconstruction methods (+
solving the radial Schrédinger equation)

(RKR)

allow accurate extrapolations up to the £ 10 //
dissociation energy. : /
[ /
@ For N2(X), a RKR method and a more <0t/

sophisticated DPF method both yield
Vmax=00 instead of the traditional
Vmax=45-47. The 2D limit of the Lagana 1o
N3 potential considered by the Bari team

2 10° 4

10
Temperature (K)

yields vmax=67.
@ Inaccurate level energies lead to orders of magnitude differences (N2 dissociation r@
Pink Afterglow times. (see LinodaSilva, PSST 2009 & LinodaSilva, ChemPhys 2008)
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The Question of Accurate Level Energies Calculations

@ Typical level energies calculations rely on
polynomial expansions. These are not
accurate outside their initial fit range.

@ Potential reconstruction methods (+
solving the radial Schrédinger equation)
allow accurate extrapolations up to the
dissociation energy.

@ For N2(X), a RKR method and a more
sophisticated DPF method both yield
Vmax=00 instead of the traditional
Vmax=45-47. The 2D limit of the Lagana
N3 potential considered by the Bari team

Concentrations (em~)

yields vmax=67.
@ Inaccurate level energies lead to orders of magnitude differences (N2 dissociation r@
Pink Afterglow times. (see LinodaSilva, PSST 2009 & LinodaSilva, ChemPhys 2008)
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Reproduction of Macroscopic Rates
Sample Applications

Development of Detailed Databases for Multiquantum
V-T and V-D transitions in Air

o We compiled the existing multiquantum state-specific
datasets for Air (Esposito, Atom-Diatom collisions; Bose,
Zeldovich reactions). These reactions have been
reinterpolated to an accurate list of vibrational levels obtained
through potential reconstruction methods.
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The STELLAR Database: A Detailed Database for Air
Reproduction of Macroscopic Rates
Sample Applications

Development of Detailed Databases for Multiquantum
V-T and V-D transitions in Air

o We compiled the existing multiquantum state-specific
datasets for Air (Esposito, Atom-Diatom collisions; Bose,
Zeldovich reactions). These reactions have been
reinterpolated to an accurate list of vibrational levels obtained
through potential reconstruction methods.

@ The remainder missing rates have been produced by our group
for diatom-diatom collisions, to the largest accuracy possible
with the FHO model (using the exact factorial expressions). @
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Reproduction of Macroscopic Rates
Sample Applications

Development of Detailed Databases for Multiquantum
V-T and V-D transitions in Air

No. Reaction Model o' (A) E(K) N Ref.

1 Np(Xvi) + N2 2 No(Xve) + N2 FHO 4 200 3721 LinodaSilva:2010

2 Np(Xv) +N2=N+N+N,  FHO 4 200 124  LinodaSilva:2010

3 Np(Xvi) + 02 = Np(Xvr) + O, FHO 4 200 3721 LinodaSilva:2011

4 Np(Xvi)+ 0, =N+N+0O; FHO 4 200 124  LinodaSilva:2011

5  02(Xvi) + Na 2 02(X,vg) + N FHO 4 200 2116 LinodaSilva:2011

6 OXv) +N2=0+0+N, FHO 4 200 92 LinodaSilva:2011

7 0y(Xvj) + 02 = 0x(Xvf) + 02 FHO 4 380 2116 LinodaSilva:2012

8  0(Xv))+0,=20+0+0; FHO 4 380 92 LinodaSilva:2012

9 Np(Xv;) + N2 Np(Xve) + N QCT - - 3721  Esposito:2006

10 Np(Xv) +N=N+N+N QcT - - 124 Esposito:2006

11 Ox(Xv) + 0= 0x(Xvf) +0  QCT - - 2116  Esposito:2008

12 0(Xvi) +0=0+0+0 QT - - 92 Esposito:2008

13 Np(Xvj) + 0 = Np(Xv) + O FHO* - - 3721 Bose:1996

14 No(Xv)+O0O=N+N+0 FHO* - - 124 Bose:1996

15 Op(Xvi)) + N2 Op(Xyve) + N FHO* - - 2116  Bose:1996

16 O(Xv) +N=0+0+N FHO* - - 92 Bose:1996

17 Np(Xv;) + O = NO(Xvr) + N QCT - - 2928  Bose:1996

18 Ox(Xvi) + N= NO(Xvr) + O QCT - - 2208  Bose:1996

19 NO(X,v;) + N2 = NO(X,vr) + N FHO 2 200 2304 LinodaSilva:2012

20 NO(XXvi)+N2=N+O+N, FHO 2 200 96  LinodaSilva:2012

21 NO(X,v;) + O = NO(X,vf) + O, FHO 2 380 2304 LinodaSilva:2012

2 NO(Xv) +0,=N-+0+0, FHO 2 380 96  LinodaSilva:2012 INeToTo
SUPERIOR
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Database for No—N» Transitions

Reaction Rate (cmS/s)

Single-quantum V-V rates for No—Nj (0, 1—1, 0) and (0, 1—20,
19) transitions and O»—N3 (0, 1—1, 0) transitions. — and ——,

N,~N, (0,110)

N,-N, (1,19-50,20) .

X @

& 0N 01510)

log{Reaction Rate (cms/s))

10°

10
Translational Temperature (K)

10°

FHO model. X, calculations of Billing for No—N>. ©, interpolation
of experimental data for Np—O» (1, 0—0, 1), Taylor:1969.

v
1

80

100

M. Lino da Silva, V. Guerra, and J. Loureiro, J. Thermophys. Heat

Transf., 2007.

V-T Reaction rates at 10,000K. v; and v denote the initial and
final v—th level in the transition.
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Database for O,—O, Transitions

10 T T
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g 2 At
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1075l -125 15
1077}
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10—18 <
107 10° 10* 10° 60 50 40
Temperature (K) Yi Yy

Single-quantum V-T rates for 1—0 and 2—1 transitions (bottom to V-T Reaction rates at 100,000K. v; and v¢ denote the initial anc
top). —, FHO model (E = 380K); ——, FHO model (repulsive final v—th level in the transition.
potential); o, calculations of Coletti and Billing.
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M. Lino da Silva, V. Guerra, and J. Loureiro, Chem. Phys. Lett., 2012.
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Reproduction of Equilibrium Dissociation Rates
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Comparison between FHO (red) and Macroscopic Kinetics Datasets
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Excellent reproduction of equilibrium dissociation data. e
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Reproduction of Equilibrium Dissociation Rates
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Comparison between FHO (red) and Macroscopic Kinetics Datasets

K7 = Qu(T)/ > Qu(T)ka(v, T) i
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Excellent reproduction of equilibrium dissociation data. ge
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Reproduction of Equilibrium Dissociation Rates
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Comparison between FHO (red) and Macroscopic Kinetics Datasets

K3 = Qu(T)/ Y Qu(T)ka(v, T)

Excellent reproduction of equilibrium dissociation data. ge
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Towards an Adequate Accounting of Excited Levels and

V-E Rates

@ V-E tansitions presented as: -

0 No(v)+ M — No(A)+ M o ]

0.5 1 1.5 2 25 3 3.5 4 4.5 5
Internuclear Distance (A}

Potential curves and first and last vibrational levels for N> (X) anc
N2(A)
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Towards an Adequate Accounting of Excited Levels and

V-E Rates

@ V-E tansitions presented as:
o N2(V)+M—>N2(A)+M s

@ Which means: |

o Nz(X,V:I.)+M*>N2(A7V:f)+M 85 1 15 2 25 5 4 45 5

Internuclear Distance (A}

Potential curves and first and last vibrational levels for N> (X) anc
N2(A)

=
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Towards an Adequate Accounting of Excited Levels and
V-E Rates

xwo; ‘
@ V-E tansitions presented as: j rr -
o No(v)+ M — No(A) + M 2 | ’gi
@ Which means: %4 “‘
0 No(X,v=i)+M — No(A,v =)+ M MZ' ‘t‘
@ We replace them by: 1 \\,
o No(X, i)+ M — No(X, vi) + M S TN N SR
° NZ(X7 V,') n M — N2(A \/f) i M Potential curves and first and ll\lazszAv)ibrational levels for Nnd
o No(A,v))+ M — No(A, ve) + M
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0D calculation in the conditions of Fire Il

Temporal evolution of temperatures
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CFD with Coupled Multiqguantum State-to-State Models
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Conclusions

@ The FHO model provides a flexible, yet accurate numerical tool for
the production of multiquantum V-T, V=V-T, and V-D rate
databases for diatom-diatom collisions.
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Conclusions

@ The FHO model provides a flexible, yet accurate numerical tool for
the production of multiquantum V-T, V=V-T, and V-D rate
databases for diatom-diatom collisions.

@ A full repulsive 3D FHO approach, including the effects of rotation
exists (Macheret& Adamovich) but it is preferred to keep the 1D
approach with steric factors, as we can account for
repulsive-attractive Morse interactions. Need to carefully tailor the
numerical simulation (underflows/overflows) and to select adequate
vibrational energies manifolds.
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Conclusions

@ The FHO model provides a flexible, yet accurate numerical tool for
the production of multiquantum V-T, V=V-T, and V-D rate
databases for diatom-diatom collisions.

@ A full repulsive 3D FHO approach, including the effects of rotation
exists (Macheret& Adamovich) but it is preferred to keep the 1D
approach with steric factors, as we can account for
repulsive-attractive Morse interactions. Need to carefully tailor the
numerical simulation (underflows/overflows) and to select adequate
vibrational energies manifolds.

@ The diatom-diatom collision databases produced using the FHO
model pass all the validation tests (physical consistency,
thermodynamic equilibrium consistency, reproduction of available
experimental and numerical state-to-state rates from sophisticated @
models), and provide reliable datasets which will help bridging the
transition to full 3D trajectory methods over surface potentials.
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