This short README serves to guide possible users in the interpretation of the kinetic files enclosed in this package. The data in this package corresponds to the accompanying data of the article titled: "Heavy Impact Vibrational Excitation and Dissociation Processes in CO2" by J. Vargas, B. Lopez and M. Lino da Silva (2020) The files are: CO2.lev - A list of the used level energies of CO2 in this kinetic scheme and alphabetically a list of vibrational state-to-state and macroscopic reactions in m^3/mol/s: CO_Chemistry_ESS.kin IVT_CO2(B,v1)+M=CO2(B,v2)+M.kin IVT_CO2(B,v1)+M=CO2(B,v3)+M.kin IVT_CO2(B,v2)+M=CO2(B,v3)+M.kin IVT_CO2(X,v1)+M=CO2(X,v2)+M.kin IVT_CO2(X,v1)+M=CO2(X,v3)+M.kin IVT_CO2(X,v2)+M=CO2(X,v3)+M.kin O_Quenching.kin VD_CO2(X,v3)+M=CO+O+M.kin VE_CO2(X,v2)+M=CO2(B,v1)+M.kin VE_CO2(X,v2)+M=CO2(B,v2)+M.kin VE_CO2(X,v2)+M=CO2(B,v3)+M.kin VED_CO2(X,v3)+M=CO+O+M.kin VT_CO2(B,v1)+M=CO2(B,v1)+M.kin VT_CO2(B,v2)+M=CO2(B,v2)+M.kin VT_CO2(B,v3)+M=CO2(B,v3)+M.kin VT_CO2(X,v1)+M=CO2(X,v1)+M.kin VT_CO2(X,v2)+M=CO2(X,v2)+M.kin VT_CO2(X,v3)+M=CO2(X,v3)+M.kin VVT_CO2(B,v1)+CO2(B,v1)=CO2(B,v1-1)+CO2(B,v1+1).kin VVT_CO2(B,v2)+CO2(B,v2)=CO2(B,v2-1)+CO2(B,v2+1).kin VVT_CO2(B,v3)+CO2(B,v3)=CO2(B,v3-1)+CO2(B,v3+1).kin VVT_CO2(X,v1)+CO2(X,v1)=CO2(X,v1-1)+CO2(X,v1+1).kin VVT_CO2(X,v2)+CO2(X,v2)=CO2(X,v2-1)+CO2(X,v2+1).kin VVT_CO2(X,v3)+CO2(X,v3)=CO2(X,v3-1)+CO2(X,v3+1).kin Z_CO2+C=CO+CO.kin Z_CO2+O=CO+O2_Sharipov.kin Z_CO2+O=CO+O2_Varga.kin Generic collision partners are labeled M and after the coefficients for the reaction rate coefficient the generic collision partner for each specific transition is listed. Inside these files two types of reaction rate coefficient shapes are contained: Arrhenius and Poly9thOrder. The Arrhenius function contains three coefficients which are the well known coefficients of the Arrhenius functions. For example: Kf = Arrhenius( A, n, Te ) correspond to: Kf = A*T^(n)*exp(-Te/T). The Poly9thOrder is a function such that: Kf = Poly9thOrder( a, b, c, d, e, f, g, h, i ) corresponds to: Kf = exp( a/Tr^3 + b/Tr^2 + c/Tr + d*ln(Tr) + e + f*Tr + g*Tr^2 + h*Tr^3 + i*Tr^4 ) where Tr = T/1000