A Multiquantum State-To-State Model For The Fundamental States Of Air And Application To The Modeling Of High-Speed Shocked Flows

RHTGAE5, Barcelona, Spain, 16–19 October 2012

M. Lino da Silva, B. Lopez, V. Guerra, and J. Loureiro

Instituto de Plasmas e Fusão Nuclear
Instituto Superior Técnico, Lisboa, Portugal

16 October 2012
Objectives of the Presentation

General Objective: Presentation of a Complete State-Specific, Multiquantum, High-Temperature model for the ground states of N_2, O_2, and NO: The STELLAR database.

Outline of the Talk:

- Model capabilities for the prediction of high-temperature rates.
- Description of the rates database for the $N_2(X,v)$, $O_2(X,v)$, and NO(X,v) states. Application for a sample calculation (Fire II 0D calculation)
Objectives of the Presentation

General Objective: Presentation of a Complete State-Specific, Multiquantum, High-Temperature model for the ground states of N₂, O₂, and NO: The STELLAR database.

Outline of the Talk:

- Model capabilities for the prediction of high-temperature rates.
- Description of the rates database for the N₂(X,v), O₂(X,v), and NO(X,v) states. Application for a sample calculation (Fire II 0D calculation)
Objectives of the Presentation

General Objective: Presentation of a Complete State-Specific, Multiquantum, High-Temperature model for the ground states of \(\text{N}_2 \), \(\text{O}_2 \), and \(\text{NO} \): The STELLAR database.

Outline of the Talk:

- Description of the Forced Harmonic Oscillator Method (FHO) for \(\text{V} \rightarrow \text{T} \), \(\text{V} \rightarrow \text{V} \rightarrow \text{T} \), and \(\text{V} \rightarrow \text{D} \) transitions modeling.
- Model capabilities for the prediction of high-temperature rates.
- Description of the rates database for the \(\text{N}_2(X,v) \), \(\text{O}_2(X,v) \), and \(\text{NO}(X,v) \) states. Application for a sample calculation (Fire II 0D calculation)
Objectives of the Presentation

General Objective: Presentation of a Complete State-Specific, Multiquantum, High-Temperature model for the ground states of N_2, O_2, and NO: The STELLAR database.

Outline of the Talk:

- Model capabilities for the prediction of high-temperature rates.
- Description of the rates database for the $N_2(X,v)$, $O_2(X,v)$, and NO(X,v) states. Application for a sample calculation (Fire II 0D calculation)
Objectives of the Presentation

General Objective: Presentation of a Complete State-Specific, Multiquantum, High-Temperature model for the ground states of N_2, O_2, and NO: The STELLAR database.

Outline of the Talk:

- Model capabilities for the prediction of high-temperature rates.
- Description of the rates database for the $N_2(X,v)$, $O_2(X,v)$, and $NO(X,v)$ states. Application for a sample calculation (Fire II 0D calculation)
Progresses in Quantum chemistry have introduced increasingly accurate atom-diatom and diatom-diatom potentials. Trajectory methods over such potentials can provide very detailed state-specific data. But these methods remain very intensive for the systematic production of rate databases. Over the last decades, FOPT methods (Such as the SSH approach) have been utilized, with a relative degree of success, for the modeling of heavy-impact processes in low-T plasmas. FHO model proposed at the same time than FOPT models (Rapp&Sharp:1963, Zelechow:1968), but only systematically deployed much later due to computational constraints (Adamovich:1995, LinodaSilva:2007).
An Accurate, Physically-Consistent, Semianalytic Model for the prediction of V–T, V–V–T and V–D Processes

- **FHO model** nicely reproduces results from more sophisticated approaches (QCT methods, etc...), and is physically consistent at high T.

- **SSH model** also nicely scales at low T, but fails at high T.

- For a large range of plasma sources, VT and VD processes can only be properly simulated through the FHO model or sophisticated methods.

- The FHO model provides an interesting bridging theory for the modeling of "contemporary" plasma sources.

1→0, 9→8, and 20→19 N2–N2 V–T rates. Comparison between Billing’s QCT rates (×) and the FHO model (−)
FHO model nicely reproduces results from more sophisticated approaches (QCT methods, etc...), and is physically consistent at high T.

SSH model also nicely scales at low T, but fails at high T.

For a large range of plasma sources, VT and VD processes can only be properly simulated through the FHO model or sophisticated methods.

The FHO model provides an interesting bridging theory for the modeling of "contemporary" plasma sources.
An Accurate, Physically-Consistent, Semianalytic Model for the prediction of V–T, V–V–T and V–D Processes

- **FHO model** nicely reproduces results from more sophisticated approaches (QCT methods, etc...), and is physically consistent at high T.
- **SSH model** also nicely scales at low T, but fails at high T.
- For a large range of plasma sources, VT and VD processes can only be properly simulated through the FHO model or sophisticated methods.

The FHO model provides an interesting bridging theory for the modeling of “contemporary” plasma sources.
An Accurate, Physically-Consistent, Semianalytic Model for the prediction of V–T, V–V–T and V–D Processes

- **FHO model** nicely reproduces results from more sophisticated approaches (QCT methods, etc...), and is physically consistent at high T.

- **SSH model** also nicely scales at low T, but fails at high T.

- For a large range of plasma sources, VT and VD processes can only be properly simulated through the FHO model or sophisticated methods.

- The FHO model provides an interesting bridging theory for the modeling of “contemporary” plasma sources.
The Forced Harmonic Oscillator Model in 2 Slides

– V–T transition probabilities for collinear atom-diatom non-reactive collisions are given by Kerner and Treanor

\[P(i \rightarrow f, \varepsilon) = i!f!\varepsilon^{i+f} \exp(-\varepsilon) \left| \sum_{r=0}^{n} \frac{(-1)^r}{r!(i-r)!(f-r)!\varepsilon^r} \right|^2 \]

with \(n = \text{min}(i, f) \).

– V–V–T transition probabilities for collinear diatom-diatom collisions are given\(^1\) by Zelechow

\[P(i_1, i_2 \rightarrow f_1, f_2, \varepsilon, \rho) = \left| \sum_{g=1}^{n} (-1)^{(i_12-g+1)} C_{i_12}^{i_2} C_{f_12}^{f_2} \frac{1}{2} (i_12+f_12-2g+2) \exp(-\varepsilon/2) \right|^2 \]

\[\times \sqrt{(i_12-g+1)!(f_12-g+1)! \exp[-i(f_12-g+1)\rho]} \sum_{l=0}^{n-g} \frac{(-1)^l}{(i_12-g+1-l)!(f_12-g+1-l)!\varepsilon^l} \]

with \(i_{12} = i_1 + i_2, \ f_{12} = f_1 + f_2 \) and \(n = \text{min}(i_1 + i_2 + 1, f_1 + f_2 + 1) \).

In these equations \(\varepsilon \) and \(\rho \) are related to the two-state FOPT transition probabilities, with \(\varepsilon = P_{\text{FOPT}}(1 \rightarrow 0) \) and \(\rho = [4 \cdot P_{\text{FOPT}}(1, 0 \rightarrow 0, 1)]^{1/2} \).

\(C_{ij}^k \) is a transformation matrix calculated according to the expression\(^1\)

\[C_{ij}^k = 2^{-n/2} \left(\begin{array}{c} k \\ i-1 \end{array} \right)^{-1/2} \left(\begin{array}{c} k \\ j-1 \end{array} \right)^{1/2} \times \sum_{v=0}^{j-1} (-1)^v \left(\begin{array}{c} k-i+1 \\ j-v-1 \end{array} \right) \left(\begin{array}{c} i-1 \\ v \end{array} \right). \]

\(^1\) Corrected from typographic errors

Mário Lino da Silva, IPFN–IST

STELLAR Database, RHTGAE5
The Forced Harmonic Oscillator Model in 2 Slides

– **V–T transition probabilities** for collinear atom-diatom non-reactive collisions are given by Kerner and Treanor

\[
P(i \rightarrow f, \varepsilon) = i!f!\varepsilon^{i+f} \exp(-\varepsilon) \left| \sum_{r=0}^{n} (-1)^r \frac{(-1)^r}{r!(i-r)!(f-r)!\varepsilon^r} \right|^2
\]

with \(n = \min(i, f) \).

– **V–V–T transition probabilities** for collinear diatom-diatom collisions are given\(^1\) by Zelechow

\[
P(i_1, i_2 \rightarrow f_1, f_2, \varepsilon, \rho) = \left| \sum_{g=1}^{n} (-1)^{(i_12-g+1)} C_{i12}^{g,i2+1} C_{f12}^{f12} g, f2+1 \frac{1}{2} (i_12+f12-2g+2) \exp(-\varepsilon/2) \right|^2
\]

\[
\times \sqrt{(i_12 - g + 1)!(f_12 - g + 1)! \exp[-i(f_12 - g + 1)\rho] \sum_{l=0}^{n-g} \frac{(-1)^l}{(i_12 - g + 1 - l)!(f_12 - g + 1 - l)!!\varepsilon^l}}
\]

with \(i_{12} = i_1 + i_2, f_{12} = f_1 + f_2 \) and \(n = \min(i_1 + i_2 + 1, f_1 + f_2 + 1) \).

In these equations \(\varepsilon \) and \(\rho \) are related to the two-state FOPT transition probabilities, with \(\varepsilon = P_{FOPT}(1 \rightarrow 0) \) and \(\rho = [4 \cdot P_{FOPT}(1, 0 \rightarrow 0, 1)]^{1/2} \).

\(C_{ij}^k \) is a transformation matrix calculated according to the expression\(^1\)

\[
C_{ij}^k = 2^{-n/2} \binom{k}{i-1}^{-1/2} \binom{k}{j-1}^{1/2} \times \sum_{v=0}^{j-1} (-1)^v \binom{k-i+1}{j-v-1} \binom{i-1}{v}.
\]

\(^1\)Corrected from typographic errors

Mário Lino da Silva, IPFN–IST

STELLAR Database, RHTGAE5
The Forced Harmonic Oscillator Model in 2 Slides

- **V–T transition probabilities** for collinear atom-diatom non-reactive collisions are given by Kerner and Treanor

\[
P(i \to f, \varepsilon) = i! f! \varepsilon^{i+f} \exp(-\varepsilon) \left| \sum_{r=0}^{n} \frac{(-1)^r}{r!(i-r)!(f-r)!\varepsilon^r} \right|^2
\]

with \(n = \min(i, f) \).

- **V–V–T transition probabilities** for collinear diatom-diatom collisions are given\(^1\) by Zelechow

\[
P(i_1, i_2 \to f_1, f_2, \varepsilon, \rho) = \left| \sum_{g=1}^{n} (-1)^{(i_{12}-g+1)} C_{g, i_2+1}^{i_{12}} C_{g, f_2+1}^{f_{12}} \frac{1}{2} (i_{12}+f_{12}-2g+2) \exp(-\varepsilon/2) \times \sqrt{(i_{12}-g+1)!(f_{12}-g+1)! \exp[-i(f_{12}-g+1)\rho]} \sum_{l=0}^{n-g} \frac{(-1)^l}{(i_{12}-g+1-l)!(f_{12}-g+1-l)!\varepsilon^l} \right|^2
\]

with \(i_{12} = i_1 + i_2, f_{12} = f_1 + f_2 \) and \(n = \min(i_1 + i_2 + 1, f_1 + f_2 + 1) \).

In these equations \(\varepsilon \) and \(\rho \) are related to the two-state FOPT transition probabilities, with \(\varepsilon = P_{\text{FOPT}}(1 \to 0) \) and \(\rho = [4 \cdot P_{\text{FOPT}}(1, 0 \to 0, 1)]^{1/2} \).

\(C_{ij}^k \) is a transformation matrix calculated according to the expression\(^1\)

\[
C_{ij}^k = 2^{-n/2} \binom{k}{i-1}^{-1/2} \binom{k}{j-1}^{1/2} \times \sum_{\nu=0}^{j-1} (-1)\nu \binom{k-i+1}{j-\nu-1} \binom{i-1}{\nu}.
\]

\(^1\)Corrected from typographic errors

Mário Lino da Silva, IPFN–IST

STELLAR Database, RHTGAE5
The Forced Harmonic Oscillator Model in 2 Slides

For a purely repulsive intermolecular potential $V(r) \sim \exp(-\alpha r)$, expressions for ε and ρ are given by Zelechow

$$\varepsilon = \frac{8\pi^3 \omega \left(\frac{m^2}{\mu} \right)^2 \gamma^2}{\alpha^2 h} \sinh^{-2} \left(\frac{\pi \omega}{\alpha \bar{v}} \right), \quad \rho = 2 \left(\frac{m^2}{\mu} \right) \gamma^2 \alpha \bar{v} / \omega.$$

For a Morse intermolecular potential $V(r) \sim E_m \left(1 - \exp(-\alpha r) \right)^2$, the expression for ε is given by Cottrell (the expression for ρ remains identical)

$$\varepsilon = \frac{8\pi^3 \omega \left(\frac{m^2}{\mu} \right)^2 \gamma^2}{\alpha^2 h} \cosh^2 \left[\frac{(1+\phi) \pi \omega}{\alpha \bar{v}} \right] \sinh^2 \left(\frac{2\pi \omega}{\alpha \bar{v}} \right), \quad \phi = (2/\pi) \tan^{-1} \sqrt{\frac{2E_m}{\bar{m}\bar{v}^2}}.$$

E_m represents the potential well, ω denotes the oscillator frequency, and $\mu, \gamma,$ and \bar{m} are mass parameters.

Adamovich and Macheret summarized and introduced a few improvements for generalizing the FHO theory for arbitrary molecular collisions:

- Symmetrization of the collision velocity to enforce detailed balance (median collision velocity $\bar{v} = (v_i + v_f) / 2$);
- Accounting for the anharmonicity of the oscillator potential curve using an average frequency $\omega = \frac{|(E_i - E_f)/(i - f)|}{i \neq f},$ and $\omega = |E_{i+1} - E_i|$ if $i = f$;
- Generalization of the model for nonresonant V–V–T transitions and V–V–T transitions between different species, by replacing $\rho \rightarrow \rho \times \xi / \sinh(\xi)$, with $\xi = \pi^2 (\omega_1 - \omega_2) / 4 \alpha \bar{v}$;
- Generalization of the FHO model to non-collinear collisions (general case) through the multiplication of the parameters ε and ρ by steric factors such that $\varepsilon = \varepsilon \times S_{VT}$ and $\rho = \rho \times \sqrt{S_{VV}}$, using the values $S_{VT} = 4/9$ and $S_{VV} = 1/27$, as proposed by Adamovich.
The Forced Harmonic Oscillator Model in 2 Slides

For a purely repulsive intermolecular potential \(V(r) \sim \exp(-\alpha r) \), expressions for \(\varepsilon \) and \(\rho \) are given by Zelechow

\[
\varepsilon = \frac{8\pi^3 \omega (\tilde{m}^2 / \mu) \gamma^2}{\alpha^2 h} \sinh^{-2} \left(\frac{\pi \omega}{\alpha \tilde{v}} \right), \quad \rho = 2 \left(\tilde{m}^2 / \mu \right) \gamma^2 \alpha \tilde{v} / \omega.
\]

For a Morse intermolecular potential \(V(r) \sim E_m (1 - \exp(-\alpha r))^2 \), the expression for \(\varepsilon \) is given by Cottrell (the expression for \(\rho \) remains identical)

\[
\varepsilon = \frac{8\pi^3 \omega (\tilde{m}^2 / \mu) \gamma^2}{\alpha^2 h} \cosh^2 \left[\left(\frac{1+\phi}{\alpha \tilde{v}} \right) \pi \omega \right] \sinh^2 \left(\frac{2\pi \omega}{\alpha \tilde{v}} \right), \quad \phi = (2/\pi) \tan^{-1} \sqrt{2E_m / \tilde{m}\tilde{v}^2}.
\]

\(E_m \) represents the potential well, \(\omega \) denotes the oscillator frequency, and \(\mu, \gamma, \) and \(\tilde{m} \) are mass parameters.

Adamovich and Macheret summarized and introduced a few improvements for generalizing the FHO theory for arbitrary molecular collisions:

- Symmetrization of the collision velocity to enforce detailed balance (median collision velocity \(\tilde{v} = (v_i + v_f)/2 \));
- Accounting for the anharmonicity of the oscillator potential curve using an average frequency \(\omega = |(E_i - E_f)/(i - f)| \) if \(i \neq f \), and \(\omega = |E_{i+1} - E_i| \) if \(i = f \);
- Generalization of the model for nonresonant V–V–T transitions and V–V–T transitions between different species, by replacing \(\rho \rightarrow \rho \times \xi / \sinh(\xi) \), with \(\xi = \pi^2 (\omega_1 - \omega_2) / 4 \alpha \tilde{v} \);
- Generalization of the FHO model to non-collinear collisions (general case) through the multiplication of the parameters \(\varepsilon \) and \(\rho \) by steric factors such that \(\varepsilon = \varepsilon \times S_{VT} \) and \(\rho = \rho \times \sqrt{S_{VV}} \), using the values \(S_{VT} = 4/9 \) and \(S_{VV} = 1/27 \), as proposed by Adamovich.

Mário Lino da Silva, IPFN–IST

STELLAR Database, RHTGAE5
The Forced Harmonic Oscillator Model in 2 Slides

For a purely repulsive intermolecular potential $V(r) \sim \exp(-\alpha r)$, expressions for ε and ρ are given by Zelechow

$$\varepsilon = \frac{8\pi^3 \omega \left(\bar{m}^2 / \mu\right)}{\alpha^2 \hbar} \gamma^2 \sinh^{-2} \left(\frac{\pi \omega}{\alpha \bar{v}}\right), \quad \rho = 2 \left(\bar{m}^2 / \mu\right) \gamma^2 \alpha \bar{v} / \omega.$$

For a Morse intermolecular potential $V(r) \sim E_m (1 - \exp(-\alpha r))^2$, the expression for ε is given by Cottrell (the expression for ρ remains identical)

$$\varepsilon = \frac{8\pi^3 \omega \left(\bar{m}^2 / \mu\right)}{\alpha^2 \hbar} \gamma^2 \cosh^2 \left[\frac{(1+\phi)\pi \omega}{\alpha \bar{v}}\right] \sinh^2 \left(\frac{2\pi \omega}{\alpha \bar{v}}\right), \quad \phi = (2/\pi) \tan^{-1} \sqrt{(2E_m/\bar{m}\bar{v}^2)}.$$

E_m represents the potential well, ω denotes the oscillator frequency, and μ, γ, and \bar{m} are mass parameters

Adamovich and Macheret summarized and introduced a few improvements for generalizing the FHO theory for arbitrary molecular collisions:

- symmetrization of the collision velocity to enforce detailed balance (median collision velocity $\bar{v} = (v_i + v_f)/2$);
- accounting for the anharmonicity of the oscillator potential curve using an average frequency $\omega = |(E_i - E_f)/(i - f)|$ if $i \neq f$, and $\omega = |E_{i+1} - E_i|$ if $i = f$;
- Generalization of the model for nonresonant V–V–T transitions and V–V–T transitions between different species, by replacing $\rho \rightarrow \rho \times \xi / \sinh(\xi)$, with $\xi = \pi^2 (\omega_1 - \omega_2) / 4 \alpha \bar{v}$;
- Generalization of the FHO model to non-collinear collisions (general case) through the multiplication of the parameters ε and ρ by steric factors such that $\varepsilon = \varepsilon \times S_{VT}$ and $\rho = \rho \times \sqrt{S_{VV}}$, using the values $S_{VT} = 4/9$ and $S_{VV} = 1/27$, as proposed by Adamovich.
The Forced Harmonic Oscillator Model in 2 Slides

For a purely repulsive intermolecular potential \(V(r) \sim \exp(-\alpha r) \), expressions for \(\varepsilon \) and \(\rho \) are given by Zelechow

\[
\varepsilon = \frac{8\pi^3 \omega \left(\frac{\bar{m}^2}{\mu} \right) \gamma^2}{\alpha^2 h} \sinh^{-2} \left(\frac{\pi \omega}{\alpha \bar{v}} \right), \quad \rho = 2 \left(\frac{\bar{m}^2}{\mu} \right) \gamma^2 \alpha \bar{v} / \omega.
\]

For a Morse intermolecular potential \(V(r) \sim E_m(1 - \exp(-\alpha r))^2 \), the expression for \(\varepsilon \) is given by Cottrell (the expression for \(\rho \) remains identical)

\[
\varepsilon = \frac{8\pi^3 \omega \left(\frac{\bar{m}^2}{\mu} \right) \gamma^2}{\alpha^2 h} \cosh^2 \left(\frac{(1+\phi)\pi \omega}{\alpha \bar{v}} \right) \sinh^2 \left(\frac{2\pi \omega}{\alpha \bar{v}} \right), \quad \phi = (2/\pi) \tan^{-1} \sqrt{(2E_m/\bar{m}\bar{v}^2)}.
\]

\(E_m \) represents the potential well, \(\omega \) denotes the oscillator frequency, and \(\mu, \gamma, \) and \(\bar{m} \) are mass parameters.

Adamovich and Macheret summarized and introduced a few improvements for generalizing the FHO theory for arbitrary molecular collisions:

- Symmetrization of the collision velocity to enforce detailed balance (median collision velocity \(\bar{v} = (v_i + v_f)/2 \));
- Accounting for the anharmonicity of the oscillator potential curve using an average frequency \(\omega = |(E_i - E_f)/(i - f)| \) if \(i \neq f \), and \(\omega = |E_{i+1} - E_i| \) if \(i = f \);
- Generalization of the model for nonresonant V–V–T transitions and V–V–T transitions between different species, by replacing \(\rho \to \rho \times \xi / \sinh(\xi) \), with \(\xi = \pi^2(\omega_1 - \omega_2)/4\alpha \bar{v} \);
- Generalization of the FHO model to non-collinear collisions (general case) through the multiplication of the parameters \(\varepsilon \) and \(\rho \) by steric factors such that \(\varepsilon = \varepsilon \times S_{VT} \) and \(\rho = \rho \times \sqrt{S_{VV}} \), using the values \(S_{VT} = 4/9 \) and \(S_{VV} = 1/27 \), as proposed by Adamovich.
At high T, multiquantum V–V–T transitions have to be accounted for. This is impractical as the number of transitions becomes N^4 where N is the number of vibrational levels (ex. $N=61$ for N_2).

Adamovich verified that for $E_{tr} \gg E_{vib}$, V–V–T processes occur as two independent V–T processes, and pure V–V exchanges can be neglected (roughly for $T > 10,000K$). We then have:

$$P_{VVT}(i_1, i_2 \rightarrow f_1, f_2, \varepsilon, \rho) \approx P_{VT}(i_1 \rightarrow f_1, \varepsilon) \cdot P_{VT}(i_2 \rightarrow f_2, \varepsilon)$$

$$P_{VT}(i_1, \text{all} \rightarrow f_1, \text{all}, \varepsilon, \rho) = P_{VT}(i_1 \rightarrow f_1, \varepsilon)$$

which leads to a more practical calculation of N^2 rates.

V–D processes such as $AB(i) + M \rightleftharpoons A + B + M$ are modeled according to the approach proposed by Macheret and Adamovich. The probability for dissociation as the product of the transition probability to a quasi-bound state such that $v > v_{diss}$, times the probability of the subsequent decay of the energetic complex

$$P(i \rightarrow, \varepsilon) = P(i \rightarrow v_{qbound}, \varepsilon) \cdot P_{\text{decay}}$$

with $P_{\text{decay}} \sim 1$.

Mário Lino da Silva, IPFN–IST

STELLAR Database, RHTGAE5
Factorials in denominators/numerators of probabilities expressions lead to overflows/underflows for high quantum numbers.

Factorial → Bessel

\[P(i \rightarrow f, \varepsilon) = J_s^2 \left(2 \sqrt{n_s \varepsilon} \right) \]

for \(i, f \gg s = |i - f| \), and \(n_s = [\max(i, f)! \min(i, f)!]^{-s} \), and

\[P(i_1, i_2 \rightarrow f_1, f_2, \varepsilon, \rho) = J_s^2 \left[2 \left(n_s^{(1)} n_s^{(2)} \rho_s^2 / 4 \right)^{1/2} \right] \]

for \(i_1 + i_2 = f_1 + f_2 \), and \(i_1 + i_2 + f_1 + f_2 \gg s = |i_1 - f_1| \).

Bessel → Polynom

\[J_s^2 \left(2 \sqrt{n_s \varepsilon} \right) \simeq \frac{(n_s)^s}{(s!)^2} \varepsilon^s \exp \left(-\frac{2n_s \varepsilon}{s + 1} \right) ; \]

\[J_s^2 \left[2 \left(n_s^{(1)} n_s^{(2)} \rho_s^2 / 4 \right)^{1/2} \right] \simeq \left(\frac{n_s^{(1)} n_s^{(2)}}{(s!)^2} \right)^s \left(\frac{\rho_s^2}{4} \right)^s \exp \left(-\frac{n_s^{(1)} n_s^{(2)}}{s + 1} \frac{\rho_s^2}{4} \right) \]
Factorials in denominators/numerators of probabilities expressions lead to overflows/underflows for high quantum numbers.

Exact (bold) and asymptotic probability (light) for a $5 \rightarrow 4 \text{N}_2$--$\text{N}_2$ V–T collision (upper figure) and maxwellian velocity distribution functions at 10,000 K and 100,000 K (lower figure).

Nikitin (light) and Exact (bold) asymptotic transition probabilities for a $15 \rightarrow 30 \text{N}_2$--$\text{N}_2$ V–T collision as a function of the colliding velocity (upper figure) and corresponding reaction rates against the translational temperature (lower figure).
Numerical Implementation of the FHO Model

Factorials in denominators/numerators of probabilities expressions lead to overflows/underflows for high quantum numbers.

Only the Bessel approximation can be recommended for low-intermediate temperatures.
The Question of Accurate Level Energies Calculations

- Typical level energies calculations rely on polynomial expansions. These are not accurate outside their initial fit range.

- Potential reconstruction methods (+ solving the radial Schrödinger equation) allow accurate extrapolations up to the dissociation energy.

- For \(\text{N}_2(\text{X}) \), a RKR method and a more sophisticated DPF method both yield \(v_{\text{max}} = 60 \) instead of the traditional \(v_{\text{max}} = 45-47 \). The 2D limit of the Lagana \(\text{N}_3 \) potential considered by the Bari team yields \(v_{\text{max}} = 67 \).

- Inaccurate level energies lead to orders of magnitude differences (\(\text{N}_2 \) dissociation rates, Pink Afterglow times. (see LinodaSilva, PSST 2009 & LinodaSilva, ChemPhys 2008)
Typical level energies calculations rely on polynomial expansions. These are not accurate outside their initial fit range.

Potential reconstruction methods (+ solving the radial Schrödinger equation) allow accurate extrapolations up to the dissociation energy.

For $N_2(X)$, a RKR method and a more sophisticated DPF method both yield $v_{max} = 60$ instead of the traditional $v_{max} = 45-47$. The 2D limit of the Lagana N_3 potential considered by the Bari team yields $v_{max} = 67$.

Inaccurate level energies lead to orders of magnitude differences (N_2 dissociation rates, Pink Afterglow times. (see LinodaSilva, PSST 2009 & LinodaSilva, ChemPhys 2008)
The Question of Accurate Level Energies Calculations

- Typical level energies calculations rely on polynomial expansions. These are not accurate outside their initial fit range.

- Potential reconstruction methods (solving the radial Schrödinger equation) allow accurate extrapolations up to the dissociation energy.

- For $N_2(X)$, a RKR method and a more sophisticated DPF method both yield $v_{\text{max}} = 60$ instead of the traditional $v_{\text{max}} = 45$-47. The 2D limit of the Lagana N_3 potential considered by the Bari team yields $v_{\text{max}} = 67$.

- Inaccurate level energies lead to orders of magnitude differences (N_2 dissociation rates, Pink Afterglow times. (see LinodaSilva, PSST 2009 & LinodaSilva, ChemPhys 2008)
The Question of Accurate Level Energies Calculations

- Typical level energies calculations rely on polynomial expansions. These are not accurate outside their initial fit range.

- Potential reconstruction methods (solving the radial Schrödinger equation) allow accurate extrapolations up to the dissociation energy.

- For $N_2(X)$, a RKR method and a more sophisticated DPF method both yield $v_{\text{max}} = 60$ instead of the traditional $v_{\text{max}} = 45-47$. The 2D limit of the Lagana N_3 potential considered by the Bari team yields $v_{\text{max}} = 67$.

- Inaccurate level energies lead to orders of magnitude differences (N_2 dissociation rates, Pink Afterglow times. (see LinodaSilva, PSST 2009 & LinodaSilva, ChemPhys 2008)
The Question of Accurate Level Energies Calculations

- Typical level energies calculations rely on polynomial expansions. These are not accurate outside their initial fit range.

- Potential reconstruction methods (solving the radial Schrödinger equation) allow accurate extrapolations up to the dissociation energy.

- For \(\text{N}_2(\text{X}) \), a RKR method and a more sophisticated DPF method both yield \(v_{\text{max}} = 60 \) instead of the traditional \(v_{\text{max}} = 45-47 \). The 2D limit of the Lagana \(\text{N}_3 \) potential considered by the Bari team yields \(v_{\text{max}} = 67 \).

- Inaccurate level energies lead to orders of magnitude differences (\(\text{N}_2 \) dissociation rates; Pink Afterglow times). (see LinodaSilva, PSST 2009 & LinodaSilva, ChemPhys 2008)

Mário Lino da Silva, IPFN–IST

STELLAR Database, RHTGAE5
The Question of Accurate Level Energies Calculations

- Typical level energies calculations rely on polynomial expansions. These are not accurate outside their initial fit range.

- Potential reconstruction methods (+ solving the radial Schrödinger equation) allow accurate extrapolations up to the dissociation energy.

- For $N_2(X)$, a RKR method and a more sophisticated DPF method both yield $v_{max}=60$ instead of the traditional $v_{max}=45-47$. The 2D limit of the Lagana N_3 potential considered by the Bari team yields $v_{max}=67$.

- Inaccurate level energies lead to orders of magnitude differences (N_2 dissociation rates; Pink Afterglow times. (see LinodaSilva, PSST 2009 & LinodaSilva, ChemPhys 2008)
We compiled the existing multiquantum state-specific datasets for Air (Esposito, Atom-Diatom collisions; Bose, Zeldovich reactions). These reactions have been reinterpolated to an accurate list of vibrational levels obtained through potential reconstruction methods.

The remainder missing rates have been produced by our group for diatom-diatom collisions, to the largest accuracy possible with the FHO model (using the exact factorial expressions).
Development of Detailed Databases for Multiquantum V–T and V–D transitions in Air

- We compiled the existing multiquantum state-specific datasets for Air (Esposito, Atom-Diatom collisions; Bose, Zeldovich reactions). These reactions have been reinterpolated to an accurate list of vibrational levels obtained through potential reconstruction methods.

- The remainder missing rates have been produced by our group for diatom-diatom collisions, to the largest accuracy possible with the FHO model (using the exact factorial expressions).
Development of Detailed Databases for Multiquantum V–T and V–D transitions in Air

<table>
<thead>
<tr>
<th>No.</th>
<th>Reaction</th>
<th>Model</th>
<th>α^{-1} (Å)</th>
<th>E (K)</th>
<th>N</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$N_2(X,v_i) + N_2 \rightarrow N_2(X,v_f) + N_2$</td>
<td>FHO 4</td>
<td>200</td>
<td>3721</td>
<td>LinodaSilva:2010</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>$N_2(X,v_i) + N_2 \rightarrow N + N + N_2$</td>
<td>FHO 4</td>
<td>200</td>
<td>124</td>
<td>LinodaSilva:2010</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>$N_2(X,v_i) + O_2 \rightarrow N_2(X,v_f) + O_2$</td>
<td>FHO 4</td>
<td>200</td>
<td>3721</td>
<td>LinodaSilva:2011</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>$N_2(X,v_i) + O_2 \rightarrow N + N + O_2$</td>
<td>FHO 4</td>
<td>200</td>
<td>124</td>
<td>LinodaSilva:2011</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>$O_2(X,v_i) + N_2 \rightarrow O_2(X,v_f) + N_2$</td>
<td>FHO 4</td>
<td>200</td>
<td>2116</td>
<td>LinodaSilva:2011</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>$O_2(X,v_i) + N_2 \rightarrow O + O + N_2$</td>
<td>FHO 4</td>
<td>200</td>
<td>92</td>
<td>LinodaSilva:2011</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>$O_2(X,v_i) + O_2 \rightarrow O_2(X,v_f) + O_2$</td>
<td>FHO 4</td>
<td>380</td>
<td>2116</td>
<td>LinodaSilva:2012</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>$O_2(X,v_i) + O_2 \rightarrow O + O + O_2$</td>
<td>FHO 4</td>
<td>380</td>
<td>92</td>
<td>LinodaSilva:2012</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>$N_2(X,v_i) + N \rightarrow N_2(X,v_f) + N$</td>
<td>QCT</td>
<td>–</td>
<td>–</td>
<td>3721</td>
<td>Esposito:2006</td>
</tr>
<tr>
<td>10</td>
<td>$N_2(X,v_i) + N \rightarrow N + N + N$</td>
<td>QCT</td>
<td>–</td>
<td>–</td>
<td>124</td>
<td>Esposito:2006</td>
</tr>
<tr>
<td>11</td>
<td>$O_2(X,v_i) + O \rightarrow O_2(X,v_f) + O$</td>
<td>QCT</td>
<td>–</td>
<td>–</td>
<td>2116</td>
<td>Esposito:2008</td>
</tr>
<tr>
<td>12</td>
<td>$O_2(X,v_i) + O \rightarrow O + O + O$</td>
<td>QCT</td>
<td>–</td>
<td>–</td>
<td>92</td>
<td>Esposito:2008</td>
</tr>
<tr>
<td>13</td>
<td>$N_2(X,v_i) + O \rightarrow N_2(X,v_f) + O$</td>
<td>FHO*</td>
<td>–</td>
<td>–</td>
<td>3721</td>
<td>Bose:1996</td>
</tr>
<tr>
<td>14</td>
<td>$N_2(X,v_i) + O \rightarrow N + N + O$</td>
<td>FHO*</td>
<td>–</td>
<td>–</td>
<td>124</td>
<td>Bose:1996</td>
</tr>
<tr>
<td>15</td>
<td>$O_2(X,v_i) + N \rightarrow O_2(X,v_f) + N$</td>
<td>FHO*</td>
<td>–</td>
<td>–</td>
<td>2116</td>
<td>Bose:1996</td>
</tr>
<tr>
<td>16</td>
<td>$O_2(X,v_i) + N \rightarrow O + O + N$</td>
<td>FHO*</td>
<td>–</td>
<td>–</td>
<td>92</td>
<td>Bose:1996</td>
</tr>
<tr>
<td>17</td>
<td>$N_2(X,v_i) + O \rightarrow NO(X,v_f) + N$</td>
<td>QCT</td>
<td>–</td>
<td>–</td>
<td>2928</td>
<td>Bose:1996</td>
</tr>
<tr>
<td>18</td>
<td>$O_2(X,v_i) + N \rightarrow NO(X,v_f) + O$</td>
<td>QCT</td>
<td>–</td>
<td>–</td>
<td>2208</td>
<td>Bose:1996</td>
</tr>
<tr>
<td>19</td>
<td>$NO(X,v_i) + N_2 \rightarrow NO(X,v_f) + N_2$</td>
<td>FHO 2</td>
<td>200</td>
<td>2304</td>
<td>LinodaSilva:2012</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>$NO(X,v_i) + N_2 \rightarrow N + O + N_2$</td>
<td>FHO 2</td>
<td>200</td>
<td>96</td>
<td>LinodaSilva:2012</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>$NO(X,v_i) + O_2 \rightarrow NO(X,v_f) + O_2$</td>
<td>FHO 2</td>
<td>380</td>
<td>2304</td>
<td>LinodaSilva:2012</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>$NO(X,v_i) + O_2 \rightarrow N + O + O_2$</td>
<td>FHO 2</td>
<td>380</td>
<td>96</td>
<td>LinodaSilva:2012</td>
<td></td>
</tr>
</tbody>
</table>

These 34148 Rates are compiled in the IST STELLAR 1.0 Database (available at http://esther.ist.utl.pt)
Database for N_2–N_2 Transitions

Single-quantum V–V rates for N_2–N_2 $(0, 1\rightarrow1, 0)$ and $(0, 1\rightarrow20, 19)$ transitions and O_2–N_2 $(0, 1\rightarrow1, 0)$ transitions. − and − − , FHO model. × , calculations of Billing for N_2–N_2. ◊, interpolation of experimental data for N_2–O_2 $(1, 0\rightarrow0, 1)$, Taylor:1969.

The STELLAR Database: A Detailed Database for Air Reproduction of Macroscopic Rates

Sample Applications

Database for \(\text{O}_2\text{–O}_2 \) Transitions

Single-quantum V–T rates for \(1 \rightarrow 0 \) and \(2 \rightarrow 1 \) transitions (bottom to top). ––, FHO model \((E = 380\text{K})\); α–α, FHO model (repulsive potential); o, calculations of Coletti and Billing.

Reproduction of Equilibrium Dissociation Rates

\[\text{Reproduction of Equilibrium Dissociation Rates} \]

\[\text{N}_2 + \text{N}_2 \rightarrow \text{N} + \text{N} + \text{N}_2 \text{ (LinodaSilva)} \]

\[\text{O}_2 + \text{O}_2 \rightarrow \text{O} + \text{O} + \text{O}_2 \text{ (LinodaSilva)} \]

Comparison between FHO (red) and Macroscopic Kinetics Datasets

\[K_d^{eq} = \frac{Q_v(T)}{\sum Q_v(T) k_d(v, T)} \]

Excellent reproduction of equilibrium dissociation data.

Mário Lino da Silva, IPFN–IST

STELLAR Database, RHTGAE5
Reproduction of Equilibrium Dissociation Rates

\[\text{N}_2 + \text{N} \rightarrow \text{N} + \text{N} + \text{N} \] (Esposito)

\[\text{O}_2 + \text{O} \rightarrow \text{O} + \text{O} + \text{O} \] (Esposito)

Comparison between FHO (red) and Macroscopic Kinetics Datasets

\[K_{d}^{eq} = \frac{Q_{v}(T)}{\sum Q_{v}(T)k_{d}(v, T)} \]

Excellent reproduction of equilibrium dissociation data.
Reproduction of Equilibrium Dissociation Rates

\[N_2 + O \rightarrow NO + N \quad \text{(Bose)} \]

\[O_2 + N \rightarrow NO + O \quad \text{(Bose)} \]

Comparison between FHO (red) and Macroscopic Kinetics Datasets

\[K_{eq}^d = \frac{Q_v(T)}{\sum Q_v(T)k_d(v, T)} \]

Excellent reproduction of equilibrium dissociation data.
Sample Applications and Future Work

Sample Applications
Towards an Adequate Accounting of Excited Levels and V–E Rates

- V–E transitions presented as:
- $N_2(v) + M \rightarrow N_2(A) + M$

Potential curves and first and last vibrational levels for $N_2(X)$ and $N_2(A)$
Towards an Adequate Accounting of Excited Levels and V–E Rates

- V–E transitions presented as:
 - $N_2(v) + M \rightarrow N_2(A) + M$
- Which means:
 - $N_2(X, \nu = i) + M \rightarrow N_2(A, \nu = f) + M$

Potential curves and first and last vibrational levels for $N_2(X)$ and $N_2(A)$.
Towards an Adequate Accounting of Excited Levels and V–E Rates

- V–E transitions presented as:
 \[N_2(\nu) + M \rightarrow N_2(A) + M \]
- Which means:
 \[N_2(X, \nu = i) + M \rightarrow N_2(A, \nu = f) + M \]
- We replace them by:
 \[N_2(X, \nu_i) + M \rightarrow N_2(X, \nu_f) + M \]
 \[N_2(X, \nu_i) + M \rightarrow N_2(A, \nu_f) + M \]
 \[N_2(A, \nu_i) + M \rightarrow N_2(A, \nu_f) + M \]
0D calculation in the conditions of Fire II

Post-shock average vibrational energies of N₂, O₂ and NO

Mário Lino da Silva, IPFN–IST STELLAR Database, RHTGAE5
Post-shock excitation of the vibrational levels of N\(_2\), using an N\(_2\)–N\(_2\) (FHO, Lino da Silva) and N\(_2\)–N (QCT, Esposito) multiquantum kinetic dataset.
Conclusions

- A full repulsive 3D FHO approach, including the effects of rotation exists (Macheret & Adamovich) but it is preferred to keep the 1D approach with steric factors, as we can account for repulsive-attractive Morse interactions. Need to carefully tailor the numerical simulation (underflows/overflows) and to select adequate vibrational energies manifolds.

- The diatom-diatom collision databases produced using the FHO model pass all the validation tests (physical consistency, thermodynamic equilibrium consistency, reproduction of available experimental and numerical state-to-state rates from sophisticated models), and provide reliable datasets which will help bridging the transition to full 3D trajectory methods over surface potentials.

A full repulsive 3D FHO approach, including the effects of rotation exists (Macheret & Adamovich) but it is preferred to keep the 1D approach with steric factors, as we can account for repulsive-attractive Morse interactions. Need to carefully tailor the numerical simulation (underflows/overflows) and to select adequate vibrational energies manifolds.

The diatom-diatom collision databases produced using the FHO model pass all the validation tests (physical consistency, thermodynamic equilibrium consistency, reproduction of available experimental and numerical state-to-state rates from sophisticated models), and provide reliable datasets which will help bridging the transition to full 3D trajectory methods over surface potentials.

A full repulsive 3D FHO approach, including the effects of rotation exists (Macheret & Adamovich) but it is preferred to keep the 1D approach with steric factors, as we can account for repulsive-attractive Morse interactions. Need to carefully tailor the numerical simulation (underflows/overflows) and to select adequate vibrational energies manifolds.

The diatom-diatom collision databases produced using the FHO model pass all the validation tests (physical consistency, thermodynamic equilibrium consistency, reproduction of available experimental and numerical state-to-state rates from sophisticated models), and provide reliable datasets which will help bridging the transition to full 3D trajectory methods over surface potentials.