This short README serves to guide possible users in the interpretation of the kinetic files enclosed in this package.
The data in this package corresponds to the accompanying data of the article titled:
"Heavy Impact Vibrational Excitation and Dissociation Processes in CO2" by J. Vargas, B. Lopez and M. Lino da Silva (2020)
The files are:
CO2.lev - A list of the used level energies of CO2 in this kinetic scheme
and alphabetically a list of vibrational state-to-state and macroscopic reactions in m^3/mol/s:
CO_Chemistry_ESS.kin
IVT_CO2(B,v1)+M=CO2(B,v2)+M.kin
IVT_CO2(B,v1)+M=CO2(B,v3)+M.kin
IVT_CO2(B,v2)+M=CO2(B,v3)+M.kin
IVT_CO2(X,v1)+M=CO2(X,v2)+M.kin
IVT_CO2(X,v1)+M=CO2(X,v3)+M.kin
IVT_CO2(X,v2)+M=CO2(X,v3)+M.kin
O_Quenching.kin
VD_CO2(X,v3)+M=CO+O+M.kin
VE_CO2(X,v2)+M=CO2(B,v1)+M.kin
VE_CO2(X,v2)+M=CO2(B,v2)+M.kin
VE_CO2(X,v2)+M=CO2(B,v3)+M.kin
VED_CO2(X,v3)+M=CO+O+M.kin
VT_CO2(B,v1)+M=CO2(B,v1)+M.kin
VT_CO2(B,v2)+M=CO2(B,v2)+M.kin
VT_CO2(B,v3)+M=CO2(B,v3)+M.kin
VT_CO2(X,v1)+M=CO2(X,v1)+M.kin
VT_CO2(X,v2)+M=CO2(X,v2)+M.kin
VT_CO2(X,v3)+M=CO2(X,v3)+M.kin
VVT_CO2(B,v1)+CO2(B,v1)=CO2(B,v1-1)+CO2(B,v1+1).kin
VVT_CO2(B,v2)+CO2(B,v2)=CO2(B,v2-1)+CO2(B,v2+1).kin
VVT_CO2(B,v3)+CO2(B,v3)=CO2(B,v3-1)+CO2(B,v3+1).kin
VVT_CO2(X,v1)+CO2(X,v1)=CO2(X,v1-1)+CO2(X,v1+1).kin
VVT_CO2(X,v2)+CO2(X,v2)=CO2(X,v2-1)+CO2(X,v2+1).kin
VVT_CO2(X,v3)+CO2(X,v3)=CO2(X,v3-1)+CO2(X,v3+1).kin
Z_CO2+C=CO+CO.kin
Z_CO2+O=CO+O2_Sharipov.kin
Z_CO2+O=CO+O2_Varga.kin
Generic collision partners are labeled M and after the coefficients for the reaction rate coefficient the
generic collision partner for each specific transition is listed.
Inside these files two types of reaction rate coefficient shapes are contained: Arrhenius and Poly9thOrder.
The Arrhenius function contains three coefficients which are the well known coefficients of the Arrhenius functions.
For example: Kf = Arrhenius( A, n, Te ) correspond to: Kf = A*T^(n)*exp(-Te/T).
The Poly9thOrder is a function such that:
Kf = Poly9thOrder( a, b, c, d, e, f, g, h, i ) corresponds to:
Kf = exp( a/Tr^3 + b/Tr^2 + c/Tr + d*ln(Tr) + e + f*Tr + g*Tr^2 + h*Tr^3 + i*Tr^4 )
where Tr = T/1000